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1. Introduction

Re°ections play a central role in many applications of ar-
chitecture, ¯ne arts, photography, and of course in com-
puter graphics itself. Especially the re°ection on curved
surfaces is a challenge. To give an example in architec-
ture, we use the so-called \Haas-Haus" in Vienna ([12]).
Its surface re°ects St. Stephen's cathedral and other his-
torical buildings (Fig. 1). In contrast to re°ections on pla-
nar surfaces, one can change the viewing position (walk
around the building) and will always see the image (re-
°ex) of the cathedral. The architect put an emphasis on
the exact { and therefore much more expensive { produc-
tion of the re°ecting cylinder of revolution.

Figure 1: \Haas-Haus"
In computer graphics re°ections are commonly rendered by ray tracing ([7]). The image is
built up pixel by pixel in calcutation steps that are independent from each other. For each
pixel, the following algorithm has to be applied:

Through the center of each pixel, we shoot a projection ray (\forward ray tracing"). It may
hit the scene in a frontmost point R. If the hit surface © is a re°ecting surface, the projection
ray is re°ected according to the laws of optics and is followed recursively: When it hits the
objects of the scene in a frontmost point S, the color of this object in°uences the color of the
corresponding pixel, etc.

In this paper we proceed the other way round (\Backward raytracing", [1], [22]): Given a
surface ©, the eye point E and an arbitrary space point S, we are looking for a light ray s 3 S
that runs through E after being re°ected on © in a \re°ex" R 2 ©. (Especially when S is
a point light source, R is a specular point on ©.) The point R is of course harder to ¯nd.
Even in the simplest special cases we have to solve an algebraic equation of a higher degree.

The general geometric theory of re°ections { especially its algebraic characterizations { were
investigated decades ago (e.g., in [14]). It has not been applied much in computer graphics,
though, because ray tracing and the radiosity method ([4]) could solve the problem in general.
In this paper we will deduce very time-saving solutions for certain special cases. E.g., we
specify formulas for the calculation of re°exes of points and straight lines. They are the key
for displaying re°exes of polygons and curved (triangulated) surfaces.

The direct computation of re°exes is important (or even necessary)

{ when we have to know the exact position of a re°ex on a curved surface. The common
methods will solve this problem only approximately and with great e®ort, since we have
to render whole parts of the image.

{ for the photo-realistic rendering of scenes with specular surfaces: The exact position of
specular points (re°exes of point light sources) helps to speed up complex computations.
Ordinary ray tracing, e.g., cannot take into account such complex lighting situations ([15]).

{ for the real-time rendering of specular primitives like spheres and cylinders of revolution.
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When the exact position of the specular points are known, hardware supportedGouraud-
shading ([11]) can be applied e±ciently (the corresponding polygonizations of such surfaces
were adapted in the drawing routines of the latest version of the geometric programming
package [9]).

{ for the creation of line graphics including re°ections (e.g., Fig. 3). In general, line graphics
are not supported by the common rendering algorithms, and if they are, then only with
\pixel accuracy". With the use of corresponding formulas, line graphics can be created
very e±ciently and independently of the screen resolution (including contours of curved
sufaces).

We have to obey the following simple physical laws of re°ection (Fig. 2):
1. The incoming light ray SR, the re°ected light ray RE and the surface normal n in R

are coplanar,

2. the incidence angles ³1 and ³2 of SR and RE are equal.

Figure 2: The laws of re°ection Figure 3: Re°ection on a plane

The re°ection on a plane can be easily calculated. We replace the surface © by its tangent
plane ¿ 3 R (Fig. 2). When we re°ect the point S on ¿ , we get a point S¤. The desired
point R is then the intersection of ES¤ and ¿ . Thus, the task is linear.
Scenes with re°ections on planes can be displayed in real time without the use of ray trac-
ing ([8]): Each re°ecting plane induces a virtual re°ected scene that can be seen through the
\mirror window" (Fig. 3). It also induces, however, an additional light source that shines
through the mirror window. Thus, the lightning situation complicates exponentially with the
number of re°ecting planes.
When © is curved, the solution of the problem soon becomes so complicated that human
imagination hardly can judge whether a computer generated image is correct or not.
In the following, we will only deal with the simplest two non-trivial cases, namely the re°ec-
tion on a sphere ©· and a cylinder of revolution ©³ . Fig. 4 shows that these two cases can
be reduced to the two-dimensional case of the re°ection on a circle: When © is a cylinder
of revolution, we just have to look at its normal projection in the direction of the cylinder's
axis, and when © is a sphere, we look at the situation in a plane through the sphere's center.
Re°ections on circles have already very early been of interest. The problem was treated by
Ptolemy (about AD 150), and it is known as \Alhazen's Problem" after the Arab scholar
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Figure 4: Special cases for ©

Ibn al-Haytham who wrote extensively about it almost exactly 1000 years ago ([17]). Due
to its complexity, the problem could not be solved explicitly at that time. Caustics which
result from multiple re°ections on a circle have been investigated, e.g., by [13] and [21].

2. Re°ection on a circle

In the following, let S, E, R and M denote points of two-space. Let the circle k (center M ,
radius r) be the top view of a re°ecting cylinder of revolution or the intersection circle of the
re°ecting sphere with the plane MES. M is chosen as the origin of a Cartesian coordinate
system with E on the x-axis (ME = e). R and S may have the coordinates R(rx; ry) (with
r2x + r2y = r2) and S(sx; sy).

The corresponding position vectors are ~e =

Ã
e
0

!
, ~r =

Ã
rx
ry

!
and ~s =

Ã
sx
sy

!
.

De¯nition: In the following we will use the abbreviation R[k;E] when we mean a re°ection
on a circle k with respect to the eye point E. The re°exes of a point S (a line c, etc.) will
be denoted by R[k;E](S) (R[k;E](c), etc.). In the same way we will speak of R[©·;E] and
R[©³ ;E], when we mean the re°ection on a sphere ©· and a cylinder ©³ .

2.1. The calculation of the re°exes of a point

Consider a ray s 3 E that intersects k (Fig. 5). In the two intersection points R and R of k
and s we theoretically have two re°ected rays (re°ection on the inside and on the outside).
The set of all re°ected rays envelopes a curve k¤, the so-called catacaustic. Such curves were
¯rst studied by Huygens and Tschirnhausen around 1678.

We now ¯lter those rays that { really or virtually { run through S. They are the tangents
from S at k¤ (see also Fig. 8).

The circle's normal n (the radial ray MR) is given by the vector equation
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Figure 5: Catacaustic of the re°ection congruence

~n~x = 0 with ~n =
1

r

Ã
ry

¡rx

!
and ~x =

Ã
x
y

!

The distance of the point S from it is

d = ~n~s =
1

r
(rysx ¡ rxsy): (1)

The point S¤ symmetrical to S with respect to n is given through the vector equation

¡!
s¤ = ~s¡ 2d~n =

Ã
sx ¡ 2d

r
ry

sy +
2d
r
rx

!
:

The re°ected ray RS¤ has thus the parametric equation

~x = ~r + t(
¡!
s¤ ¡ ~r) = ~r + ¸

Ã
sx ¡ 2d

r
ry ¡ rx

sy +
2d
r
rx ¡ ry

!
:

The corresponding parameter-free equation isÃ
sy +

2d
r
rx ¡ ry

¡sx +
2d
r
ry + rx

!
~x =

Ã
sy +

2d
r
rx ¡ ry

¡sx +
2d
r
ry + rx

!Ã
rx
ry

!
= rxsy ¡ rysx| {z }

¡rd

+
2d

r
(r2x + r2y)| {z }

2rd

= rd:

Now E has to coincide with the re°ected ray:Ã
sy +

2d
r
rx ¡ ry

¡sx +
2d
r
ry + rx

!Ã
e
0

!
= rd:
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This leads to the condition

e(sy +
2d

r
rx ¡ ry) = rd with rd = rysx ¡ rxsy: (2)

For better understanding, we substitute x = rx and y = ry (x
2+y2 = r2). Then Equation (2)

shows as

e[sy +
2

r2
(sxy ¡ syx)x¡ y] = sxy ¡ syx;

which allows to explicitly calculate y:

y = sy
2ex2 ¡ r2(x+ e)

2esxx¡ r2(sx + e)
(3)

Equation (3) describes a hyperbola h 3
S (Fig. 6). One asymptote is parallel to
the y-axis, the other one is parallel to
the radial ray through S. The intersec-
tion points D1 and D2 with the x-axis
(the ray EM) are independent from S
and have the x-values

x1;2 =
r

4e
(r§

p
r2 + 8e2): (4)

Figure 6: Geometric solution

The residual intersection points Sn and Sc with the x-parallels through S and the projection
ray ES respectively have the x-values r

2

2e
or r

2

e
respectively.

The hyperbola intersects the circle k (x2 + y2 = r2) in four points that correspond to the
four tangents at the catacaustic k¤ through S (Fig. 8). Thus the problem cannot be solved
by ruler and compass ([17]).

For all solutions R = R[k;E](S), we have

x2 + y2 ¡ r2 = 0 ) x2 + [sy
2ex2 ¡ r2(x+ e)

2esxx¡ r2(sx + e)
]2 ¡ r2 = 0

or

f(x) = (x2 ¡ r2)[2esxx¡ r2(sx + e)]2 + s2y[2ex
2 ¡ r2(x+ e)]2 = 0

This leads to the following

Theorem 1: In order to ¯nd the re°exes R[k;E](S) of a point S on a circle k with respect

to the eye point E we have to calculate the roots of an algebraic polynomial of order four

f(x) =
P

4

k=0
ckx

k. With the abbreviations u = 2=r2, v = 1=(s2x + s2y) and w = 1=e the
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coe±cients of this polynom are

c4 = u2

c3 = ¡2u(vsx + w)

c2 = v(1 + 2wsx) + w2 ¡ 2u (5)

c1 = 4sxv + 2ws2xv + 2w

c0 = vs2y ¡ vr2(1 + 2wsx + w2s2x):

When parallel projection is applied (e = 1 ) w = 0), the formulas (5) reduce to

c4 = u2; c3 = ¡2uvsx; c2 = v ¡ 2u; c1 = 4sxv; c0 = v(s2y ¡ r2): (6)

When S is a point of in¯nity (polar angle ¾, sx = sy = 1; v = 0), and E is a ¯nite point,
the corresponding coe±cients are

c4 = u2; c3 = ¡2uwsx; c2 = w2 ¡ 2u; c1 = 2w(1 + cos2 ¾); c0 = sin2 ¾ ¡ w2r2 cos2 ¾:
(7)

When E and S have the same distance from M , the re°ex is known explicitly:

R(§r cos
¾

2
;§r sin

¾

2
): (8)

This is also true for e = MS = 1.
The four solutions of the polynom can be calculated by means of well known formulas ([20])1.
However, under certain circumstances there are numeric instabilities that may lead to a
considerable loss of accuracy. Among the four solutions R[k;E](S), usually only one is good
for practical use. It has to be found \by probe". Note that all four solutions may be practical
solutions when the point S is inside k (Fig. 8).
The corresponding y-value is to be determined by Equation (3). In the cylindrical case, the
z-values rz of the corresponding space points R = R[©³ ;E](S) have to be reconstructed via
the z-value sz of S from the \planar solution":

rz =
ER0

ER0 +R0S 0
sz (10)

Obviously, the cylindrical re°exes in general are not coplanar.

1When less accuracy is necessary and only one solution is of practical use, we can ¯nd the particular root
of the polynom even a bit faster by means of Newton's iteration (we explicitly have the equation of f 0(x)):

xn+1 = xn ¡

f(xn)

f 0(xn)
= xn ¡

c4x
4
n
+ c3x

3
n
+ c2x

2
n
+ c1xn + c0

4c4x3
n
+ 3c3x2

n
+ 2c2xn + c1

: (9)

After only few iteration steps the x-values practically do not di®er from the exact solution.
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In the spherical case R[©·;E], we have already done our calculations in the plane SEM :
Thus, the spherical re°exes of a point are coplanar . We have to mention a special case,
though: When the point S lies on the axis ME, the connecting plane SEM is not determined
uniquely. Two trivial re°exes of S will lie on ME. The spatial position of the two (real or
conjugate imaginary) symmetric non-trivial re°exes, however, is not determined uniquely.
We thus have the following theorem about the possible degeneration of the set of re°ected
points:

Theorem 2: The set R[©·;E](S) contains the two re°exes on ME. When non-trivial real

re°exes occur, the re°ex additionally consists of a small circle of ©· with the axis ME.

We will give an explanation for this strange behaviour when we talk about the re°ex of a
straight line.

In the following, most considerations will be dedicated to the re°ection on the outside of a
circle. Then only one of the four theoretical solutions is valid for practical use. This simpli¯es
some theorems, which have to be modi¯ed when several practical solutions are allowed.

2.2. \Forbidden regions" and numerical instabilities

Before calculating the re°ex of a point, we
¯rst have to test whether the re°ex is visible
or not. Fig. 7 shows the \forbidden region"
for the re°ection on the outside of the circle.
Interpreted three-dimensionally, the area is
enclosed by the visible part of the surface
and the two tangential planes from E to ©³

or the part of the tangential cone that lies
behind the sphere ©· respectively.

Numerical problems arise in the neighbor-
hood of

Figure 7: Forbidden region

x0 = sx =
r

4e
(r§

p
r2 + 8e2) (11)

(Fig. 7, see Section 3, Equation (17)). There the hyperbola degenerates into a pair of straight
lines, and two roots of the polynom f(x) are identical. In Fig. 7 the region of the plane to
the left of the vertical x = x0 is dotted. For the only re°ex R of a point S in this region
we always have rx > sx, whereas for all points to the right of the vertical rx < sx is true
(re°ection on the outside of the circle!).

Because of its essential importance, the corresponding algorithm was especially optimized.
We now can calculate approximately 400; 000 re°exes per second (!) with su±ent accuracy
on a 500 Mhz PC.
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2.3. The catacaustic of the re°ection congruence (\circle caustic")

Each tangent at the catacaustic k¤ leads to a so-
lution of the re°ection problem. Due to the four
roots of Equation (5), the catacaustic is a curve of
class four. In two special cases the result is well
known: When the eye point E is a point of in¯nity
(normal projection), we have a so-called nephroid
([24], Fig. 9 lower right). When E lies on the cir-
cle k (this case is only interesting when re°ecting
on the inside of k), the catacaustic k¤ is a cardioid
(Fig. 9 lower left). In Fig. 8, the four real tan-
gents at k¤ lead to four visible re°exes of a point S
inside the circle k (the eye point E is inside the
circle as well). When both S and R are outside k,
we always have exactly two non-virtual re°exes of
S, one for the re°ection on the outside of k, one
for the re°ection on the inside. Figure 8: Tangents at k¤

We are now going to calculate the parametric equation and the algebraic properties of k¤2.
Let the polar angle of R be the parameter '. When re°ecting E at the radial ray through R,
we get a point E¤(e cos 2'; e sin 2'). The tangent t at the catacaustic therefore has the
parametric equation

~x =

Ã
r cos'
r sin'

!
+ ¸

Ã
e cos 2'¡ r cos'
e sin 2'¡ r sin'

!
(12)

and the parameter-free equation

Ã
e sin 2'¡ r sin'
r cos'¡ e cos 2'

!
~x = er sin':

When we intersect t with its derivative _t

Ã
2e cos 2'¡ r cos'
¡r sin'+ 2e sin 2'

!
~x = er cos';

we get the correspoing point on the catacaustic:

Ã
2e cos 2'¡ r cos'
¡r sin'+ 2e sin 2'

!·Ã
r cos'
r sin'

!
+ ¸

Ã
e cos 2'¡ r cos'
e sin 2'¡ r sin'

!¸
= er cos':

Thus we have the following parameter for Equation (12):

¸ =
r2 ¡ e r cos'

2e2 + r2 ¡ 3er cos'
(13)
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Figure 9: Various catacaustics.

Insertion in (12) and substitution

cos' =
1¡ t2

1 + t2
; sin' =

2t

1 + t2
; cos 2' =

1¡ 6t2 + t4

(1 + t2)2
; sin 2' =

4t(1¡ t2)

(1 + t2)2
(14)

leads to the following rational parametric equation of the catacaustic k¤ (see also [23], [3]):

x = 1

¹
(¡r(t2 + 1)3 ¡ e(t2 ¡ 1)(t4 + 10t2 + 1))

y = 1

¹
16et3 (15)

with ¹ = e

r
(t2 + 1)3 + 3(t2 ¡ 1)(t2 + 1)2 + 2 r

e
(t2 + 1)3:

Written in homogenous coordinates (¹ : x : y), the equation shows that in general k¤ is of
order six. Only for e = r the order is reduced to four.
To summarize we can say:

Theorem 3: When re°ecting the rays of a pencil on a circle, the re°ected rays envelope

curves of class four and order six with the parametric equation (15)3.

2A geometrically interesting approach for the determination of such properties in general was given in [2].
In the special case of the re°ection on a circle, the authors quote [3], who may have been the ¯rst to detect
the corresponding equations.

3For practical application, Equation (15) is not appropriate since the distribution of the points is bad and
we theoretically need in¯nite parameters. Instead, we inserted Equation (13) in Equation (12).
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Fig. 9 shows various forms of the catacaustic.
They are all evolutes of the orthonomic of k
with respect to E (i.e., a Limacon of Pascal;
see [24], [19]). Fig. 10 illustrates how the
corresponding catacaustic surfaces are gen-
erated by means of translation (R[©³ ;E]))
and rotation (R[©·;E]).

2.4. Anamorphoses

An interesting application of the re°ection
on a cylinder of revolution { the so-called
anamorphoses ([5]), has been known in the
arts for a long time (Leonardo da Vinci,
Erhard SchÄon, Hans Holbein d. J.):
On the base plane, an image is to be drawn
so that it appears undistorted when viewed
from an eye point E in a re°ecting cylinder
of revolution (Fig. 11). Figure 10: Catacaustic surfaces.

In this case, we project the space point R onto the cylinder (projection center E) and then
intersect the corresponding re°ected ray with the base plane (! S). Fig. 11 illustrates the
following

Figure 11: Anamorphosis

Theorem 4: The re°ex of a circle with the cylinder's axis as axis, the radius e and a

height di®erence ¢z with respect to E lies on a parallel circle of the cylinder with height

di®erence ¢z=2.

This is true because S is the re°ex of E0 with respect to the cylinder's normal in R0 and
therefore we have SR0 = R0E0. According to Equation (10), we then have the constant value

rz =
R0E0

SR0 +R0E0
¢z =

¢z

2
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for the height rz of R.

2.5. An interesting construction of conics and its \physical consequences"

Geometrically seen, the search for the re°exes of S is identical to the following problem:

We consider a linear system of con-
focal conics with common focuses
S and E. We now look for those
conics of the system that touch the
given circle k (Fig. 12). It is well
known that the tangents of a conic
are bisectrices of the directrices. It
follows that the touching points are
the four re°exes of S on k with re-
spect to E. In Fig. 12, the re°exes
R1 andR2 that belong to the re°ec-
tion on the outside and the inside
respectively lead to ellipses eww1

and e2, the residual ones to hyper-
bolas e3 and e4 of the pencil. The
points Ri again lie on the hyper-
bola h (Fig. 6).

Figure 12: Confocal conics
For Ri 2 ei we have ERi§SRi = 2ai (= const). For points P inside the ellipses e1 and e2 we
have ERi +SRi < 2ai and for those outside ERi +SRi > 2ai. Since the circle k touches the
ellipse e1 from the outside and the ellipse e2 from the inside, the following non-trivial fact
holds:

Theorem 5: Let © be a sphere or a cylinder of revolution. When re°ecting points outside

of ©, the corresponding distance of the light ray is minimal for the re°ection on the outside

of ©. For the re°ection on the inside, it is maximal.

The theorem partly holds for points inside © and/or the eye point inside ©. From now on,
we restict to the re°ection on the outside of ©.

3. Kernel points and kernel planes, re°exes of straight lines

When we intersect the re°ected rays (12) with the x-axis, we get points Rk(xk; 0) for ¸ =
r=(r¡ 2e cos') (compare Fig. 5). With x = r cos' we have

xk =
er2

2ex¡ r2
(16)
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which shows that the points Rk and the normal projections Rx of R onto the x-axis are two
projective point ranges. This has already been stated in [14], where the points Rk are called
\kernel points" and the planes · 3 R (· ? ME) are called \kernel planes".
For the double points of the projectivity Rk $ Rx (xk = x) we have

x1;2 =
r

4e
(r§

p
r2 + 8e2): (17)

In these two cases the re°ected ray t is orthogonal to the axis ME. These rays are the
double tangents of the catacaustic k¤ (Fig. 9). A comparison with Equation (4) shows that
the hyperbola h (Equation (3)) has its intersection points with the x-axis in exactly these
points. The given method for the determination of the re°exes gets numerically unstable in
the neighborhood of the double points. Since the solution is known for x = x1;2, we can easily
avoid this instability: All the points on the straight line (17) will have the same re°ex on
the circle k (re°ection on the outside). Interpreted three-dimensionally, this means that for
all straight lines in the plane ·0 (17) perpendiculary to ME the re°ex with respect to © lies
in ·0: R[©·;E](b) is a small circle of ©·, R[©³ ;E](b) is a generating line of ©³ ([25]).
In the cylindrical case, there is another special case: When a straight line is parallel to the
axis of ©³ (i.e., projecting in a top view), its re°ex trivially is a generating line of ©³ .
Now to the re°ex of a general straight line b on the cylinder ©³ . The manifold of all re°ected
transversals of b is a ruled surface ª of degree four ([14], Fig. 13). The re°ex itself is a space
curve of order four on this surface. This can be proved analogously to a proof for the spherical
case given in [25]: Take a kernel point Rk on the axis ME = a. The corresponding kernel
plane · 3 R intersects the cylinder ©³ in the generating line g 3 R (and a symmetrical line).

Figure 13: Ruled surface ª Figure 14: Re°ex curve of order four

We now consider two pencils B and U of planes through b and the line of in¯nity u of the
kernel planes and declare a projectivity as follows: When a plane ± 2 B contains the point
Rk, the corresponding plane ± 2 U contains Rx (and thus R). The two pencils generate a
regulus R with the generating lines (± \ ±). ± ¾ RkS ) R 2 (± \ ±) ) R 2 R. Thus, R lies
on R \ ©, which is a space curve of order four (of the \¯rst kind", i.e., it is an intersection
curve of two quadrics).
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The intersection curve can consist of one or two branches (Fig. 14). When b intersects the
axis ME the sphere ©·, the curve degenerates into two circles: One consists of the re°exes
of all points of b except the intersection point. The other circular re°ex stems from the
intersection point on the axis (and can be imaginary) (Theorem 2). For R[©³ ;E], there is
no such special case, since the re°exes of a point in general never lie in a plane.

When it comes to the practical calculation of the re°ex of a straight line, one should never
divide the line into equal distances and then look for the re°exes of the points of division:
This way one would get re°exes that are distributed widely exactly where the re°ected line
is maximally curved (Fig. 15). In order to ¯nd more favorable distances of the knots on
the re°ex of a straight line, we may proceed as follows: We examine the corresponding two-
dimensional situation by projecting b in axis-direction or, in the spherical case, by rotation
of the points of b into an auxiliary plane through ME: b ! b0 (in general a hyperbola). We
determine the polar angles '1 and '2 of the end points of the (linear or hyperbolic) segment
of b0. Next we equally subdivide the corresponding arc ['1; '2] of the circle k. The re°ected
rays through these in-between points lead to a set of in-between points on b0 that have to be
transformed back to space. The results (Fig. 16) are satis¯ying and useful for further spline
interpolations.

Figure 15: Unfavorable distribution of re°exes Figure 16: Better distribution

4. Re°exes of polygons

In principle we can now calculate the re°ex of a polygon in the following two steps: We
¯rst clip the polygon with the borders of the \forbidden areas", thus possibly creating more
than one polygon. Secondly, we re°ect the sides of the clipped polygon(s) as decribed above.
In most cases, the image of an arbitrary polygon will be non-convex and non-overlapping.
When we call the rays that are the re°ected rays of the bundle through E \projection rays",
we can say: Polygons that are seen \one-sided" will not have overlappings.

In order to determine whether possible overlappings occur like in Fig. 17 and Fig. 18, we
can proceed as follows: The polygon's carrier plane ¯ intersects the re°ecting cylinder of
revolution in an ellipse, the re°ecting sphere possibly in a small circle c. The re°ected rays
of all points C 2 c generate a ruled surface ª. When there are generating lines of ª in ¯,
they and only they will lead to the \multiple points" of the polygon. We thus have
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Theorem 6: The re°ex of a polygon will for sure not overlap when the polygon's plane ¯
does not intersect the re°ecting surface ©, or when in all points of the intersecting curve c
the oriented re°ected half-rays are on the same side of ¯.

Figure 17: Overlapping polygon on ©³ Figure 18: Overlapping polygon on ©·

In Fig. 17 and Fig. 18, the oriented re°ected half-rays on the ruled surface ª were intersected
with a coaxial cylinder through the eye point E, or a concentric sphere through E, respec-
tively. Without proof, they are \Umschwungkurven" e¤ of order four ([16]). The intersection
points E¤

¯ = e¤ [ ¯ lead to the double points on c.
We ¯rst consider the re°ection on a cylinder of revolution ©³ : Let

z = ax+ by + d (18)

be the equation of ¯ (we can exclude the case that ¯ is parallel to the cylinder's axis, because
then we either do not have an intersection curve or the re°ected surface ª consists of two
planes). Then, a general point on the intersection ellipse c = ©³ \ ¯ has the cordinates

C(r cos'; r sin'; ar cos'+ br sin'+ d): (19)

We now re°ect the ray ES on ©³ and consider a point E¤ on the new ray with CE¤ = CE:

¡!
E¤

³
e cos 2'; e sin 2' 2(ar cos'+ br sin'+ d)

´
(20)

We have E¤ 2 ¯ when the condition

2(ar cos'+ br sin'+ d) = ae cos 2'+ be sin 2'+ d

is ful¯lled. With the substitution

u = r cos' () r sin' =
p
r2 ¡ u2; e cos 2' =

e

r2
(2u2 ¡ r2); e sin 2' =

2e

r2
u
p
r2 ¡ u2)

(21)
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we have an algebraic equation of order four g(u) =
P

4

k=0
gku

k. Its coe±cients are (with the
abbreviation v = a2 + b2):

g4 = e2v

g3 = ¡2er2v

g2 = r2(r2v ¡ e2v ¡ ade) (22)

g1 = r4(ad+ a2e+ 2b2e)

g0 =
r
4

4
(a2e2 + d2 + 2ade¡ 4b2r2):

We ¯nally have

Theorem 7: When re°ecting a polygon in the plane (18) on a cylinder of revolution, the

re°ex has no overlappings when the algebraic equation of order four (22) has no real roots.

If real roots ui occur, they lead via the parameter 'i = § arccos ui

r
to points Ci on the ellipse

(19) and E¤

i on the curve (20). When the line CiE
¤

i ½ ¯ intersects the outline of the polygon,

the polygon has an overlapping and is to be split.

Clearly, points Ci on the \invisible" side of the cylinder can be neglected.
Now to the re°ection on a sphere ©·: By means of a rotation about the x-axis through an
angle µ, the polygon's plane ¯ can be transformed into a z-parallel position ¯0:

ax+ by = d with
p
a2 + b2 = 1 (23)

This plane intersects the sphere ©· only for jdj · r. The intersecting circle c0 = © \ ¯0 is
given by its center N0(ad; bd; 0) and its radius

r0 =
p
r2 ¡ d2: (24)

It can be parametized as follows:

¡!c0 =

0
B@ad¡ br0 cos'
bd+ ar0 cos'

r0 sin'

1
CA =

0
BB@

ad¡ bu
bd+ au

§
q
r20 ¡ u2

1
CCA (with r0 cos' = u): (25)

In order to ¯nd points E¤

0
2 e¤

0
, we re°ect E on the sphere's normal through C0:

¡!
e¤
0
=

0
BB@
¸(ad¡ bu)¡ e
¸(bd+ au)

§¸
q
r20 ¡ u2

1
CCA with ¸ =

2e

r2
(ad¡ bu) (26)

The intersection of e¤
0
and c0 leads to the linear(!) equation
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u =
2ad2e¡ r2(ae+ d)

2bde
: (27)

Provided u < r0, i.e.,

2ad2e¡ r2(ae+ d)

2bde
<

p
r2 ¡ d2 (28)

we get via Equation (27) two straight lines C0E0 that are symmetrical with respect to the
plane z = 0: We have to insert Equation (27) into Equation (25) and Equation (26), respec-
tively. Again, points C0 on the \invisible" part of the sphere can be neglected. The straight
lines C0E0 are ¯nally to be rotated into the polygon's plane ¯ (about the x-axis through ¡µ).
When they intersect the polygon, the polygon is to be split.
To sum up:

Theorem 8: When re°ecting on a sphere ©·, the re°ex of a polygon does not overlap when

it's carrier plane does not intersect ©·. Otherwise, the re°ex can have up to two overlappings

when condition (28) is ful¯lled.

Finally a practical hint: When a polygon is very small, a test is not necessary. When it
comes to the re°ection of large or long polygons, however, one should de¯nitely perform the
above described test (and split the polygon if necessary), because the result of the ¯lling of
a polygon with overlappings is usually unpredictable.
Those straight lines in the polygon's plane ¯ that appear \projecting", can be called \contour"
of ¯ in a wider sense. We have

Theorem 9: The \contour" of a plane consists of a maximum of four points when re°ecting

on a cylinder of revolution, and a maximum of two points, when re°ecting on a sphere.

Another possibility to test whether a polygon has overlappings or not { which is more of
theoretical interest rather than for practical use { is the following: We de¯ne a function
graph ¡ above the polygon, the points of which lie on the normal to the carrier plane ¯. The
\height" z of the point equals the dot product of the normal vector of ¯ and the direction
vector of the corresponding re°ected ray through the base point (Fig. 19). The zero manifold
of ¡ is then either empty () no overlappings) or it consists of the above described re°ected
rays in ¯. This method is of course much more computation expensive as the one described
in Theorem 6 or Theorem 8 respectively. It can, however, be generalized in order to calculate
contours of mathematically de¯ned surfaces. By the way, Fig. 19 illustrates that a polygon
sometimes has to be split even when the re°ected oriented half rays through all its vertices
are on the same side of its carrier plane ¯.

5. Re°ex-contours of parameterized surfaces

Let § be a parameterized surface

~x(u; v) with u 2 [u1; u2]; v 2 [v1; v2]: (29)
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Figure 19: Function graph ¡ above ¯ Figure 20: \Re°ex contour"

We now de¯ne a function graph ¡ above the rectangular area u1 · u · u2; v1 · v · v2: The
z-value corresponding to a point (u; v) is

z = ~n~s: (30)

Thereby ~n is the normalized normal vector in the point ~x(u; v) 2 §, and ~s is the normalized
direction vector of the corresponding \projection ray" (Fig. 20). ¡ and § are one-to-one
correspondent. The zero manifold of ¡ leads to those points of §, the tangent planes of
which are \projecting" and thus lie on the re°ex contour.

Theorem 10: The re°ex contour of a parameterized surface § corresponds to the zero man-

ifold of a function graph with the equation (30).

Figure 21: Re°ection of a cylinder on a sphere

When e±cient algorithms are applied ([8]), re°ex contours of curved surfaces can be calculated
in comparatively short periods of time (approximately 1-3 frames per second on a 500 Mhz
PC).
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As an additional example, Fig. 21 shows the re°ection of a cylinder of revolution on a sphere.
Note that the curves on the cylinder that lead to the re°ex contour are of course not straight
lines. The image to the left is computer generated, the one to the right is a photographic
image of the re°ection in (spherical) sun glasses.

6. Conclusion and future work

We have seen that re°ections on very speci¯c surfaces like cylinders of revolution and spheres
can be treated successfully by adapted mathematical methods rather than by the application
of very general rendering algorithms. Especially the explicit knowlegde of the catacaustic
surfaces of the re°ection congruence can be very useful for the understanding of otherwise
hard-to-explain special e®ects.
Some questions, however, remain for future work:

² How can the above mentioned special surfaces be generalized so that the given formulas
can still be used? E.g., general canal surfaces (like surfaces of revolution or tubular
surfaces) are enveloped by a set of spheres. The re°exes of a point can thus be found
iteratively by means of auxiliary spheres.

² The explicit knowlegde of the position of specular points on surfaces of revolution
or general canal surfaces allows an adapted triangulation of the surface. This helps
to render such surfaces photo-realistic by means of hardware-supported Gouraud-
shading. In fact, we can now shade spheres and cylinders of revolution { including
specular points { in real time and without the use of ray tracing.

² We can e±ciently create curved perspectives by means of re°ections on cylinders of
revolution and spheres. They are very useful when we want to see \as much as possible"
in an ultra-wideangle perspective ([10]). There are still some problems, though: How
can existing hardware be used in order to speed up hidden-surface algorithms? A
general approach in this direction has been examined in [18].

² Refractions and re°ections seem to be closely related. E.g., it can be shown that the
caustics are very similar. There is even a possible correspondence between refractions
and re°ections. Refractions are already used for the creation of ultra-wideangle per-
pectives (¯sh-eye objectives!)

I have to thank W. Fuhs and H. P. SchrÄocker for valuable discussions about the topic.
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