
ALGORITHMS FOR GENERATION OF IRREGULAR SPACE
FRAME STRUCTURES

Franz GRUBER, Günter WALLNER

University of Applied Arts, Vienna

ABSTRACT:
Complex space frames with respect to aesthetics and stability are an important factor in contempo-
rary architecture. Obviously there are many different ways to generate spatial structures, especially
if randomness affects the generating process. In this work we present two algorithms to generate
irregular space frames inside arbitrary (including non-convex) boundary volumes with predefined
support areas. The resulting structures are intended as input for a genetic algorithm which optimizes
the static stability. The first algorithm uses 3D-Voronoi structures as a starting point, which makes
sense in terms of the frameworks load capacity. The second approach uses a repulsive force field for
the calculation of curve-skeletons of three-dimensional objects.

Keywords: space frames, structures, 3D Voronoi tessellations, skeletonization, vector field
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1: A viewing platform supported by a
framework of Voronoi paths.

1 INTRODUCTION
The current methods of structural design are usu-
ally based on structures with a high degree of reg-
ularity (see, for example, [5] for numerous case
studies). However, there is desire for irregular
complex space frames in contemporary architec-
ture. The goal of the project Algorithmic Gen-
eration of Complex Space Frames is to analyze
new and innovative approaches to develop irreg-
ular and at the same time effective structures [3].
Part of this project was the development of al-
gorithms to generate irregular space frames in-
side arbitrary (including non-convex) boundary
volumes with predefined support areas. At this
point we should stress that it is not our concern

Figure 2: A pavilion were the girders where laid
out with the skeletonization algorithm.

to generate structures in regard to statics in the
first instance. Instead, the structures are intended
as input for a genetic algorithm which optimizes
the static stability (see Hofmann et al. [10] for a
description of an early version of the system).
Space frames were independently developed
by Alexander Graham Bell, who invented
space-frames assembled from tetrahedral frames
around 1900 and by Buckminster Fuller, who’s
investigations five decades later led to the cre-
ation of the famous geodesic dome. Nowadays,
not only regular but also irregular space frames
are becoming increasingly popular in architec-
tural design. Notable buildings are for exam-
ple the Biosphere 2 in Oracle, Arizona, the Eden



Project in the United Kingdom or the Beijing Na-
tional Aquatics Center.
Obviously there are many different ways to gen-
erate spatial structures, especially if randomness
affects the generating process. In this work we
present two algorithms which, after different ex-
periments, turned out to be promising. The first
method uses 3D Voronoi structures as a start-
ing point, which are known to produce stati-
cally rigid structures of space-filling tetrahedra
[4]. The second method uses a repulsive force
field for the calculation of the structure and was
influenced by the work of Cornea et al. [7]. Fig-
ure 1 and Figure 2 show concepts renderings for
buildings where the framework was calculated
with the two described algorithms.
The paper at hand is structured as follows: Sec-
tion 2 reviews related work in the area of irreg-
ular space frames. In Section 3 the bounding
volume is discussed and Section 4 as well as 5
present the two algorithms. The paper is con-
cluded in Section 6.

2 RELATED WORK
Because contemporary landmark architecture –
as pointed out by [8] – continually moves away
from economic considerations toward increasing
numbers of building elements that are unique
both to the individual project as well as within
that particular project, research on irregular
structures has increased over the past years.
For example, Kanellos [12] addressed a problem
similar to ours, where a certain volume has to be
filled with a structural space frame network lat-
tice consisting of a given number of nodes. The
author employs a particle-spring system where
the connectivity between the particles is not pre-
determined but established dynamically. The
system uses only local rules of inter-particle in-
teraction so that the particles are able to generate
crystal-like lattices through self-organisation.
Canzarra [4] also starts with a population of
points in space but uses a model which is used
in bone accretion, which mechanisms are rela-
tively known and simple and produce structures
with good static stability. As in our case, the au-

thor was not interested in finding optimal solu-
tions but instead challenging and creative ones,
as pointed out in [4]. A Delauney triangulation
is used as starting structure, which is the dual of
the Voronoi tessellation.
Jaworski [11] published a method to grow a
structure that supports a building by providing
initial seeds and the volumes to be supported. In-
fluenced by the concept of phototropic growth,
stems originating at the initial seeds grow ver-
tically upwards and avoid obstacles and there-
fore entwine existing volumes. During growth
the stems are connected to nearby points to en-
sure static stability. The resulting structures look
similar, although denser, than our structures pro-
duced by algorithm (1).
Fischer [8] proposed a method to create appar-
ently irregular structures from relatively small
sets of identical parts, by combining a highly reg-
ular space-filling structure with a bottom-up gen-
erative procedure.

3 BOUNDARY VOLUME
Because the space frames have to be generated
inside a given (not necessarily convex) polygonal
boundary volume and multiple solutions which
can be used as input for the genetic algorithm
have to be generated, an efficient representation
of the boundary volume is essential. In fact, the
data structure has to allow fast intersections with
a ray and tests if a point is inside or outside. A
kd-tree [2] is therefore used as spatial data struc-
ture to allow fast traversal of the mesh for inter-
section tests. Furthermore, it has to be possible to
define certain faces as supporting areas, in other
words areas where support points of the frame-
work can be placed.

4 VORONOI PATHS
The algorithm starts by distributing points inside
the bounding box of the given boundary volume
which are used as basis for a 3D Voronoi tessel-
lation. Afterward the tessellation is cropped at
the boundary volume. Then a given number of
paths is traced along the cropped tessellation be-
tween two points from different supporting areas
(Voronoi paths). Finally, the paths are smoothed

2



Figure 3: Left: The Voronoi tessellation is
cropped at the boundary (red) which serves as

traffic system for the path finding. Right:
Boundary points (red and green dots) from
different boundary areas are connected by

individual paths.

Figure 4: 3D Voronoi tessellation cropped at a
non-convex boundary surface.

and yield the irregular structure. The viewing
platform in Figure 1 was constructed with this
algorithm. For the sake of clarity let us explain
the process in two dimensions.

4.1 Preprocessing
In the first step, points are uniformly distributed
inside the bounding box of the given boundary
volume, whereas the density is an important pa-
rameter for the fineness of the final framework.
These points are used as generating points for
the software package qhull [1] to calculate a 3D
Voronoi tessellation. The results are read back
and the edges are cropped at the boundary vol-
ume. The intersection points are called boundary
points in the following. These steps are depicted
in Figure 3 (left) and a three dimensional exam-
ple is shown in Figure 4.

Figure 5: Left: The network from Figure 3 after
a few smoothing steps. Right: A fully

straightened network. In both cases cross points
(blue) were fixed at their initial position.

4.2 Voronoi path finding
Obviously, the cropped tessellation does not meet
the condition that its boundary points are solely
located at the predefined support areas and from
an aesthetical point of view it does not sat-
isfy the required irregularity. However, we use
this structure as a kind of traffic system to ex-
tract Voronoi paths between two randomly cho-
sen support points pA and pB on different support
areas. Finding a path between pA and pB is not
a well-defined task, however, in the current im-
plementation we try to connect these points on
a preferably short way, by using the following
method.
Starting at position pA the path follows at each
crossing point pC that adjacent edge which has
the smallest angle to the target direction pB −
pC. This way we obtain a randomized net-
work of crossing lines which sometimes run par-
tially identical, bifurcate or converge (see Figure
3 (right) and Figure 6 (left) for an example in
3D). Since points and edges can occur multiple
times, the network is not suitable for the follow-
ing force-directed smoothing algorithm which
should smooth the network as a whole and not
each path separately. Therefore multiple points
and edges are merged together.

4.3 Smoothing
At this point the network already has the topol-
ogy of the final framework. However, the current
network is characterized by zigzag lines which
do not make much sense neither from a statical
nor from an aesthetical point of view.

3



Figure 6: Left: With the help of a random 3D -
Voronoi structure we define a Voronoi-Path (red)

between two support points located at the top
and bottom (yellow). Right: Complex structure
composed of many smoothed Voronoi-Paths.

For this reason the network is smoothed itera-
tively by replacing edges with elastic springs.
For each vertex v a disposition vdisp is stored
which is set to zero at the beginning of each it-
eration. Afterward, the algorithm loops through
each edge with incident vertices v1 and v2 and
adds ε ⋅d0 to vdisp

1 , respectively subtracts it from
vdisp

2 , where d0 = (vpos
2 − vpos

1 )/
∥∥vpos

2 −vpos
1

∥∥
and ε is a small constant. At the end of each
iteration the disposition vdisp of each vertex is
added to its position vpos. For boundary points
the last step is omitted to keep their initial po-
sitions fixed. Conventional space frame struc-
tures feature completely straight girders and can
be best achieved by additionally locking the po-
sition of cross points.
In general, the higher the number of iterations,
the more straight the network will become. Fig-
ure 5 compares a slightly smoothed with a fully
straightened network. Further three dimensional
examples are shown in Figure 6 (right) and Fig-
ure 7.

5 SKELETONIZATION
The second approach follows the work of Cornea
et al. [7], who use a repulsive force field
for the calculation of curve-skeletons of three-
dimensional objects. Although the connection
to architecture might not seem obvious at first,
because their research was originally targeted
to areas like virtual colonoscopy or animation,
we found it appropriate for our purposes. The

Figure 7: Left: Voronoi paths from the red to the
green support area. Right: The fully straightened
structure after smoothing with fixed cross points.

method uses a generalized potential field [6] to
generate a discretized vector field inside an ob-
ject by charging the object’s boundary.

5.1 Outline
The algorithm starts by distributing point charges
on the surfaces of the boundary volume. Af-
terward a discretized vector field is calculated
within the surface’s bounding box. Although
this would not be strictly necessary, it accelerates
the numerical integration later in the process and
eases the computation of critical points. Once the
vector field is established, the particle trajecto-
ries, starting from the supporting areas toward a
critical point, are calculated with numerical inte-
gration. Because these paths are running partially
parallel they are merged together to avoid unaes-
thetic clutter. Finally, cross-links depending on
an angle-threshold are inserted into the existing
space frame structure. Figure 8 illustrates these
steps.

5.2 Preprocessing
After the boundary volume has been defined n
points p1...pn with charges q1...qn are placed in
a small distance orthogonal to the surfaces, as
opposed to Cornea et al. [7] who place them
at the center of cells which are intersected by
the volume. This is necessary in our case be-
cause the particles start at the boundary surfaces
and should not move outside the boundary vol-
ume right away. The point charges are placed at
the vertices of the the bounding volume and on
the center between the barycenter vbc and each
triangle vertex v1,v2,v3. The placement is re-

4



Figure 8: Left: After point charges (circles with arrows) have been uniformly distributed on the
object’s boundary, a discretized vector field (shown schematically as gray grid) is derived which at

least contains one critical point (red circles). Right: The trajectories of particles (green) which
originate on the object’s boundary are the core of the final framework. Separate components are

joined by straight lines (blue, dot-dashed) which connect the two closest crossings (blue circles) to
ensure that the entire structure is a coherent whole. Cross-links (orange, dashed) are inserted to

ensure better stability.

peated recursively for each triangle (vbc,v1,v2),
(vbc,v2,v3) and (vbc,v3,v1) until a given subdivi-
sion level is reached.
Based on the bounding box of the volume a
discretized vector field is constructed where the
number of division in each direction depends on
the associated side length. At each cell center a
vector

v = c ⋅
n

∑
i=0

(
qi

∥di∥m

)
⋅di (1)

is calculated, where di is the vector pointing from
the cell center to the position of point charge i. m
is a quantity for the descent of the vector field
and c a small constant.
In a discretized vector field a critical point may
only occur in cells where all three components of
v pass through 0, which in case of trilinear in-
terpolation can be found with a simple heuristic
as described in [9]. If for each component of the
force vector at each cell vertex both negative and
positive values exist then the components must
change sign somewhere inside the cell and the
cell is a potential candidate for containing a criti-
cal point. If the condition is fulfilled then the cell
is recursively subdivided and the test is repeated
for each sub-cell until either the test fails or a
maximum number of subdivisions is reached. As
pointed out by Globus et al. [9] this is only a
necessary condition and the cell must not con-

tain a critical point. They therefore use Newton’s
method to better estimate the location of the crit-
ical point after a fixed number of subdivisions.
However, in our case the exact location of the
critical point is not necessary and incorrect clas-
sifications do not interfere with the correct work-
ing of the algorithm. Locating the critical points
is the most time consuming step in the prepro-
cessing step. However, the pre-process must only
be performed once and does not need to be re-
peated to generate different space frames for a
given boundary volume. Figure 8 (left) shows
the status of the system after the pre-process is
finished.

5.3 Particle Trajectories
Once the pre-process has finished, paths through
the vector field are traced which build the foun-
dation of the final framework. This process starts
by placing particles randomly on the supporting
areas. For each particle the trajectory is calcu-
lated by explicit Euler integration1. Because all
particle trajectories have to end at a critical point
(or to be more specific at an attracting node),
and there must be at least one critical point in
the closed boundary volume, the integration is

1More precise integration schemes, like Runge Kutta 4th
order integration can also be used but the additional ef-
fort may not be necessary because the accurate path is
not required for the matter in hand.

5



Figure 9: Top: Calculating each particle
trajectory independently from each other results

in clutter, since paths frequently run partially
parallel to each other. Middle: The same
example after merging the paths during

integration which circumvents the cluttering.
Bottom: The result after the components have

been connected and the paths have been
smoothed. The red circles show two areas where

unaesthetic spikes have been removed by the
smoothing algorithm.

aborted if the last position is in proximity of such
a critical point. This point is added as the last
point to the particle trail. These paths are shown
in green in Figure 8 (right).
Because the time step ∆t for numerical integra-
tion is usually relatively small it is not practical
to add each position to the final path. Therefore
a minimum distance εd > ∆t between two points
must be fulfilled.
As shown in Figure 9 (top) these paths run fre-

quently in parallel which makes the result look
cluttered and not suitable for a space frame struc-
ture. To circumvent this problem the integra-
tion stops if the current location is in proxim-
ity of an already existing position, which even-
tually becomes the final point of the current path.
This is implemented with a simple space parti-
tioning scheme which divides the bounding vol-
ume into small cuboids. Each time a new po-
sition p is added to the path it is inserted into
the appropriate cuboid c by mapping its coordi-
nates to indices. Then the distances between p
and all other positions of different paths in c are
calculated and p will be connected with the po-
sition which is closest to it. Positions on which
multiple paths converge will be called crossings
henceforth and critical points are automatically
considered as crossings regardless of the number
of incident edges. The merged paths are shown
in Figure 9 (middle).

5.4 Postprocessing
Depending on the vector field, the emerging
structure may consist of multiple non-connected
components. These are linked to each other
by connecting the two closest crossings between
them. Once a single component exists the
smoothing algorithm as described in Section 4.3
is applied. Figure 9 (bottom) shows the result af-
ter the components are connected and the paths
had been smoothed. Afterward cross-links –
which are shown as orange slashed lines in Fig-
ure 8 (right) – are added to the structure as fol-
lows.
First, for each crossing c and every pair of ad-
jacent branches with vertices (u0 = c,u1, ...,um)
and (v0 = c,v1, ...,vn) a cross-link is added be-
tween ui and vi provided that none of the follow-
ing conditions is fulfilled:

1. the angle α=∠(−−−→ui−1ui,
−−−→vi−1vi) is larger than

a definable threshold αmax
2. either ui or vi is a crossing or a boundary

point
3. the distance between ui and vi is larger than

a definable maximal length lmax
4. a cross-link has already been added between

6



ui and vi
5. m > n or n > m

The process is then repeated recursively between
ui+1 and vi+1

2 until one of the above mentioned
conditions is violated.
Although the basic appearance depends on the
vector field which in turn depends mostly on the
geometry of the bounding volume the results can
be altered to a certain degree by changing the
number and starting position of the particles as
well as the parameters εd , αmax and lmax and the
size of the cuboids (used for merging). Figure 2
shows a pavilion which was constructed with this
algorithm.

6 CONCLUSIONS
Among the infinite number of possibilities of
generating spatial structures inside a given vol-
ume, we described two methods: one is based
on Voronoi tessellation and the other on repulsive
force fields.
Regarding the former we currently use a uni-
formly distributed point cloud to generate the
Voronoi tessellation. For future work, the den-
sity of the point cloud could depend on geomet-
ric properties of the boundary volume. For ex-
ample, the density could be higher in critical ar-
eas inside the volume, like constrictions or bot-
tlenecks. Furthermore, different topologies can
be generated by replacing the Voronoi tessella-
tion with alternative patterns like a regular grid.
The main disadvantage of the latter method is
that the resulting structures – despite randomly
choosing the support points – look quite similar
because the underlying vector field is defined by
the bounding volume. If the vector field leads to
statically unfeasible space frame structures then
altering the support points will not have much ef-
fect and one cannot expect that the genetic algo-
rithm will create a good solution. For example, a
simple box only has one critical point and all par-
ticle trails will converge to this point. Therefore,

2ui and vi can each only have one successor because oth-
erwise they would either be a crossing (two or more)
or a boundary point (one) which would terminate the
process.

the vector field should be disturbed by placing
point charges randomly inside the volume which
will influence the number and location of the crit-
ical points.

ACKNOWLEDGMENTS
This work was supported by grant L358 of the
Austrian Science Foundation (FWF).

REFERENCES
[1] C. Bradford Barber, David P. Dobkin, and

Hannu Huhdanpaa. The quickhull algo-
rithm for convex hulls. ACM Trans. Math.
Softw., 22(4):469–483, 1996. http://www.
qhull.org/.

[2] Jon Louis Bentley. Multidimensional
binary search trees used for associative
searching. Commun. ACM, 18(9):509–517,
1975.

[3] Klaus Bollinger, Arne Hofmann, and
Clemens Preisinger. Algorithmic genera-
tion of complex space frames (Austrian Sci-
ence Fund project), 2009.

[4] Pablo Miranda Canzarra. Self-design and
ontogenetic evolution. In Proceedings of
the Generative Art International Confer-
ence, 2001.

[5] John Chilton. Space Grid Structures. Ar-
chitectural Press, 2000.

[6] Jen-Hi Chuang, Chi-Hao Tsai, and Min-Chi
Ko. Skeletonization of three-dimensional
object using generalized potential field.
IEEE Trans. Pattern Anal. Mach. Intell.,
22(11):1241–1251, 2000.

[7] Nicu D. Cornea, Deborah Silver, Xiaosong
Yuan, and Raman Balasubramanian. Com-
puting hierarchical curve-skeletons of 3d
objects. In The Visual Computer, vol-
ume 21, pages 945–955. Springer-Verlag,
2005.

[8] Thomas Fischer. Generation of apparently
irregular truss structures. In Computer

7



Aided Architectural Design Futures 2005,
pages 229–238, 2005.

[9] Al Globus, Creon Levit, and Tom Lasin-
ski. A tool for visualizing the topology of
three-dimensional vector fields. In VIS ’91:
Proceedings of the 2nd conference on Visu-
alization ’91, pages 33–40, Los Alamitos,
CA, USA, 1991. IEEE Computer Society
Press.

[10] Arne Hofmann, Klaus Bollinger, and Man-
fred Grohmann. Generating geometry of
irregular frameworks algorithmically. Pro-
ceedings of Advances in Architectural Ge-
ometry, pages 21–23, 2008.

[11] Przemyslaw L. Jaworski. Using simulations
and artificial life algorithms to grow ele-
ments of construction. Master’s thesis, Uni-
versity College London, 2006.

[12] Anastasios Kanellos. Topological self-
organisation: Using a particle-spring sys-
tem simulation to generate structural space-
filling lattices. Master’s thesis, University
College London, 2007.

ABOUT THE AUTHORS
1. Franz Gruber studied Technical Mathematics

at the Johannes Kepler University in Linz.

He is currently working as Research Scien-
tist at the University of Applied Arts in Vi-
enna, where he did his dissertation about the
Application of classical geometric methods
in architecture and computational aesthetics.
His main interests are the numerical devel-
opment of algorithms in geometric applica-
tions and surface design. He can be reached
by e-mail: franz.gruber@uni-ak.ac.at.
His web site is: www1.uni-ak.ac.at/geom/
staff_fg.php

2. Günter Wallner received his Diploma degree
in Computer Science from the Technical Uni-
versity Vienna in 2005. He is currently a Re-
search Assistant at the Department of Geom-
etry (Institute for Art and Technology) at the
University of Applied Arts Vienna where he
finished his doctoral thesis about GPU En-
hanced Algorithms for Radiosity and Shadow
Volume Rendering in 2009. His research in-
terests include global illumination, photore-
alistic rendering, GPU programming as well
as procedural methods in computer graph-
ics. He can be reached by e-mail: wallner.
guenter@uni-ak.ac.at

8


