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Abstract. The nine-point conic n contains the three diagonal points
and the midpoints of the six sides of a complete quadrangle. We show
that for any quadrilateral Q = P1P2P3P4 and an arbitrarily chosen point
P there exists a conic l passing through ten points: P , the three diag-
onal points of Q, and the six inverses of the poles of the lines [Pi, Pj ]
with respect to any circumconic k of Q and the inversion center P . The
circumconic k can be any conic from the pencil circumscribed to Q. The
nine-point conic shows up as a special case of the conic l. The projec-
tive nature of the definition of the conic l has implications on a certain
normal problem of asymptotic quadrilaterals in the hyperbolic plane.

Keywords: Nine-point conic · quadrangle · projective inversion · pencil
of conics · hyperbolic plane · asymptotic quadrangle

1 Introduction

Let four points P1, P2, P3, P4 in the Euclidean plane form a quadrilateral Q,
i.e., no three points are collinear. Assume further that D1 = [P1, P2] ∩ [P3, P4],
D2 = [P1, P3] ∩ [P2, P4], D3 = [P1, P4] ∩ [P2, P3] are the diagonal points and
M12, M13, . . . , M34 are midpoints of the edges P1P2, P1P3, . . . , P3P4. Now, it
is well-known that the diagonal points and the six midpoints of Q’s edges lie
on a single conic n which is frequently referred to as the nine-point conic. This
result is usually ascribed to the American mathematician M. Bôcher (cf. [3]).
However, there is evidence that Bôcher later recognized that W.K. Clifford

and J.J. Sylvester may have been aware of the existence of such a conic a
little bit earlier (in 1864).

Whitworth’s monograph [15] on trilinear coordinates mentions the nine-
point conic in two exercises without explicitly calling it a nine-point conic. Per-
haps, in [2], this particular conic was called nine-point conic for the first time.
Later on, various attempts by means of analytic and synthetic geometry towards
the nine-point conic were made in [1, 4, 9, 12, 13] and some spatial analog was
described in [7]. It is clear that the midpoints of the quadrilateral’s sides are the
harmonic conjugates of their ideal points with respect to the pair of incident
vertices (as illustrated in Fig. 1). Therefore, the nine-point conic can even be de-
fined in the more general setting of projective geometry as this turned out to be
the case for many geometric objects associated to triangles (cf. [10]). Clearly, real
projective geometry is not the only framework with a nine-point conic within
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nine-point conics can be studied. The nine-point conic is well-defined even in
Rational Trigonometry, see [8].
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Fig. 1. The nine-point conic n associated with a complete quadrangle Q = P1P2P3P4

and a straight line g contains the harmonic conjugates H12, H13, . . . , H34 of the six
points Q′

ij = [Pi, Pj ]∩g, the 3 diagonal points D1, D2, D3, and (if they exist) the fixed
points F1, F2 of the Desargues involution induced by Q on g.

In Section 2, we shall present an apparently new result on a complete quad-
rangle whose vertices lie on a conic. Unfortunately, this result can only be shown
by means of computation.

Indeed, any quadrilateral Q lies on some conic k and any quadrilateral deter-
mines a pencil of circumconics. We will see that the pencil of conics on Q defines
a pencil of ten-point conics. In comparison to the definition and construction
of the nine-point conic, the arbitrarily chosen line g is replaced by the point P
and the conic k. Nevertheless, a certain line instead of g will show up. Section
3 briefly describes the ten-point conic of cyclic quadrilaterals. It will turn out
that the nine-point conic is in fact a special case of a ten-point conic, at least
for cyclic quadrilaterals with P being the center of the circumcircle. Section 4 is
devoted to the pencil of conics defined by the quadrilateral and the associated
pencil of ten-point conics. In Section 5, we leave the purely projective setting
and even the Euclidean plane and show that the existence of the ten-point conic
has implications on totally asymptotic quadrangles in the hyperbolic plane.
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2 Ten points on one conic

Let k be a conic in the projective plane P
2 and assume that P1, . . . , P4 are four

(pairwise different) points on k. (It is thereby guaranteed that these points form
a quadrilateral, i.e., no three points are collinear.) Further, let P be an arbitrarily
chosen point in P

2 that does not lie on the tangents Ti of k at Pi. The four given
points determine six chords pij = [Pi, Pj ] (i 6= j and i, j ∈ {1, 2, 3, 4}) of k with
their respective poles Pij with regard to k. The projections of the poles Pij onto
the chords pij shall be denoted by Qij (cf. Fig. 2). Now, we have the rather
surprising result:

Theorem 1. The six points Qij, the three diagonal points of Q, and the point
P lie on a single conic l.

This result seems to be unknown and does not appear in the classical litera-
ture, neither does it in the newer.

Proof. Unfortunately, we can only give an analytic proof. For that purpose, we
impose a projective frame (cf. [6]) such that the given points have the homoge-
neous coordinates

P1 = 1 : 0 : 0, P2 = 0 : 0 : 1, P3 = 1 : 1 : 1, P4 = 1 : t : t2, (1)

where t ∈ R \ {0, 1} (hence, P4 6= P1, P2, P3) and

P = p0 : p1 : p2.

In this case, the conic k circumscribed to Pi is the standard conic

k : x0x2 − x2
1 = 0. (2)

(Any other four points can be mapped to these and any arbitrary point will be
mapped to P , see [6]).

There are some natural restrictions on the position of P . They can be written
in algebraic form as follows.
(i) P may not lie on any of the six lines pij :

p1(p1 − p2)(p2 − tp1)(p1 − p0)(p1 − tp0)(p0t− (1 + t)p1 + p2) 6= 0.

(ii) P may not lie on any of the four tangents of k at Pi:

p0p2(p0 − 2p1 + p2)(t
2p0 − 2tp1 + p2) 6= 0.

(iii) P may not lie on the sides of the diagonal triangle of Q:

(tp0 − 2p1 + p2)(tp0 − 2tp1 + p2)(tp0 − p2) 6= 0.

Therefore, none of the latter 13 factors can be zero, and we are allowed to cancel
any of them whenever they occur.
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Any five of the six points Qij = pij ∩ [P, Pij ] determine a unique conic l

whose equation can be derived from a 6 × 6 determinant, see [6, p. 241, eq.
(6.13)]. Independent of the choice of the five points Pij , the equation of l reads

l : tp2x
2
0 + 2(tp1 − tp2 − p2)x0x1 + (p2 − tp0)x0x2+

+2(p2 − tp0)x
2
1 + 2(tp0 + p0 − p1)x1x2 − p0x

2
2 = 0.

(3)

The coordinates of any remaining sixth point annihilate (3). This holds also true
for the three diagonal points and the point P itself. �

Fig. 2 shows the ten-point conic for a cyclic quadrangle. The cyclicity of
the points Pi is not a projective property. However, the contents of Thm. 1 are
invariant under arbitrary projective transformations, in particular, that trans-
formation that maps the standard conic (2) to a circle k.
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Fig. 2. The ten-point conic l of a cyclic quadrilateral P1P2P3P4.

Now, we can close the gap between the nine-point conic and the ten-point
conic:

Theorem 2. The ten-point conic l described in Thm. 1 is also the nine-point
conic of the quadrilateral Q with respect to the polar line p of P with respect to
the conic k.

Proof. The arbitrarily chosen point P has a polar line p with regard to k. The
points Qij on the polars pij are the harmonic conjugates of Q′

ij = p ∩ [Pi, Pj ]
with respect to the pairs [Pi, Pj ], cf. [6, Ch. 7.1]. �



Beyond the Nine-point Conic 5

Thm. 2 shows that the results in [4] can be seen from a superordinate stand-
point.

As an immediate consequence of Thm. 2, we can formulate:

Theorem 3. The nine-point conic n of a quadrilateral Q on a conic k equals
the ten-point conic l if P is chosen as the center of k.

Proof. If P is the center of k, then its polar line with regard to k is the ideal
line (line at infinity). The harmonic conjugates of the ideal point of the each of
the six lines pij with respect to the pair (Pi, Pj) (with i 6= j) are the midpoints
of the segments PiPj . �

Moreover, the points Qij are the images of the poles Pij under the projective
inversion ι : P

2⋆ → P
2⋆ (acting on the projective plane P2 sliced along a triangle)

in k with center P (cf. [6, p. 343]).

3 Cyclic quadrilaterals

We find a very special situation if the initial conic k is chosen as the Euclidean
unit circle and P as its center. The polar line of P (the center of k) is the ideal
line ω (line at infinity) of the projectively closed Euclidean plane. Thus, the
points Q′

ij are the ideal points of the lines pij and their harmonic conjugates
Qij (inverses of the poles Pij) are the midpoints of the segments PiPj . Then,
the projective inversion becomes the “ordinary” inversion in a Euclidean circle.
In terms of Cartesian coordinates, the unit circle k has the equation

x2 + y2 = 1 (4)

which can be written in terms of complex coordinates as

zz = 1,

where z = x+ iy and z = x− iy is the complex conjugate of z. With the help of
complex coordinates, the inversion is described by ι : z 7→ 1

z
.

If the four given points P1, . . . , P4 are now described by four complex numbers
a, b, c, d of norm 1, then the equation of the ten-point conic l can be given in
the form

l : 2z2 − 2abcd z2 − (a+ b+ c+ d)z + (abc+ abd+ acd+ bcd)z = 0. (5)

The points Qij are then given by 1
2 (a + b), . . . , 1

2 (c + d) and it is a matter of
simple computations to show that the center of l equals

1

4
(a+ b+ c+ d),

i.e., that is the centroid of the quadrilateral Q = abcd. In this very special case,
the conic l coincides with the ordinary nine-point conic. In any case, l from (5)
is an equilateral hyperbola since its ideal points are

F1,2 = 0 : abcd− 1 : i(1±
√
abcd)2
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which are conjugate in the elliptic involution on the ideal line (that joins ideal
points of pairs of orthogonal directions).

We can summarize (cf. Thm. 3):

Theorem 4. For a cyclic quadrilateral with P being the center of the circum-
circle, the ten-point l conic equals the ordinary nine-point conic n.

The conic l is not a notion of inversive geometry since its inverse in the circle
k equals the cubic curve

ι(l) : 2z2 − 2abcd z2 − (a+ b+ c+ d)z2z + (abc+ abd+ acd+ bcd)zz2 = 0

which is a strophoid (circular cubic with orthogonal tangents at the double point,
cf. [14]). Its node lies in the center of k, i.e., the center of inversion (see Fig. 3).
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Fig. 3. The ten-point conic l of a cyclic quadrilateral P1P2P3P4 is an equilateral hy-
perbola. Its inverse in k (center of inversion = center of k) is a strophoid s.

4 A property of pencils

The four points we have chosen prior to Thm. 1 can be considered as the base
points of a pencil of conics of the first kind, i.e., the one-parameter family of all
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conics passing through these four points (cf. [6]). The constructions done above
are invariant under projective transformations: Tangents, polars, joins of points,
and intersections of lines are not altered under collineations and correlations.
Consequently, we can state the following:

Theorem 5. Let P1, . . . , P4 form a quadrilateral in a projective plane, let c be
any conic from the pencil of the first kind spanned by the quadrilateral, and let
further P be a point not contained in any line [Pi, Pj ] (i 6= j, i, j ∈ {1, 2, 3, 4}).
Then, the projections of the six poles Pij of [Pi, Pj ] with regard to c from P onto
[Pi, Pj ] lie on a single conic n which also houses P and the diagonal points of
the quadrilateral.

If we use the assumptions made on the coordinatization in the proof of Thm.
1, we can span the pencil of conics through P1, . . . , P4 by k and a singular conic
in the pencil, e.g., by the union of the lines [P1, P3] and [P2, P4]. This yields the
equations of the conics as

B(λ, µ) : λ(x2 − x1)(x1 − tx0
︸ ︷︷ ︸

[P1,P3]∪[P2,P4]

) + µ(x0x2 − x2
1

︸ ︷︷ ︸

k

) = 0,

where λ : µ 6= 0 : 0 is a homogeneous parameter. Proceeding in the same way as
done in the proof of Thm. 1, we arrive at the equations of the ten-point conics
associated with the conics of the pencil

l(λ, µ) : λ
(
tx0 − 2tx1 + x2)(t(p1 − p2)x0 + (p2 − tp0)x1 + (tp0 − p1)x2

)
+

µ
(
tp2x

2
0 + 2(tp1 − tp2 − p2)x0x1 + (p2 − tp0)x0x2 + 2(p2 − tp0)x

2
1+

+ 2(tp0 + p0 − p1)x1x2 − p0x
2
2

)
= 0

Obviously, the conics l(λ, µ) form a pencil. Since the determinant of the coeffi-
cient matrix equals (up to non-vanishing factors)

4µ(tλ− µ)(λ(t − 1)− µ),

the singular conics in this pencil correspond to

µ1 = 0, µ2 = λt, µ3 = λ(t− 1).

These are the pairs of lines

s1,2 : (tx0 − 2tx1 + x2)(t(p1 − p2)x0 + (p2 − tp0)x1 + (tp0 − p1) = 0,
s3,4 : (tx0 − x2)(tx0p1 − tx1p0 − x1p2 + x2p1) = 0,
s5,6 : (tx0 − 2x1 + x2)(tx0p1 − tx1p0 − x0p2 + x1p2 + x2p0 − x2p1) = 0

forming a complete quadrilateral with the diagonal points

D1=s1 ∩ s2=2t2p0−t(p0+2p1)+p2 : t
2p0+t(p2−2p1) : t

2(p0−2p1+2p2)−tp2,

D2=s3 ∩ s4= tp0+p2 : 2tp1 : t(tp0+p2),
D3=s5 ∩ s6= tp0−2p0+2p1−p2 : t(2p1−p0)− p2 : −t2p0 + t(2p1+p2)−2p2
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k

P1=
=1:0:0

P2=0:0:1
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1:t:t2=P4

P = V4

V1=1:1:t

V2=1:0:-t
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0:1:0

Fig. 4. The standard frame attached to k and the base points of the pencil of ten-point
conics as described in Thm. 6

and the vertices
V1 = s1 ∩ s3 ∩ s6 = 1 : 1 : t,
V2 = s1 ∩ s4 ∩ s5 = 1 : 0 : −t,

V3 = s2 ∩ s3 ∩ s5 = 1 : t : t,
V4 = s2 ∩ s4 ∩ s6 = p0 : p1 : p2.

We can summarize this in:

Theorem 6. Let P1, . . . , P4 form a quadrilateral Q in a projective plane with
the diagonal points D1, D2, D3. The ten-point conics associated with the pencil
of conics (of the first kind) defined by Q form themselves a pencil of conics (of
the first kind) with the pivot P and the diagonal points D1, D2, D3 of Q for its
base points (provided that P does not lie on the sides of the diagonal triangle).

Fig. 4 shows the construction of the base points of the associated pencil of
ten-point conics from the base points of the initial pencil of conics on Q. In Fig.
5, besides the quadrilateralQ and a conic k on Q, the thus determined ten-point
conic l and its projective inverse s∩p in k (with center of inversion P ) is shown.
The curve s is a cubic with its node at P and the line p is the polar of P with
respect to k.

5 Implications on non-Euclidean quadrilaterals

The projective model of the hyperbolic plane H
2 is the interior of the absolute

conic Ω. The points in the interior of Ω are the points of the hyperbolic plane,
the hyperbolic lines are the chords of Ω. (A point is an interior point of a conic
if it does not send (real) tangents to the conic.) The points on Ω are called
absolute or improper points of H2.

For the sake of simplicity, we choose the Euclidean unit circle (4) as the abso-
lute conic Ω which delivers the well-known Cayley-Klein model of the hyperbolic
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Fig. 5. The cubic curve s is a part of the inverse of l in k (with center P ) and can be
viewed as a projective version of the strophoid mentioned after Thm. 4.

plane (cf. [5]). A quadrilateral in H
2 is called asymptotic or ideal if all its vertices

lie on Ω.

Now, we can use Thm. 1 to show:

Theorem 7. Let Q = P1P2P3P4 be an asymptotic quadrilateral in the hyper-
bolic plane and let P be an arbitrary point in H

2. Then, the six pedal points of
the hyperbolic normals from P to the six sides of the complete quadrilateral on Q
are located on a single conic l independent of the choice of P . P is also located
on l.

Proof. The hyperbolic normal n12 through a point P of a hyperbolic line [P1, P2]
passes through the absolute pole PAB of [P1, P2], i.e., the pole of [P1, P2] with
regard to Ω. Since all vertices of Q are located on a conic (here it is Ω), the
hyperbolic pedals on the lines of the complete quadrangle are the projections of
the respective absolute poles onto these lines. Therefore, the hyperbolic pedal
points meet the requirements of Thm. 1 and line up on a single conic. �

The behaviour of the locus C of all points P ∈ H
2 with conconic pedal conics

shows a completely different behaviour than that in the Euclidean plane as shown
in [11]. However, in the Euclidean plane this locus is an algebraic curve of degree
7 (in general) or 6 (in special cases) and it can be shown that the degree does
not drop below 6 (cf. [11]). In the hyperbolic plane, C is of degree 12 and with
each vertex of the initial quadrilateral that happens to lie on Ω, the degree drops
about 3. Hence, the degree of C assigned to a completely asymptotic quadrilateral
is of degree 0, i.e., C equals the entire hyperbolic plane.

Fig. 6 illustrates the contents of Thm. 7: In fact, the point P can be chosen
freely and the six hyperbolic pedal points on the sides of a completely asymptotic
quadrilateral are conconic anyhow. The pedal conic l also contains P and the
only hyperbolic diagonal point D. Therefore, l is an eight-point conic.
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Ω

P1

P2

P3
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P
l

l

D2

Fig. 6. The six hyperbolic pedal points of P on the sides of a completely asymptotic
quadrilateral lie on a single conic l independent of the choice of P . Further, the conic
l passes through P and the only (hyperbolic) diagonal point D2.

6 Final remarks

In Section 4, we have discovered the pencil of ten-point conics associated to
a pencil of conics. All the pencils we have met so far are pencils of the first
kind, i.e., the one-parameter family of conics through four points (forming a
quadrilateral). It would be interesting to see whether we can assign pencils of
ten-point conics to pencils of the other (four projectively distinguished) types of
pencils. The base quadrilateral will then have 3 or 2 vertices, or even 1 vertex.
Maybe it is possible to study these cases by means of limit procedures.
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