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ABSTRACT: Single curved surfaces can always easily be covered by meshes that result into an
equilateral and orthogonal grid when the surface is developed. On double curved surfaces, however,
we can never find a mesh consisting of ‘squares on the surface’. Nevertheless, there is a need
for ‘orthogonal and locally almost equilateral meshes’ on such surfaces in several fields, e.g., in
architecture (fair and easy to build, increased rigidity) and computer graphics (undistorted mapping
of textures, good tessellation for rendering purposes and also for aesthetical reasons). We present an
iterative force-directed algorithm that is capable of optimizing given grids with rectangular topology
and yields the task in an optimal way. It allows to cover arbitrary parametric double-curved surfaces
with grids that are almost orthogonal and, optionally, locally have almost constant grid size in both
directions.
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1 INTRODUCTION
Among the immense variety of curved surfaces,
the single curved ones can be developed into the
plane. In the plane, we can attach an equidistant
orthogonal mesh to the surface and reverse the
developing transformation.
When the surface is double-curved this process
of mesh generation will no longer work. In fact,
it is theoretically impossible to ever find two or-
thogonal sets of parameter lines with global con-
stant arc lengths from grid point to grid point on
both curve sets. Therefore the motivation of this
work is to find grids that fulfill the following two
geometric conditions simultaneously:

1. All lines intersect orthogonally and

2. locally have almost constant grid size in both
directions.

It is well known that condition (1) by itself is ful-
filled with the principal curvature lines on dou-
ble curved surfaces (see [12]). Such lines can be
found by solving differential equations that work
with the first and second derivations of the pa-
rameterized surface equation.

We should emphasize that in this paper we are
concerned with grids on surfaces that are topo-
logically equivalent to a rectangular grid, in
the following simply called quadrangular grids.
These grids need not necessarily be topologically
equivalent to the principal lines of curvature.
We present an iterative force-directed algorithm
that optimizes quadrangular grids with regard to
condition (1) and additionally (2). It does not de-
pend on higher analytical theory and is therefore
simple to implement and leads to useful results
with small expense. Input of the algorithm is an
arbitrary, in general non-orthogonal, quadrangu-
lar grid on a parametric surface, e.g. by means
of different parameterizations. In comparison to
analytical methods this gives creative freedom
for the designing process of the mesh. On the
other hand it avoids the usual problems (e.g. nu-
merical instability) in solving partial differential
equations at the cost of numerical imprecision.
However, we intend our algorithm as a tool for
artists and architects, for which numerical accu-
racy is usually secondary over aesthetic expres-
sion and applicability.



In the remainder of this paper vectors are writ-
ten in bold face and the superscript ∗ is used to
denote unit vectors. The paper proceeds as fol-
lows: Section 2 reviews related work in the area
of grid generation and force directed algorithms.
In Section 3 we outline our proposed algorithm,
whereas in Section 4 results and possible appli-
cations are presented. The paper is concluded in
Section 5.

2 RELATED WORK
Since grid generation is a necessity for the com-
putational simulation of physical field phenom-
ena and processes, an extensive body of litera-
ture is available. Computational Fluid Dynam-
ics (CFD), which involves the calculation of non-
linear partial differential equations (PDE), which
in generally are not solvable analytically, is one
of the major domains driving the research in this
area (cf. [15]). Orthogonal grids – in particular
– are preferable, since the numerical accuracy is
highest in such grids. Additionally, as stated by
Akcelik et al. [1], an aspect ratio close to one is
important for isotropic problems to reduce errors
in derivatives of the approximate solution. Con-
formal mappings are frequently used to obtain or-
thogonal grids in two dimensions (see, e.g., [2]).
Conformal mappings, however, are not suited
well for parameterizations of arbitrary surfaces
([2]) and are usually restricted to have equal scale
factors (see, e.g., [1] which also includes a com-
prehensive list of references on this topic).
In a related research area Liu et al. [9] introduced
the concept of conical meshes1 for architectural
freeform design.
Force-based or force-directed algorithms are usu-
ally associated with the drawing of graphs in
an aesthetically pleasing way. Their purpose
is to place the nodes in a way such that edges
are more or less of equal length and/or to mini-
mize the number of edge crossings. They were
first introduced to the graph drawing commu-
nity by Eades [4] in 1984 who in turn based his

1Conical meshes are quadrilateral meshes with planar
faces, which possess a natural offsetting operation and
provide a support structure orthogonal to the mesh.

Figure 1: These examples use grids which are
closed ‘in one direction’. While orthogonality
can be fulfilled reasonably well, the grid size

varies considerably.

work on a VLSI technique originally described
by Quinn and Breuer [14] for layouting of cir-
cuit paths. Since then the algorithms have been
optimized (e.g., [3, 6]) and applied to a wide va-
riety of graph related problems (e.g., removing of
node overlapping [8] or the drawing of clustered
graphs [5, 16]).
Over the years force based algorithms have
been adopted to various other problems as well.
Provot [13] introduced a mass and spring sys-
tem for the simulation of cloth by modeling it as
regular rectangular grid of m× n virtual masses
which are connected by massless springs of natu-
ral length non equal to zero. Gruber and Glaeser
[7] used a force directed approach for the con-
struction of a minimal surface from given bound-
ary curves. Similar to the work presented here
they control the desired (ideal) length of edges
by replacing them with imaginary springs be-
tween vertices. Moreover, mass-spring systems
are used to overcome the computational expense
of finite elements approaches for the simulation
of deformable bodies (e.g., [10, 11]) at the cost
of physical accuracy.

3 ALGORITHM
Let us assume that the basic surface is given by
a differentiable mapping x : ℝ2→ ℝ3 and a rect-
angular grid in parameter space is mapped onto
this surface, yielding the initial grid. In order
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Figure 2: If the grid does not need to follow
border rules, the degree of freedom allows the

algorithm to produce meshes that almost
precisely fulfill both orthogonality and

aspect-ratio-preservation.

to obtain orthogonality and local equilaterality
our force-directed algorithm uses simple forces
to push the vertices in directions that lead to a
more orthogonal and equilateral grid than in the
iteration before.
In the following discussion we will denote a ver-
tex of the grid as p. Edges e connect two vertices
p1 and p2. The grid can either be closed in one
direction (u or v, see Figure 1), in both directions
(Figure 6) or, the grid can be open in both direc-
tions (Figure 2). Interior vertices refer to vertices
which have four neighbors and boundary vertices
have three neighbors. In case of open meshes
vertices at the corners of the grid are omitted by
the algorithm since no forces are exerted on them
and will therefore be excluded from the discus-
sion.
At the beginning of each iteration the disposition
pdisp of each vertex p is set to zero to sum up the
disposing forces for the next iteration.
In a first step, we idealize the orthogonality of the
projected incident edges on the tangential plane

Figure 3: Calculation of the disposition once for
a vertex p which lies on the boundary (right

side) and once if the vertex is an interior point
(left side). In that case the disposition Fi is the

weighted sum of Fl and Ft .

of each vertex (Figure 3, Step 1 of Listing 1).
In case of interior points pi this is accomplished
by adding small forces to the disposition, which
should obtain straight angles between incident
edges in longitudinal and transversal direction.
As shown in Figure 3 the disposition of pi is
the sum of the angle bisector of ∠(l0, pi, l1) and
∠(t0, pi, t1), weighted by a small factor di:

Fi = di ⋅ (Fl +Ft) =

= di ⋅ ((l0−pi)
∗+(l1−pi)

∗+

+(t0−pi)
∗+(t1−pi)

∗) (1)

To avoid folding at the boundary of the grid, each
boundary point is slightly displaced in the direc-
tion of ’the center’ of its neighboring points. To
be more specific, let us assume a boundary point
pb with its two neighboring boundary points p1
and p2 and interior point p3, as depicted in Figure
3. Furthermore, τ is the plane passing through
point pb with normal (p2− p1)

∗. The resulting
disposition of pb is then given by the normal of τ

weighted with the signed distance between τ and
p3 and a small constant db, mathematically

Fb = db ⋅SignedDistance(p3,τ) ⋅ (p2−p1)
∗ (2)

Afterward, in a second step, we idealize local
equilaterality for every edge by calculating the
deviation δ⃗ of its actual length from a predefined
ideal length and add δ⃗ multiplied by a small fac-
tor de to the disposition of the incident vertices
of the edge (see Step 2 of Listing 1 and, e.g.,
[3, 4, 6]).
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Figure 4: Linear approximation of the normal
projection of a point P on the tangential plane of

x(u,v) onto the parametric surface S.

As a side note, we should point out that if the
control of edge lengths is completely omitted
the successional process of orthogonalization be-
comes instable. In the current implementation we
use a constant ideal length for all edges of the
grid which automatically considers the curvature
of the surface. In other words, high curvature re-
sults in locally small grid size and low curvature
yields larger grid size. However, we currently ex-
periment with ideal lengths in analytical relation
to the local curvature of the surface.
In a final step we add pdisp to the actual position
of p. For the following explanation we denote
p′ = p+ pdisp. Since in general p′ does not lie on
the surface anymore, p′ has to be projected back
onto the parametric surface S (see Figure 4 and
Step 3 of Listing 1). Furthermore, let us denote
p = x(u,v) and pnew = x(u+ du,v+ dv), where
x is the parametric representation of S. To find a
linear approximation of pnew, we calculate at first
the normal projection T of p′ onto the tangential
plane of point p. The step size of u and v result
in

du =
dux

∥ẋu∥
dv =

dvx

∥ẋv∥
(3)

where dux and dvx are the coordinates of point
T in respect to the basis {ẋu, ẋv}. Secondly, to
improve the numerical accuracy of the linear ap-
proximation, p′ is projected onto the tangential
plane of pnew. Although the process can be re-
peated multiple times to increase to accuracy we
found out that one repetition is sufficient for a
stable progress.

function IterationStep() {
for(each vertex p)
p.disp = 0;

// step 1: idealize orthogonality
for(each vertex p) {

if (p == inner point} {
p.disp += Fres

i ;
}
else if (p == boundary point) {

p.disp += Fb;
}

}

// step 2: idealize edge length
for(each edge e) {

ideal = FindIdealLength(e);
∆l = ideal - e.actualLength;
e.p1.disp -= de ⋅∆l⋅ e.direction;
e.p2.disp += de ⋅∆l⋅ e.direction;

}

// step 3: disposition and
back -projection to surface

for(each vertex p) {
p.pos += p.disp;
p.pos =

S.NormalProjection(p.pos);
}

}

Listing 1: Pseudocode for one iteration of the
algorithm which calculates the disposition of

each vertex p.

The pseudocode given in Listing 1 summarizes
the steps explained above. This code is repeated
for each iteration until the solution converges to
specified thresholds in regard to orthogonality
and equilaterality (as defined in Section 4). Since
convergence to these thresholds can not be guar-
anteed in all cases the algorithm terminates also
if the changes in disposition are negligeable from
one iteration to the next.
The user can change the behavior of the algo-
rithm during runtime by altering the ideal edge
length, di, db and de. These parameters should
take on values between 1% and 5% of the aver-
age edge length of the grid. Otherwise the dis-
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position during one iteration may exceed a criti-
cal amount which leads to instability of the pro-
cess. Modifying de changes the ideal length pre-
serving force, whereas higher values for di and
db enforce the orthogonality of the mesh. It can
be observed that orthogonality and equilateral-
ity typically show inverse behavior which means
increasing one of them decreases the other one.
The intermediate results are displayed so that the
user has immediate feedback.

4 Results
To assess the quality of our algorithm with re-
spect to orthogonality the maximum deviation
from orthogonality (MDO) and the average de-
viation from orthogonality (ADO) is measured.
Following Akcelik et al. [1] the former is given
by

MDO = max
i, j

(
∣90∘−θi, j∣

)
(4)

and the latter is calculated from

ADO =
1

nx−2
1

ny−2

nx−1

∑
i=2

ny−1

∑
j=2
∣90∘−θi, j∣ (5)

where the angle θi, j is the maximum angle be-
tween longitudinal and transversal edges at grid
position (i, j). These values are not calculated
directly on the discretized mesh since the dis-
cretization by itself introduces some error. In-
stead, grid interpolating spline curves are used.
Furthermore we measure the maximum deviation
from equilaterality (MDE) and the average devi-
ation from equilaterality (ADE) which are given
by

MDE = 100 ⋅
(

max
k

(
Lk

lk

)
−1
)

ADE = 100 ⋅

(
1
nq

nq

∑
k=1

Lk

lk
−1

) (6)

where nq is the number of quads of the grid. Lk
is the maximum and lk the minimum side length
of quad k.

Figure 5: Rendering of a Klein Bottle (from the
inside). The orthogonality of the grid has an

aesthetic impact.

In the current implementation one of these four
measurements, depending on the requirements
concerning orthogonality and equilaterality, is
used as break condition of the algorithm (see
Section 3).

4.1 Application in Architectural Design
Figures 5 through 8(b) show examples from ar-
chitectural design. Figures 5 and 6 show a hall
which is based on a parametric representation of
a Klein Bottle with its double closed parameter
lines as input grid where the result was cut in
half afterward. As evident from Table 1 this type
of double closed grid achieves a high degree of
orthogonality. If the grid is closed, however, a
given number of u and v lines may not be well
suited to achieve local equilaterality. In contrast,
for the tower in Figure 8(a) a grid, which is open
on one side, was used. This already leads to bet-
ter local equilateral quadrangles.
Opening the grid on both sides results in almost
equilateral quadrangles, which is illustrated in
Figure 8(b), by inscribing circles into each quad-
rangle. Figure 7 is another example were an open
mesh was used. Table 1 shows measurements for
those Figures.
As Figure 7 and Figure 8(b) show, the algorithm
of finding ratio-preserving orthogonal quadran-
gular grids turns out to be a good tool for finding
circular pavements of general surfaces. To fulfill
the task as good as possible, both degrees of free-
dom are necessary, i.e., the grid should be open
in both directions. Figure 9 shows how the ‘skin’
of the surface changes (contracts) from the given
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Figure 6: Concept renderings of a hall which in fact is a Klein Bottle cut in half. The girders in the
middle and right image where laid out with the presented algorithm. The left image shows the

initial configuration.

Figure 7: A concept for a bridge which consists of a part of a Dupin cyclide which is enclosed with
metallic rings.

Table 1: Results for the examples shown in
Figure 5 through Figure 8(b). The subscripts b
and a indicate if the measurements were done
before or after the algorithm. The type denotes
if a grid is open (C0), closed in one direction

(C1) or is a double closed grid (C2).
Scene Type MDO ADO MDE ADE
Klein Bottleb C2 33.78∘ 11.75∘ 404% 90%
Klein Bottlea C2 5.43∘ 0.48∘ 152% 28%
Towerb C1 40.47∘ 10.55∘ 134% 29%
Towera C1 1.43∘ 0.28∘ 15% 9%
Tower (Rings) C0 5.84∘ 1.73∘ 8% 4%
Bridge C0 5.37∘ 2.28∘ 12% 4%
Function Graph C0 4.30∘ 1.09∘ 9% 3%

grid and finally converges to a visually pleasing
(aesthetic) pattern.

4.2 Application in Geometry
Among the infinite number of possible orthogo-
nal grids on a surface, the lines of principal cur-
vature play an important role both in theoretical
and applied geometry. They are usually found

by solving differential equations (see [12]). By
the way of example, Figure 10 shows these lines
for a general ellipsoid. The principal curvature
lines of such an ellipsoid form a perfect mesh,
with four ‘problematic points’ (the so-called um-
bilical points) where the surface is osculated by
a sphere. These points mostly implicate a non-
trivial topology of the principal curvature field.
However, the topology of the principal curvature
lines usually differs from the topology of a quad-
rangular grid and therefore it is impossible for
our algorithm to find them. Nevertheless, we can
find alternative solutions to such curvature lines,
depending on the parameters values di, db and de,
as shown in Figure 10.

5 CONCLUSIONS
In this paper we described a force-based al-
gorithm for calculating orthogonal quadrangu-
lar grids on arbitrary double-curved parametric
surfaces. Our algorithm uses simple forces to
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(a) A tower, once with the initial grid (left side) and once after our algo-
rithm was applied (right side). Since the mesh is only closed in one di-
rection, the algorithm can more easily obey the equilateral condition and
therefore produces locally square quadrilaterals.

(b) Another tower with a ratio-
preserving orthogonal grid in which
circles were inscribed.

Figure 8: Concept renderings of two different towers

Figure 9: The converging (contracting) grid is perfectly suitable for a circular pattern that covers the
surface. Left: Starting position, right (yellowish): converged grid.

Figure 10: A general ellipsoid (no surface of revolution) Left: the principal curvature lines
calculated with analytical methods. Middle: Approximation of the principal curvature lines found
by our algorithm. Right: altering the parameters leads to a completely different (and non-trivial)

orthogonal net.
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push vertices in directions that lead to a more or-
thogonal grid than in the iteration before. The
algorithm works with grids which are open or
closed in one or two directions. The behavior of
the algorithm can be altered via the ideal edge
length and the three force parameters de, di and
db. Images and quality indicators throughout
the paper showed results which where achieved
with the presented algorithm. Currently our
method works only on parametric surfaces (func-
tion graphs, parametric representations, implicit
functions and Bezier and NURBS surfaces). It
would be useful, however, to extend the algo-
rithm to polygonal surfaces since they are not less
common in architecture and design than paramet-
ric surfaces.
Local equilaterality can be best achieved if the
grid is open in both directions. In case of a closed
grid a suitable number of parameter lines has to
be chosen to achieve local equilaterality. The
quality may be improved by adaptively adding
u and v parameter lines. We also attempt to in-
corporate the local curvature of the surface into
the calculation to be able to use individual ideal
edge lengths. This should give a better conver-
gence toward local equilaterality since the curva-
ture naturally corresponds to the grid size.
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