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Abstract

This paper deals with ultra-wideangle perspectives and related curved perspectives. We

distinguish between primary perspectives (referring to space situations when a perspective

projection is applied) and secondary pseudo-perspectives that are induced later when a viewer

looks at a perspective 2D-image.

In many cases, secondary perspectives induced by classic ultra-wideangle primary per-

spectives appear unrealistic and misleading. We are here discussing side e®ects of such projec-

tions. It is possible to overcome several drawbacks by means of a special curved perspectives.

We are presenting two kinds of such perspectives: The ¯rst kind is generated by means of

projecting space onto a sphere and called spherical perspective. The curved image is mapped

onto 2D images, the transformed spherical perspectives. The second kind uses re°ections on

spheres (and cylinders of revolution). Both approaches are not linear anymore, i.e., straight

lines will have curved images. We are giving some general rules for which approach is best for

which purpose. The results are illustrated both by computer generated images and examples

in art.

1 Primary and secondary perspectives

When we take a picture of a scene by means of a photographic camera, we have a projection of

3-space onto a °at image plane. The focus of the camera only has in°uence on the boundary

(size) of the image: the smaller the focus, the more of the scene is visible. According to the rules

of classic perspective, the images of straight lines appear as straight lines.

When we later on view the perspective image and move the eye point into the corresponding

position, the situation in space can be more or less \reconstructed" by our brains. This works

comparatively well as long as the new eye position does not di®er too much from its requested

position. Thus, there is a simple but important rule that should always be considered when

creating a perspective image: How will the viewer see the image?

In the following, we will speak of the \primary" and the \secondary" perspectives: The ¯rst is

the perspective at the moment when a picture is taken, the second is the pseudo-perspective,

when a viewer looks at a °at perspective image from another viewpoint.

To give an example: The perspective in Figure 1 is created in the primary perspecticve by a

camera with an ultra-wideangle lens (left). The focus of the lens (the eye point) is very close

to the shark. In the middle of the ¯rst row of a cinema with a large screen the position of a

viewer (secondary perspective) can be compared with the lens position. Thus, such a viewer will

have a realistic { and very dramatic { impression of the situation (Figure 2). When the movie

is shown on TV (a di®erent secondary perspective), the relative viewing distance is maybe ten

times larger. As a result, the viewer has the impression that the perspective is very unnatural.
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Fig. 1 Primary perspective projection
Fig. 2 Two secondary perspectives

In general we can say that classic primary perspective projections usually induce more or less

realistic secondary projections for a focus f ¸ 30mm. The secondary perspectives become

unrealistic and misleading for 18mm < f < 30mm and di®er considerably from the images our

brain normally produces with even smaller focuses: Distances and angles can then hardly be

estimated, surfaces of revolution like spheres or cylinders appear unnatural, etc. (Figures 3, 19).

Again, everything depends on the viewer's position in regard to the 2D-image. When you view the

images in Figure 3 separately from a very close distance (or { physically easier { you enlarge the

images by e.g. factor ten without changing the eye position), your impression will be \normal":

Figure 3: Typical images created by means of classic ultra-wideangle perspective.

Due to the close distance in the sec-

ondary perspective, the center of the

image will appear larger, and every-

thing is ¯ne again. Thus, a large ¯g-

ure in a magazine creates a di®er-

ent illusion than a small one (Fig-

ure 4). Small ¯gures require larger

focuses (i.e., larger distances) in the

primary stage!

Fig. 4 Di®erent secondary fovy-angles
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2 The visual system

How does our visual system produce \images" in the primary stage? The human eye can only see

sharply within a narrow cone with an apex angle (\¯eld of vision angle" or fovy-angle) of about

one degree (see Figure 5, [Bai59]). When we look at a scene that requires a large fovy-angle (i.e.,

a small focus) ([Hec74]), our eye balls will not stay ¯xed. Rather, they rotate quickly in order

to produce several images of details of the scene (\centers of interest"). Our brain then unites

those partial images into one \impression".

Fig. 5 The visible area

Fig. 6 Di®erent eyes, similar results. . .

This impression only corresponds to images produced by classic primary perspectives with fovy-

angles of less than 30± (see, e.g., [Str69]). Objects outside the cone of revolution with the eye

point E as apex, the principal projection ray as axis and the apex angle of approximately 30±

appear unrealistic, even in the primary perspective of the human visual system.

Whereas human eye balls can \roll" spherically, eyes of insects consist of hundreds (up to 30,000)

of facettes, i.e. tiny cones. Each facette (Ommatidium) produces an image similar to the center

of interest of the human eye. Thus, the sum of all part images is probably similar to the result

of the rolling of the eye ball of higher developed animals (Figure 6).

The theory of the bad vision of insects is prob-

ably not true. Especially dragon °ies, e.g., have

an extremely good capability to spot their prey

and to estimate distances. This is possibly the

consequence of the spherical appearance of their

eyes! Also, the so-called \momentum" is much

higher: Wheras human eyes only need ¼ 20 im-

ages per second in order to consider a sequence

of images as \movie", some insects need 4 ¡ 5

times as many images. Thus, a TV-movie is a

rather slow slide-presentation for an ordinary

mosquito. . . Fig. 7 Nightmare. . .
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3 Distortions in ultra-wideangle perspectives

Now again back to images created by classic primary perspective ultra-wideangle projections. In

a secondary perspective with \normal" eye position, the borders of the image are unnaturally

enlarged. As a consequence, there is less space left for the center of interest, whereas details at

the borders appear over-proportionally voluminous. When we take a picture of, e.g., a group of

people, people's faces at the borders of the picture are unnaturally distorted (Figure 8): People

have \longer noses" and \bigger ears", but also longer legs etc.

Fig. 8 Unwanted distortions

Fig. 9 Long legs. . .

The above mentioned drawbacks may turn into an advantage. Good photographers of course

know about such distortions and they often use them for their purposes. Figure 9 exaggerates

the long legs of the woman by means of an ultra-wideangle lens. The principal point of this

photo is by far not the section of the diagonals (as it would be on the negative). It is rather

somewhere to the left of the pot on the stove { not too far from the woman's face, but very far

from the woman's lower legs. Note the mirrored image of the legs in the shield of the stove and

also the curved re°ection in the cylindric trash can. They both show the legs less distorted and

closer to reality.

We usually expect that the silhouette of a sphere is a circle because when we observe a (not too

large) sphere, we automatically and unconsciously rotate our eye ball(s) so that the principal

projection ray approximately passes the center of the sphere. Then, the silhouette of the sphere

is a circle even when we project 3-space onto a plane.

In classic perspective, however, the silhouette of a sphere may degenerate to an eccentric conic

(Figure 3). The silhouette then encloses an area that is larger than it should be.

As a consequence, we will over-estimate the size of the sphere. Artists always knew about this

fact. E.g., when Leonardo da Vinci painted his famous Last Supper (the building is an ultra-

wideangle perspective, compare our scetch in Figure 10), he ignored the rules of perspective

when it came to images of spheres (or human heads).

The above-mentioned drawbacks of classic perspectives can be diminished essentially with the

help of appropriate curved perspectives. The price for this improvement, however, is that in

general straight lines in 3-space will not appear as straight lines in the image. As people are

used to see many photographic pictures every day, they are already used to the \fact" that
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Figure 10: Leonardo paints his Last Supper.

straight lines have to appear as straight lines { though this is only true in classic perspectives

and does not correspond to the way the human visual system perceives.

Wearer of contact lenses know well about the following phenomenon: When replacing the lenses

by glasses, at the ¯rst moment space seems to appear \curved" (Figure 25). Seconds later,

however, the brain \bends back" curved images of straight lines. This shows that the preliminary

\hardware-result" of our visual system is manipulated by our brain to a \software-result".

4 Non-classic perspectives in art and computer graphics

Figure 11 shows that the human brain can

also measure lengths by means of viewing an-

gles. If that is so, then the rectangular wall

in front of the viewer will of course not ap-

pear as rectangle { as it would in classic per-

pectives. Rather, the long horizontal borders

will appear curved in the image. This was

scienti¯cally investigated ¯rst by G. Hauck

([Hau79]).

Fig. 11 Measuring lengths by angles

He suggested the projection onto a sphere (or a cylinder of revolution respectively) and then

the interpretation of the spherical coordinates (i.e., the viewing angles) as two-dimensional

coordinates.

Edgar Degas seemed to know about Hauck's ideas { or he used them intuitively. In his Room

at castle M¶enil Hubert (1892) (see Figure 12) one can clearly recognize curvatures that are like

those in Hauck's subjective perspectives (e.g., watch the lower egdes of the paintings on the

wall).

Of course, many artists made use of non-standard projections. M.C. Escher, e.g., worked with

unusual projections, distorted views and distorted images.
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Figure 12: Degas' curved perspective. Left: the painter at work, right: the subjective result.

In computer graphics, non-classic perspectives are not very common. The reason for this is

that the creation of classic perpectives via computer is usually supported by graphics hardware.

Especially, clipping, polygon ¯lling and depth bu®ering are essential for the generation of such

images.

There have been approaches in computer graphics which model the human visual perception

more accurately than perspective projection. A detailed survey over non-standard projections is

given in [GG99]. Here we only mention two approaches: Cartographic projections [Pae90] map

the surface of the earth onto 2D maps. Bayarri [Bay95] uses a cylindrical projection model for

computing non-planar perspectives in real time. The approach is based on the assumption that

images with a slight curvature give a more natural look to the scene.

Polack, Piegl and Carter [PPC97] investigate characteristics of the human visual system that

a®ect the perception of computer generated images. They introduce a cylindrical projection

system to create images which are closer to the one produced by the retina than a simple

perspective projection. With actual psychological tests the size, shape, and relative depth of

the perception are investigated. The tests con¯rm that with cylindrical projections an increased

readability of simple line drawings is achieved.

Related work also includes investigations of map distortions. An example is the °oating ring

concept [BP98]. A circle is positioned interactively on a sphere and the corresponding projection

of the circle is displayed to study area and angular distortions.

5 The spherical perspective

Classical perspective projects space from an eye point E onto a °at projection plane ¼ (target

point T ). In order to avoid the disadvantages of ultra-wideangle lenses, we will now replace ¼

by a projection sphere § around E (radius ET ). We will speak of the \spherical perspective"

henceforth.
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This is the simplest curved perspective

and also the most natural one, since the

human eye ball is very much like a sphere

(see Figure 13). Therefore the relevant

part of the retina follows spherical mo-

tions when we roll the eye ball quickly in

order to \scan" 3-space to get a survey.

Fig. 13 The human eye ball

The creation of the spherical perspective works as follows: A point P 2 R
3 is projected by means

of the projection ray EP on to a point P s 2 § (actually, it is a pair of points, but we decide

for the one closer to ¼). A straight line s is then projected onto the section line ss of § by

using the projecting plane Es, i.e. an arc of a great circle on § (again, we mean the arc closer

to ¼). A circle in 3-space is transformed into the section line of the quadratic projection cone

with §, i.e. a symmetrical oval spherical curve of degree 4, etc. The spherical perspective is thus

non-linear (quadratic). The silhouette of an arbitrary sphere appears as the intersection of a

cone of revolution with apex E with §, i.e., a small circle. This result corresponds with the fact

that most people think that the silhouette of a sphere is a circle.

6 Curved perspectives derived from the spherical perspective

Unlike the classic perpective image, the spherical perspective image is non-planar. For practical

applications we have to transform it into 2D (the screen or photographic paper). This can

only be done by mappings { the sphere is not developable. All these mappings will be called

\transformed spherical perspectives" henceforth. Of the various proposals that have been made

so far (see, e.g., [Str69], [Havl98], Figure 14), we only mention four (a more detailed discussion

can be found in [GG99]):

Figure 14: Mollweide mapping and Cylindrical projection (Hauck).

² Orthogonal projection: The image points P s 2 § are projected orthogonally onto an image

plane perpendicular to ET . This works unequivocally only for a fovy-angle ' < 180±. Lines (the

spherical images of which are arcs of great circles) appear as arcs of ellipses. Such projections

are good mainly for special e®ects, but do not really improve image quality.

² Stereographic projection ([Hoh66]): Let D 2 § be the point opposite T . We project the

points P s 2 § from the center D onto ¼. This projection turns out to be suitable for creating

subjectively correct images.
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Figure 15: Typical images created by means of stereographic projection.

The images of straight lines are generally arcs of circles and thus have no point of in°ection.

Straight lines orthogonal to ¼ (i.e., parallel to the main projection ray) appear as straight

lines). A drawback is that vertical lines parallel to ¼ (these lines are common in architectural

photography) do not appear as straight lines. At least, images of straight lines do not have points

of in°ections.

The major advantage of the stereographic projection is that it preserves the property that the

silhouette of a sphere is always a circle ([Hoh66]).

² Cylindrical mapping (Hauck's perspective): The spherical coordinates (azimuth angle ¸ and

elevation angle ¹) are interpreted as planar coordinates (u = ¸; v = ¹). This mapping was

suggested by G. Hauck ([Hau10]) who was one of the pioneers in the geometrical investigation

of \subjective perspective". When the principal projection ray is horizontal, vertical lines appear

as vertical lines which seems to be important for human perception. On the other hand, the

images of general straight lines are transcendental curves that may even have in°ection points

(this appears somewhat unnatural to the eye).

Figure 16: Typical images created by means of Hauck's perspective.

Silhouettes of spheres are not circles but oval transcendental curves that look much like not too
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eccentric ellipses. When the spheres are comparatively small, however, the area enclosed by the

oval silhouette comes close to the original circular area on the unit sphere. We may say that the

mapping is locally area-preserving. This implies good distance- and volume-estimation for the

viewer.

² Area-preserving mappings by Mollweide and Eckert ([Str69]): For best distance- and

volume-estimation, the mapping should be area-preserving globally . Among the numerous pro-

posals for area-preserving mappings we chose the mappings byMollweide and Eckert, mainly

because their results look natural (other mappings by Lambert, Bonne, Albers, Stabius

et.al. (see [Str69], [Havl98]) distort the scene unnaturally.

Figure 17: Typical images created by means of area preserving mappings (Eckert).

Both mappings require the solution of a transcendental equation. These complex formulas pro-

duce transcendental results even when we simply map a straight line in space. The Eckert

mapping tends to produce lines with in°ection points which look a little unusual.

Figure 18: Virtual reality: Rotation of an ultra-wideangle camera (Hauck's perspective)
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In [GG99], the fast implementations of the above mentioned mappings are described. They build

upon polygon-oriented methods developed in [Gla94]. Images like Figure 18 (ultra-wideangle

camera in a small room) can be rendered in real time on an ordinary PC. Thus, such curved

perspectives are appropriate for virtual reality applications.

In Figure 19, the same animated sequence is carried out by classic ultra-wideangle perspectives

{ with all their drawbacks (unnatural distortions, the center of interest appears too small, etc.).

Figure 19: The same rotation of the camera, this time using classic perspectives

7 Re°ections on spheres and cylinders of revolution

When it comes to the problem of \how to display as much as

possible without diminishing the center of interest", we can

also use re°ections on curved surfaces. Re°ecting spheres

and cylinders of revolution turn out to be best since they

produce the most \understandable" re°ections that can be

reconstructed by our brains without major di±culties. As

an example, more or less spherical tra±c mirrors are used

to give the driver a better survey about the tra±c situation

(Figure 20). Cylindrical rear mirrors are sometimes used for

the same purpose, in some countries with the writing \things

in rear appear smaller than they are". . .
Fig. 20 Spherical tra±c mirror

In architecture, re°ections of the surrounding area often are an integral part of the optical

appearance of the building. Re°ections on planar surfaces are common, also re°ections on ap-

proximations to curved surfaces. A classic example for a re°ection on a really curved surface is

H. Hollein's \Haas-Haus" (1987-90) in the center of Vienna (Figure 22). The perfect cylindri-

cal shape of the front part allows the complete re°ection of St. Stephen's cathedral (and other

historical buildings) from several points of view. In fact, these re°ections are always visible when

walking around the building.
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Fig. 21 Spherical re°ections
Fig. 22 Haas-Haus

M.C. Escher is famous for his unusual projections ([Ern94]). Figure 21 shows a drawing that

could be his. . . Again, the center of interest is comparatively little distorted, when we take into

account that almost the whole room can be seen inside the contour of the re°ecting sphere in

the drawer's left hand.

Other examples can be found, e.g., in [Hof87]. Among others we want to mention F. Mazzolas

Self-portrait in convex mirror (1523-24)and R. Hausners Gro¼er Laokoon (1963-67).

Re°ections on cylinders of revolution are de-

scribed in [Elf81]. In [Gla99], such re°ections

are investigated in detail. The re°ection of

a point requires the solution of an algebraic

equation of order four. Straight lines appear

in general as curves of order four, circles as

curves of order 8, etc.

Fig. 23 Re°ection at a cylinder

The re°ected light (projection) rays envelope the so-called catacaustic surfaces (Figure 24, left).

Thus, re°ections are not simple distortions like the before-mentioned mappings of the sphere,

and it happens frequently that one can see both sides of a polygon (Figure 24, middle and right).

8 Conclusion

To summarize: When we distinguish between primary and secondary classic perspectives (and we

always should!), the simpli¯ed didactical suggestions about classic perspectives have to be seen in

relation to other aspects. Everything depends on the secondary position of the viewer. Although

usually non-recommendable, ultra-wideangle perspectives are subjectively correct and necessary
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Figure 24: Katakaustic and \overlapping polygons"

when the viewer is forced into an extreme close position. On the other hand, perspectives with

reasonably small ¯eld-of-vision angles seem exaggerated when the 2D-images are very small.

They will also appear unnaturally distorted when the viewer is forced into an unusual position

far away from the principal ray of the primary perspective.

Spherical perspectives are closer to the human visual system. 2D-mappings of such perspectives

should be used instead of ultra-wideangle perspectives when the relative secondary distance is

much longer than the primary one.

Depending on the displayed objects and the relative secondary distance, we recommend the

following mappings: Stereographic projection of the spherical image for not too long distances

and when spheres have to be displayed, Hauck's cylindrical mapping for normal to longer

secondary distances and scenes with dominating verticals, area-preserving mappings for long

secondary distances.

Figure 25: Re°ections and refractions

Re°ections (and partly also refractions) on spheres or cylinders are recommended as a good

tool for displaying the viewer's complete environments in one image (Figure 25). Such images,

however, require some experience for better understanding.
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