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Abstract. Points in the plane of a given triangle whose trilinear dis-
tances form a constant product gather on a planar cubic curve. All these
cubics constitute a pencil of cubics in which the three-fold ideal line of
the triangle plane and the three side lines of the base triangle are the only
two degenerate cubics in the pencil. Among the non-degenerate cubics,
there is only one rational curve with an isolated node at the centroid of
the triangle. Independent of the chosen distance (product), the inflection
points of the cubics are the ideal points of the triangle sides. It turns out
that the harmonic polars of the inflection points are the medians of the
base triangle. We shall study especially those cubics that are defined by
triangle centers. Each triangle center defines its own distance product
cubic and, in contrast to all other known triangle cubics, only a rather
small number of centers share their cubic.

Keywords: triangle, cubic, triangle center, trilinear distance, constant
product, triangle center

1 Introduction

In triangle geometry, cubic curves appear frequently as loci of points satisfying
certain constraints. These may be the so-called locus properties as is, for example,
the case with the Neuberg cubic K001 (see Fig. 1). This particular cubic appears
as the locus of all points P in the plane of a triangle ∆ = ABC such that
the triangle ∆′ = PaPbPc is perspective to ∆, where Pa, Pb, and Pc are the
reflections of P in ∆′s side lines. This characterization of K001 and fifteen more
can be found on Bernard Gibert’s page [2]. However, there are other possible
ways to determine cubics in a triangle plane. The loci of points P which lie
collinear with their isogonal conjugates or their isotomic conjugates P ′ and some
point Z 6= P, P ′ (for example, Z may be equal to some triangle center) are called
pivotal isogonal or pivotal isotomic cubics with pivot Z. The Neuberg cubic is the
self-isogonal cubic with the Euler infinity point X30 as its pivot. Clearly, such
cubics are invariant with respect to these elementary planar quadratic Cremona
transformations. For details on quadratic Cremona transformations see [3].

We shall go a different way and assume that P is a point in the plane of ∆
which does neither lie on any of ∆’s side lines nor on the line at infinity (ideal
line). Therefore, P has well-defined and proper distances to each side lines.
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Fig. 1. The Neuberg cubic K001 and some centers on it.

Consequently, the product of these distances is well-defined and we can ask
for all points in ∆’s plane that form the same product of its distances to the side
lines of ∆. It is clear that this results in cubic curves. This can also be confirmed
by the elementary approach of multiplying the equations of the three side lines
in Hessian normal form and setting this product equal to some constant.

In this paper, we shall first give the equations of the distance product cubics
in Section 2 and work out some basic properties which are common to all the
cubics in this one-parameter family in Section 3. Then, we focus on those cubics
which are defined by triangle centers in Section 4. We shall see that only a small
number of known triangle centers share their distance product cubic with others.
Section 5 describes how to find further triangle centers on such a cubic once it is
defined by a certain center. Finally, in Section 6, we briefly describe some ideas
for future work which is related to the group structure on elliptic cubics.

2 Prerequsites

Assume ∆ = ABC is a triangle in the Euclidean plane with the side lengths
AB = c, BC = a, and CA = b. We prefer the representation of points in terms
of homogeneous trilinear coordinates. Therefore, the vertices of ∆ are given by

A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1)
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and the unit point of the projective frame equals the incenter X1 of ∆ which is
given by the unit vector, i.e., X1 = (1 : 1 : 1).

The subscript 1 of X1 refers to the number of the particular triangle center in
Clark Kimberling’s Encyclopedia of Triangle Centers, cf. [4, 5].

Since we are interested in distances, we need the notion of actual trilinear coor-
dinates or trilinear distances of points in the plane of ∆. The trilinear distances
(actual trilinear coordinates) (ξa, ηa, ζa) of a point X = (ξ : η : ζ) are related to
its homogeneous trilinear coordinates by

(ξa, ηa, ζa) =
2F

aξ + bη + cζ
(ξ, η, ζ), (1)

where F equals the area of ∆. The linear form aξ + bη + cζ in the denominator
vanishes for points on the ideal line. Clearly, these points are excluded from our
considerations.

The normalization (1) of the homogeneous trilinear coordinates is based on the
following observation: Let (ξ : η : ζ) be the homogeneous trilinear coordinates of
a point X in the triangle plane. The point X determines the three subtriangles
BCX , CAX , and ABX of ∆ and ξa = X [BC], ηa = X [CA], and ζa = X [CA]
are their altitudes. Thus, their areas sum up to twice the area of ∆, i.e.,

aξa + bηa + cζa = 2F.

For each point X in the plane of ∆, we can convert its homogeneous trilinear
coordinates (ξ : η : ζ) into actual trilinear coordinates. This allows us to ask for
all points whose actual trilinear coordinates, i.e., distances to the sides of ∆,
form a constant product. This yields

8F 3ξaηaζa

(aξa + bηa + cζa)3
= δ,

where δ ∈ R \ {0} is an arbitrary constant.

As a first result, we can state:

Theorem 1. The locus k(δ) of all points X in the plane of a triangle ∆ = ABC

whose distances to the sides of ∆ form a constant product δ ∈ R\{0} is a planar
cubic curve with the equation

k(δ) : 8F 3ξηζ − δ(aξ + bη + cζ)3 = 0, (2)

where ξ, η, ζ are actual or homogeneous trilinear coordinates.

Proof. The obvious difference between (2) and the equation given above lies in
the superscripts pointing to actual trilinear coordinates. The equations of the
cubics (2) remain unchanged if we replace the homogeneous trilinear coordinates
by actual trilinear coordinates, as follows from a simple computation. �
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Fig. 2. Projective view onto the pencil of distance product cubics.

The cubics defined by (2) form a linear one-parameter family, i.e., a pencil of
cubics, since the equations depend linearly on the parameter δ. It is clear that
δ = 0 corresponds to a degenerate cubic k(0) : ξηζ = 0 that consists of the
three side lines of the triangle, see Fig. 2. Extending the range of δ by letting
δ ∈ R ∪ {∞}, we find that the line ω at infinity considered as a line with
multiplicity three is also a degenerate cubic in the pencil.

3 Some properties of the cubics

We shall exclude isosceles, equilateral, and right triangles from our considera-
tions. Clearly, the distance product cubics of equilateral or isosceles triangles
share the symmetries with the base triangle. Later, when we deal with distance
product cubics that are defined by triangle centers, we will make use of the fact
that triangle centers of a generic triangle usually do not coincide with a side line
of the triangle. For example, the orthocenter of a right triangle equals the vertex
with the right angle and the circumcenter is the midpoint of the hypothenuse.
Obviously, these two points have zero distance to at least one triangle side, and
thus, the corresponding distance product cubics degenerate into the triplet of
∆’s side lines. In an isosceles triangle, not as many triangle centers coincide as
is the case with equilateral triangles. However, the symmetry with respect to a
certain median of ∆ remains, as can be seen in Fig. 3.

We can describe the cubics in the pencil (2) with regard to their singularities:

Theorem 2. The family (2) of cubic curves contains one singular (rational)

non-degenerate curve which correspond to δ2 = 8F 3

27abc
.
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Fig. 3. Distance product cubics of an isosceles triangle share its symmetries with the
triangle.

Proof. This result is easily verified by computing the gradient gradk of the
cubics’ equations (with variable δ) an eliminating, e.g., ζ and η from all three
coordinate functions using (2) which results in

22432a3bc19F 24δ9(27abcδ + 64F 3)(8F 3 − 27abcδ)ξ4 = 0.

(The results of the elimination of the other pairings of variables does not differ
from this substantially.) For the solution ξ = 0, the gradient of k does not vanish.
The same holds true for ξ = 0 and η = 0 which show up as solutions in the other
elimination processes.

Since a, b, c 6= 0, and thus, F 6= 0, and also δ 6= 0, we can infer that either

27abcδ + 64F 3 = 0 or 8F 3 − 27abcδ = 0. The first equation yields δ0 = − 64F 3

27abc

which defines an elliptic cubic without any singularity. The second equation

yields the value δ2 = 8F 3

3abc
and defines a rational cubic with an isolated node at

X2 = (bc : ca : ab). �

It is worth noting that δ2 = 8F 3

27abc
can be obtained as the product of the trilinear

distances of X2 (centroid): The homogeneous trilinear coordinates of X2 are
(a−1 : b−1 : c−1) = (bc : ca : ab). Hence, the actual trilinear coordinates are
2F
3abc

(bc, ca, ab). Thus, the cubic that collects all points that share the distance
product with the centroid has the equation

k2 : 27abcξηζ − (aξ + bη + cζ)3 = 0. (3)
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This curve has an isolated node at X2 with the complex conjugate pair of tan-
gents given by

a2ξ2 + b2η2 + c2ζ2 − abηξ − acξζ − bcηζ = 0.

The cubic curve defined by δ = δ0 has the equation

k0 : 27abcξηζ + 8(aξ + bη + cζ)3 = 0,

has no singularity and does not contain a single triangle center Xi for all i ≤
12000 (of the ones listed in [5]).

If a planar cubic has three real points of inflection, these are known to be
collinear. In our special case, we have:

Theorem 3. All cubics (2) in the pencil share the three real points of inflection,
which are located on the line at infinity.

Proof. In this case it is not necessary to compute the Hessian curve of k(δ) and
intersect it with each curve in the family.

We recall that aξ + bη + cζ = 0 is the equation of the ideal line ω in the
triangle’s plane. Therefore, the intersection of k(δ) and ω is described by ξηζ = 0.
Consequently, either ξ = 0, η = 0, or ζ = 0 determines the intersections of k and
ω. All three points are of multiplicity three and have the homogeneous trilinear
coordinates

W1 = (0 : c : −b), W2 = (−c : 0 : a), W3 = (b : −a : 0). (4)

The side lines of ∆ are the inflection tangents of k. Obviously, δ does not appear
in the coordinates of any point of inflection. �

Fig. 4 shows a collinear image of a distance product cubic. The three real points
of inflection gather on the line ω at infinity.

As a consequence of Theorem 3, any two cubics in the pencil (2) have no other
points than the inflection points in common

The harmonic polar of a point P on a planar cubic curve k is defined as fol-
lows: Each line l (except the tangent) in the pencil about P meets k in two
further points, say Q and R. Then, there exists a unique point S on l such that
H(Q,R;P, S), i.e., S is the harmonic conjugate of P with respect to Q and R.
If we do this for all lines in the pencil, we obtain the harmonic polar of P as
the locus of all points S with respect to k. In our very special case, we have the
following result:

Theorem 4. The harmonic polars of the points of inflection of the cubics (2)
are the medians of the base triangle.

Proof. It is well-known that the harmonic polar of an inflection point on a planar
cubic is a straight line, cf. [1].
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Fig. 4. A distance product cubic k in the projectively extended Euclidean plane has
three points W1, W2, W3 of inflection on the line ω at infinity. The tangents to k at
the inflection points equal the side lines of the base triangle ∆.

In order to show that the harmonic polars are precisely the medians of the
triangle, we compute the harmonic polar for the point W1 = (0 : c : −b). The
remaining polars can be computed in the same way. Assume that the lines in the
pencil about W1 are spanned by W1 and a further cubic point P = (ξ′ : η′ : ζ′).
The lines l in the pencil admit the parametrization l(λ, µ) = λW1 + µP with
λ : µ 6= 0 : 0. Intersecting the lines with the cubic means inserting the latter
parametrization into (2). Since P ∈ k and W1 ∈ k, their coordinates satisfy (2),
and thus, the two linear factors λ and µ split off from the homogeneous cubic
equation. The remaining linear factor yields

λ : µ = −bη′ + cζ′ : bc,

which are the homogeneous coordinates (on l) of the third intersection Q of l and
k. The fourth harmonic point (or harmonic conjugate, cf. [3]) is then uniquely
defined by

λ : µ = −bη′ + cζ′ : 2bc.

Therefore, R = (2bcξ′; bcη′ + c2ζ′ : b2η′ + bcζ′) which is a homogeneous para-
metrization of the line bη − cζ = 0.

The remaining harmonic polars are cζ − aξ = 0 and aξ − bη = 0. These three
lines pass through X2 and the vertices of ∆, which makes them the medians. �

4 Cubics determined by triangle centers

The triangle centers listed in Kimberling’s Encyclopedia of Triangle Centers
[4, 5] determine cubic curves as loci of points with the equal product of trilinear
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distances. Finding triangle centers located on the same cubic curve is equivalent
to finding triangle centers with the same product of trilinear distances. This
would be another classification of groups of triangle centers.

Surprisingly, among the many known, listed, and in principle arbitrarily num-
bered triangle centers, there is only a small number of triangle centers that
gather on the same cubic.

Until now, we know that only the following groups of triangle centers are located
on the same cubic:

Theorem 5. The triangle centers with the following groups of triangle centers
have the same product of trilinear distances, i.e., they are located on the same
distance product cubic:

(1, 764), (2, 3081, 6545, 8027, 8028, 8029, 8030, 8031, 8032), (4, 5489), (6, 22260),

(8, 21132), (25, 394), (42, 321, 8034), (57, 200), (75, 21143), (76, 23099),

(86, 21131), (99, 14444), (145, 23764), (324, 418), (459, 3079), (649, 693),

(669, 850, 32320), (671, 14443), (756, 8042), (875, 4375, 4444), (903, 14442),

(1022, 3251), (1026, 3675), (1648, 5468), (1649, 5466), (1650, 4240),

(2501, 3265), (3051, 8024), (3227, 14441), (3233, 12079), (3239, 3676),

(3733, 4036), (4024, 7192), (4358, 8661), (4500, 4507), (6384, 8026),

(6544, 6548), (8013, 8025), (8023, 8039).

Proof. In order to verify the results given in the above theorem, just insert the
trilinear representations of the respective centers into to the equations of the
curves.

Right before the deadline for this article, we have tested the incidence of triangle
centers on cubics up to the Kimberling number 12000. It is not at all surprising
that triangle centers with higher Kimberling number occur in the list given in
Theorem 5 as we shall see in the next section.

5 How to find triangle centers on such curves?

If trilinear representations of centers are available, then one can simply check
by inserting coordinates into cubic forms. But that is not an efficient search.
Moreover, it requires the trilinear respresentations of all triangle centers. Many
of the triangle centers in [5] miss a coordinate representation. In some cases
the trilinear representation involves cubic roots, some may even be not even
algebraic. Therefore, in some, cases computer algebra systems fail to evaluate
whether a point is on a certain cubic or not.

It is well-known that the tangent Ti at Xi of the triangle cubic ki (defined by the
center Xi) intersects the cubic in a further triangle center, say R1,i. Thus, in a
first step, we compute the points R1,i. The numerical value of the first trilinear
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Fig. 5. The distance product cubic k1 defined by the incenter X1. The center X764 ∈ k1

is the intersection of k1’s tangent at X1.

coordinate of R1,i is sufficient and can be compared with the values given on the
search page at [5] in order to find out whether R1,i is among the known centers
or not.

For example, the point R1,1 defined by X1 ∈ k1 equals the triangle center X764,
see Fig. 5. Table 1 shows the points R1,i for distance product cubics that contain
at least two centers. The question marks indicate that these points R1,i are
centers which are not yet listed in Kimberlings encyclopedia. In this way, the
triangle centers with the high Kimberling numbers enter the scene. For example:
R1,6 = X22260 and R1,145 = X23764.

Xi R1,i Xi R1,i Xi R1,i

1 764 99 14444 3051, 8024 ?
4 5489 145 23764 3227 14441
6 22260 324, 418 ? 4240 1650
8 21132 459, 3079 4358 8661

25, 294 ? 671 14443 5466 1649

42, 321 8034 756, 8042 ? 5468 1648
57, 200 ? 903 14442 6384, 8026 ?

75 21143 1022 3251 6548 6544
76 23099 1026 3675 8013, 8025 ?
86 21131 1641 14423 8023, 8039 ?

Table 1. The tangent of the triangle center Xi meets the cubic ki at a further triangle
center given in the column R1,i. If this remainder is a known triangle center, then its
number is given.
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Some of the groups of centers with equal distance product mentioned in Theorem
5 do not show up in the Table 1. For example, the centers with indices i ∈
(669, 850, 32320) define three mutually different points R1,i. The latter triple of
points forms a triangle, while the centers with the numbers (875, 4375, 4444) are
three collinear centers on k875 (see Fig. 6). Therefore, we can also search for
triangle centers on distance product cubics once we know a chord of a cubic. If
Li,j is the line spanned by the two triangle centers Xi and Xj, it meets ki in a
further triangle center Si,j , provided that Xj ∈ ki (Xi ∈ ki holds by the very
definition of ki).

X875

X4375

X4444

k875

k875

k875

A B

C

Fig. 6. A triple of three collinear centers on k875: X875, X4375 , and X4444.

In some rare cases, two triangle centers on a particular cubic share the point
R1,i. For example, the tangents to k42 at X42 and at X321 meet in the triangle
center X8034, i.e., R1,42 = R1,321 = X8034, see Fig. 7.

The search of further centers on a cubic ki be means of the computation of R1,i

proved useful only in the very beginning, but failed for higher indices (Kimber-
ling numbers). It is obvious that the computation of tangent intersections can
be iterated which yields a sequence of points R2,i, R3,i, . . . . The algebraic rep-
resentations of the points Rj,i for increasing j are getting more complicated the
larger the value j. We did not find any known triangle center as a point R2,i.

Note that the cubic k2 defined by the centroid X2 contains a group of nine
centers Xi with i ∈ {2, 3081, 6545, 8027, 8028, 8029, 8030, 8031, 8032} (see Fig.
8). In this case, any line joining X2 with any other already detected center on
the cubic meets k2 in X2 two times, for X2 is a double point on k2.
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Fig. 7. The tangents to k42 at X42 and X321 meet in X8034 ∈ k42.

k2 k2

k2

A B

C

X2

X3081

X6545

X8027

X8028 X8029

X8030

X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031X8031

X8032

Fig. 8. The cubic k2 defined by the centroid with nine triangle centers on it: Although
X2 seems not to lie on the curve, it does and equals the isolated node.

6 Future work

It is well-known that elliptic (cubic) curves carry a group structure (cf. [7]). This
allows us to add points: Let U be an arbitrary point on an elliptic curve k. For
any two points P and Q on k, there is a unique third point R ∈ k which is
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collinear with P and Q. We shall briefly write R = P ◦Q := [P,Q] ∩ k \ {P,Q}.
Then, the sum of P and Q equals the point P +Q := U ◦R. (In the case P = Q,
we define R := tP ∩ k \ {P}.) The point U ∈ can be chosen arbitrarily.

A point P ∈ k is said to be of finite order n if

nP := P + . . .+ P
︸ ︷︷ ︸

n

= U

(with n ∈ N \ {0}). In the theory of elliptic curves, points of finite order play an
important role. The points of order 2 and 3 are well-known (cf. [7]) and can be
easily characterized.

It would be interesting to see triangle centers of finite order on triangle cubics.
Until now, on neither of the cubics on Gibert’s page [2] triangle centers of finite
order are known. Only some of the distance product cubics of triangle centers
allow for a computation of multiples of centers within reasonable time. Clearly,
the trilinear (and also the barycentric) representations of multiples of centers
become more and more complicated in each step. Maybe, at least on k1 such a
center of finite order can be found.
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