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Abstract. We study the two-parameter manifold of parabolas circum-
scribed to triangles in a Poncelet porism between two circles (Chapple’s
porism). It turns out that the focal points of the parabolas in a cer-
tain one-parameter subfamily trace a straight line. The vertices of these
parabolas move on rational cubic curves whose acnodes trace an ellipse
centered at the poristic stationary triangle center which is the midpoint of
the common incenter and the common circumcenter. The axes of the cir-
cumparabolas envelop a Steiner hypocycloid over the course of a porism.
Varying the pivot point of the circumparabola, the one-parameter fam-
ily of Steiner cycloids envelops two ellipses, one with the fixed common
incenter and circumcenter as foci, the other one carrying the cusps of all
cycloids.
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1 Introduction

Overview of known results. The one-parameter family of triangles inter-
scribed between a common circumcircle u and a common incircle i is known as
Chapple’s porism, see [5], referred below as the “poristic family”. Within the
past ten years, porisms in more general forms (including Chapple’s) have been
studied focused on various aspects: (i) poristic traces of triangle centers in [8–11,
21, 22], (ii) derivation of invariants by means of numerical experiments in [15, 17,
23], (iii) ellipticity of poristic traces of triangle centers and bicentric pairs [16],
(iv) historical point of view [4]. Experiments in [24] in particular have motivated
a detailed study of circumparabolas of the poristic family.

The results presented here try to verify the numerical and experimental re-
sults by means of algebraic techniques. We shall keep technical details aside and
try to formulate proofs short and traceable. Therefore, we will sometimes not
lay down all equations in detail, especially if they are of enormous length and
high complexity.

Techniques. Since we are dealing with the contents of Euclidean geometry, we
use Cartesian coordinates (x, y) for points. Whenever favorable, we will switch to
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homogeneous coordinates x0 : x1 : x2 by setting x = x1x
−1
0 and y = x2x

−1
0 with

x0 6= 0. Thereby, we will perform the projective closure of the Euclidean plane
(with the ideal line ω : x0 = 0) and we shall also allow homogeneous coordinates
to be complex. This allows us to describe a pair of complex conjugate points

I = 0 : 1 : i, J = I = 0 : 1 : −i

on the ideal line ω, called the absolute points of Euclidean geometry (see [14]).
Each Euclidean circle contains both I and J , and each conic through I and J is
a Euclidean circle. Further, a line in the projectively-closed complex extension
of the Euclidean plane is called isotropic if it contains either I or J .

We choose a Cartesian coordinate frame such that the equations of the cir-
cumcircle u and the incircle i read

u : (x − d)2 + y2 = R2, i : x2 + y2 = r2. (1)

It is natural to parametrize u by means of trigonometric functions as

u = (R cos τ + d,R sin τ), with τ ∈ R. (2)

In what follows, rational parametrizations of point orbits are essential (if avail-
able). Whenever computations are carried out by a computer algebra system
(CAS), rational parametrizations are preferred. Therefore, trigonometric func-
tions will be replaced with their rational equivalents

cos τ =
1− T 2

1 + T 2
, sin τ =

2T

1 + T 2
. (3)

Present Contributions. In Section 2, we first parametrize the poristic family.
Then, we determine the ideal points of the circumparabolas with the help of the
isogonal conjugation. Subsequently, we derive the equations of the circumpara-
bolas of all triangles in the poristic family. Section 3 is devoted to the traces of
the parabolas’ foci, the envelopes of their axes which turn out to be Steiner’s
hypocycloids. The latter envelop an ellipse, while the cusps trace another ellipse.
Finally, we look at the traces of the vertices and other points.

2 Parametrization of the porism and circumparabolas

Vertices of the triangles. We assume that the circumcircle u and the incircle
i of a poristic triangle family are given by their equations (1), where the inradius
r, the circumradius R, and the central distance d (distance between the incenter
X1 and the circumcenter X3) are related via the Euler triangle formula

d2 = R2 − 2Rr (4)

which guarantees a porism (cf. [5, 18, 19]). Here and thereafter, triangle centers
are labeled according to C. Kimberling’s encyclopedia, cf. [19, 20]. Clearly,



Circumparabolas in Chapple’s Porism 3

r, R ∈ R
+, and no restriction is imposed if we assume d ∈ R

+ (the coordinate
frame can always be chosen such that d > 0).

First, we parametrize the one-parameter family of triangles ∆ = P1P2P3

interscribed between u and i, i.e., the poristic family. Let the triangle vertex
P1 be given by (2). The points P2 and P3 are found as the intersections of the
tangents from P1 to the incircle i with the circumcircle. This yields

P2,3 =
σδ

2R(2dR cos τ +R2 + d2)2
·

·
(

±W(R2 − d2) sin τ − 4dR3 cos2 τ − (R4 + 6d2R2 + d4) cos τ − 4d3R,

sin τ(d4 −R4 − 4d2R2 − 4dR3 cos τ)∓W((R2 + d2) cos τ + 2dR)
)

(5)

where W :=
√
8dR3 cos τ + 3R4 + 6R2d2 − d4 and

σ := R+ d, δ = R− d.

Ideal points of the circumparabolas, isogonal conjugation. Each triangle
∆ = P1P2P3 in the Euclidean plane can serve as the fundamental triangle of a
special quadratic Cremona transformation, called the isogonal transformation,
cf. [14, 19]. Any point Q (not on the sidelines of ∆) is mapped to its isogonal
conjugate ι(Q) by intersecting the reflections of the Cevians [Q,Pi] in ∆’s (inte-
rior) angle bisectors [X1, Pi]. It is easily shown that if Q 6= Pi is chosen on ∆’s
circumcircle u, ι(Q) is an ideal point (point at infinity). Further, ι is quadratic,
i.e., it maps lines (not incident with any Pi) to conics passing through all fun-
damental points Pi. Therefore, a tangent of the circumcircle is mapped to a
parabola circumscribed to the fundamental triangle. Some circumparabolas of a
certain triangle in the poristic family are shown in Fig. 1.

Equations of the circumparabolas related to the poristic family. Having
defined the isogonal transformation, we can now determine the equations of the
one-parameter family of circumparabolas for each triangle in the poristic family.
In fact, we are about to determine a two-parameter family of parabolas: The
first parameter T determines one particular triangle in the poristic family. The
second parameter U determines one particular parabola circumscribed to ∆.

We may assume that the tangents to the circumcircle touch the circumcircle
at a point Q ∈ u which can be given by means of rational coordinate functions
as Q(U) = u(U) (cf. (2)) with some real parameter U .

Since X1 = (0, 0) (center of i from (1)), we find the directions of the axes
of all circumparabolas by reflecting [P1, Q] in [P1, X1]. This yields the direction
vector a of the circumparabolas, or if we use homogeneous coordinates, the ideal
points A(U, T ) = ι(Q) of all circumparabolas as

A(U, T ) = 0 : T 3δ2 − δ(δ + 2σ)T 2U − σ(2δ + σ)T + σ2U :

: −T 3Uδ2 − δ(δ + 2σ)T 2 + σ(2δ + σ)TU + σ2.
(6)
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Fig. 1. Circumparabolas pi of a triangle P1P2P3 as isogonal images of the tangents ti.

The points P1, P2, P3, and A determine a unique parabola since the tan-
gent at A is known: It is the line at infinity. A homogeneous equation of the
circumparabolas will have the form

p : a00x
2
0 + 2a01x0x1 + 2a02x0x2 + a11 + 2a12x1x2 + a22x

2
2 = 0 (7)

with coefficients aij ∈ R[δ, σ, U, T ]. In order to make p a parabola, the coefficients
aij have to satisfy

a11a22 − a212 = 0, (8)

since this is the condition on p to touch the ideal line ω : x0 = 0.
Inserting the rational equivalents of P1, P2 and P3 from (5), and (6) into (7)

and using (8), we find

a00 : a01 : a02 : a11 : a12 : a22 = δσ(σ + δU2)(1 + T 2)(δ2T 2 + σ2)2 :

: (σ2 − δ2U2)(1 + T 2)(δ2T 2 + σ2)2 : 2δσU(1 + T 2)(δ2T 2 + σ2)2 :

: −(δ + σ)(δ2T 3U + δ(δ + 2σ)T 2 − σ(2δ + σ)TU − σ2)2 :

: −2(δ + σ)(δ2T 3U + δ(δ + 2σ)T 2 − σ(2δ + σ)TU − σ2)·
· (δ2T 3 − δ(δ + 2σ)T 2U − σ(2δ + σ)T + σ2U)

: −(δ + σ)(δ2T 3 − δ(δ + 2σ)T 2U − σ(2δ + σ)T + σ2U)2.

(9)

Note that the one-parameter family of circumparabolas of any triangle ∆ (in
the poristic family) is itself a conic in the Veronese model V 2

2 ∈ P
5: Inserting
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the homogeneous coordinates of the three vertices P1, P2, P3 for x0, x1, x2 in
(7) yields three hyperplanes in P

5 which are to be intersected with the quadratic
cone determined by (8).

3 Properties of the circumparabolas

Focal traces. According to von Staudt, a point F is a focus of a planar
algebraic curve if the tangents from F to c are a pair of complex conjugate
isotropic lines, cf. [1, 6, 14].

Now, it is rather elementary to determine the tangents tI and tJ from I and
J to p that differ from the line at infinity. Then, the one and only (real) focus
of p is the point F = tI ∩ tJ with homogeneous coordinates

f0 : f1 : f2 = 4(δ + σ)(U−T )(1 + U2)·

·
(

δ3(δ + 2σ)T 2U2 − δ2σ2T 2 + 2δσ(δ + σ)2TU − δ2σ2U2 + (2δ + σ)σ3
)

:

: δ4(δ2−4σ2)T 3U4−2δ3σ(2δ2+7δσ+4σ2)T 3U2−δ2σ2(4δ2+4δσ−σ2)T 3−
− δ3(δ+2σ)(δ2−4δσ−4σ2)T 2U5 + 2δ2σ(δ+2σ)(4δ2+7δσ+2σ2)T 2U3+

+ δσ2(δ+2σ)(4δ2−σ2)T 2U + δ2σ(σ+2δ)(4σ2−δ2)TU4+

+ 2δσ2(σ+2δ)(2δ2+7δσ+4σ2)TU2 + σ3(σ+2δ)(4δ2+4δσ−σ2)T+

+ δ2σ2(δ2−4δσ−4σ2)U5 − 2δσ3(4δ2+7δσ+2σ2)U3 − σ4(4δ2−σ2)U :

: δ4(δ + 2σ)2T 3U5 + 2δ3σ2(δ + 2σ)T 3U3 + δ2σ2(4δ2 + 8δσ + σ2)T 3U+

+ δ3(δ + 2σ)(δ2 + 8δσ + 4σ2)T 2U4 + 2δ3σ(δ + 2σ)(σ + 2δ)T 2U2+

+ δσ2(δ+2σ)(σ+2δ)2T 2 − δ2σ(σ+2δ)(δ+2σ)2TU5−
− 2δσ3(δ+2σ)(σ+2δ)TU3 − σ3(σ+2δ)(4δ2+8δσ+σ2)TU−
− δ2σ2(δ2 + 8δσ + 4σ2)U4 − 2δ2σ3(σ + 2δ)U2 − σ4(σ + 2δ)2.

(10)

where U is as defined in Eq. (6). Now we are able to show:

Theorem 1. Over Chapple’s porism, and a fixed U , the foci of circumparabolas
of triangles in the poristic family trace a straight line given by

F : 4(δ + σ)(1 + U2)(δ2U2 − σ2)x− 8δσ(δ + σ)U(1 + U2)y+

+δ2(δ2−4δσ − 4σ2)U4−2δσ(2δ2+3δσ+2σ2)U2−σ2(4δ2+4δσ−σ2)=0.
(11)

Proof. With (10), we have a parametrization of the trace of the foci of the
circumparabolas of all triangles in the poristic family. If we eliminate T from
(10), we obtain an equation of the trace of the focus of the circumparabolas.
This yields (11) which is the equation of a straight line. �

Lines F from (11) envelop a sextic curve. This can be easily shown by elim-
inating parameter U from F and its derivative d

dUF .
The parametrization of the foci allows us to verify a result established in [13]:
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Fig. 2. Over poristic triangles (variable T ), if U (and thus, Q) is fixed, the focus of
circumparabolas (for fixed U) move along a straight line while the axes pass through
a fixed point F .

Theorem 2. The locus of the focus of all circumparabolas of three points is a
circular quintic.

Proof. In order to find the equation of the locus F of the foci of all circumpa-
rabolas, we have to eliminate U from the affine parametrization (f1f

−1
0 , f2f

−1
0 ).

(without loss of generality, the computation is simplified if we fix T , or even set
it equal to 0). �

The rather long equation for F can be found (for a special type of coordinati-
zation) in [13]. Fig. 3 shows the focus curve F for one particular triangle. Indeed,
this result is not related to porisms. However, each triangle in the poristic family
defines its own quintic.

Parabolas’ axes. With the direction (6) of the axis and the focus (10), the
axes a of all parabolas are well-determined, yielding

a : 2(δ+σ)(1+U2)
(

(δ2T 3U+δ(δ+2σ)T 2−σ(2δ+σ)TU−σ2)x+

+ (δ2T 3−δ(δ+2σ)T 2U−σ(2δ+σ)T+Uσ2)y
)

+

+ δ4T 3U3−δ2σ(2δ+σ)T 3U+δ2(δ+2σ)2T 2U2−δσ2(δ+2σ)T 2+

− δ2σ(2δ+σ)TU3+σ2(2δ+σ)2TU−(δ2σ2+2δσ3)U2+σ4 = 0.

(12)

This allows us to compute the set of vertices of circumparabolas over triangles in
the poristic family. Thereby, we can verify another well-known result (see [12]):

Theorem 3. The locus of all vertices of circumparabolas of a triangle is a cir-
cular septic curve.
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Fig. 3. The vertices of all circumparabolas lie on a septic curve V (red); while their
foci lie on a quintic curve F (violet).

The envelope of axes over the poristic family. The equations of the axes
(12) depend on two parameters: (i) The parameter T describing P1 ∈ u and the
other two vertices of poristic triangles. (ii) The parameter U determining Q ∈ u,
and therefore, a parametrization of the family of circumparabolas. This allows
us to consider the axes (12) as two independent one-parameter families of lines,
each of which envelops a certain curve.

Referring to Fig. 2, we first show that:

Theorem 4. For a fixed pivot Q ∈ u, i.e., a fixed ideal point ι(Q), the axes of
circumparabolas of triangles in the poristic family pass through a fixed point F .
The set of all points F (while Q traverses u) is an ellipse ei with the semi-axes

ai =
δ2 + σ2

4(δ + σ)
=

R2 + d2

4R
, bi =

δσ

2(δ + σ)
=

R2 − d2

4R
(13)

centered at X1358 =
(

d
2 , 0

)

.
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Proof. Eliminating the poristic parameter T from the two equations a (given in
(12)) and aT := d

dT a yields the poristic envelope. Over the real numbers, the
resultant of a and aT factors into 3 polynomials, one of degree 1

L : 2(δ + σ)U(1 + U2)
(

Ux+ y
)

+ U(U2δ2 − 2δσ − σ2) = 0 (14)

and two of degree 2. The two quadratic polynomials describe two pairs of complex
conjugate lines (one of which is an isotropic pair) emanating from the real point

F =
1

2(δ + σ)(1 + U2)

(

σ2 − U2δ2

2δσU

)

. (15)

This point is incident with the line L, and over the course of all pivot points Q
traces the circumcircle u, while the point F itself moves on the ellipse

ei : 4δ2σ2(δ+σ)2x2+2δ2σ2(δ−σ)(δ+σ)2x+(δ+σ)2(δ2+σ2)2y2−δ4σ4 = 0 (16)

which has semi-axes (13) and is centered at X1358. �

The ellipse ei has for real foci the incenter X1 = (0, 0) and circumcenter
X3 = (d, 0) common to all triangles in the porism. It is therefore centered at
X1385. (For details on relations between said triangle centers see [20].) It can be
also be shown:

Theorem 5. The axes of all circumparabolas of a fixed triangle P1P2P3 envelop
a Steiner cycloid.

Proof. Computing the envelope of the axes for a fixed triangle can be done by
eliminating parameter T from a (given in (12)) and aU = d

dU a. This results in
a quartic factor Q and a linear factor M. Q = 0 describes a Steiner cycloid
(rational, bicyclic, quartic curve with three cusps of the first kind, cf. [2, 3, 6, 7,
25]) (it is rather technical to show that Q = 0 indeed describes a one-parameter
family of Steiner cycloids). The linear factor

M : 2T (δ + σ)(δ2T 2 − 2δσ − σ2)x− 2(δ + σ)(δ(δ + 2σ)T 2 − σ2)y+

+δ2T (δ2T 2 − 2δσ − σ2) = 0

is the equation of a line which is tangent to the cycloid Q = 0 for all T ∈ R. �

Fig. 4 shows the Steiner cycloid enveloped by the axes of all circumparabolas
of a certain triangle in the poristic family.

Envelopes of Steiner cycloids and a further porism.

Theorem 6. The envelope of all Steiner cycloids over the poristic family con-
sists of two ellipses ei, ec: ei (given in (16)) is internally tangent to all cycloids,
while ec carries the cusps of the cycloids. Like ei, ec is also centered at X1385

and has the following semi-axes:

ac =
δ2 + 4δσ + σ2

4(δ + σ)
=

3R2 − d2

4R
, bc =

δ2 + δσ + σ2

2(δ + σ)
=

3R2 + d2

4R
. (17)
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Fig. 4. While the circumparabola p traverses the family of all circumparabolas of a
fixed triangle in the poristic family, its axes envelop a Steiner cycloid s.

Proof. The quartic polynomialQ given in the proof of Theorem 5 depends on the
porism parameter T . Therefore, it describes a one-parameter family of Steiner
cycloids whose envelope is given by Q = 0 and d

dT Q = 0. Eliminating T from the
latter two equations, we obtain an implicit equation for the envelope factoring
into two ellipses with the semi-axes (13) and (17). �

Fig. 5 shows some Steiner cycloids together with the trace ec of the cusps
which is obviously traced thrice in the course of one poristic round. Fig. 5 also
shows the ellipse ei enveloped and touched by the Steiner cycloids. Since the
cycloids’ cusps on the outer ellipse ec are singular points (of multiplicity two)
considered on the cycloids, they contribute to the envelope of the cycloids.

Theorem 6 does not only describe the envelope of the Steiner cycloids, but
it also allows us to formulate another kind of porism:

Consider two nested and concentric ellipses ei and ec such that the major
axis of ei lies on the minor axis of ec. If it is possible to draw a Steiner cycloid
with cusps on ec such that the cycloid touches the inner ellipse ei three times for
one particular starting point C (cusp) on ec, then the same is possible for any
choice of C ∈ ec.

Of course, ellipses ec and ei must satisfy certain conditions (maybe not as
simple as those in [14, Thm. 9.5.4, p. 432]) in order to guarantee the existence
of such a porism to exist.
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ei

ec

i

u

X1 X3

Fig. 5. Over poristic triangles, the Steiner cycloids as envelopes of the axes of the
circumparabolas envelop two ellipses ei and ec. The triangles’ incenter X1 and circum-
center are the real foci of ei.

C
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Fig. 6. The poristic trace of the vertices of the circumparabolas is a rational cubic C.

Vertices and other points. With the equations of the parabolas (7), (9),
and the equations of their axes (12), we can find the vertices. The intersection
of a parabola with its axis yields only one proper point, the vertex V . The
homogeneous coordinates v0 : v1 : v2 of V are bi-variate polynomials vi(T, U) of
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bi-degree (9, 7) and reads:

v0 : v1 : v2 = 4(δ+σ)(T−U)(1+T 2)(1+U2)2(δ2T 2+σ2)2·
·
(

δ3(δ + 2σ)T 2U2 − δ2σ2T 2 + 2δσ(δ + σ)2TU − δ2σ2U2 + σ3(2δ + σ)
)

:

: δ8(4σ2 − δ2)T 9U6 + . . .+ δ7(δ + 2σ)(δ2 − 4δσ − 4σ2)U7T 8 + . . . :
: −δ8(δ + 2σ)2T 9U7 + . . .+ δ7(δ + 2σ)(δ2 − 4δσ − 4σ2)T 8U6 + . . . .

(18)

The parametrization (18) allows us to verify the following:

Theorem 7. Over poristic triangles ∆ = P1P2P3, the vertices of all circumpa-
rabolas move on a cubic curve.

Proof. We consider (v1v
−1
0 , v2v

−1
0 ) as a parametrization of a curve depending

on the poristic parameter T . The elimination (by means of resultant) of T from
x = v1v

−1
0 and y = v2v

−1
0 yields a product of a cubic polynomial

4(δ + σ)2(1 + U2)2(x2 + y2)
(

(σ2 − δ2U2)x+ 2δσUy
)

−
−(1+U2)(δ+σ)

(

(

4δ2(δ2−δσ−σ2)U4−4δσ(δ2+3δσ+σ2)U2−
−4σ2(δ2+δσ−σ2)

)

x2 + 12δσ(σ2 − U2δ2)Uxy+

+
(

(δ2−4δσ−4σ2)δ2U4−2δσ(2δ2−3δσ+2σ2)U2−σ2(4δ2+4δσ−σ2)
)

y2
)

−

−
(

(δ2−4δσ−4σ2)δ2U4−2δσ(2δ2+3δσ+2σ2)U2−σ2(4δ2+4δσ−σ2)
)

·

·
(

δ2U2x− 2δσUy − σ2x
)

+ δσ(δU2 + σ)(δ2U2 + σ2)2 = 0

(19)

and degree one polynomial

−4(δ+σ)(1+U2)
(

δ4(δ+2σ)2U10+δ2(δ+2σ)(4δ3+10δ2σ+δσ2−2σ3)U8+

+δ(δ5 + 6δ4σ + 4δ3σ2 − 20δ2σ3 − 21δσ4 − 4σ5)U6+
+σ(4δ5 + 21δ4σ + 20δ3σ2 − 4δ2σ3 − 6δσ4 − σ5)U4+

+σ2(σ + 2δ)(2δ3 − δ2σ − 10δσ2 − 4σ3)U2 − σ4(σ + 2δ)2
)

x+

+4(δ+σ)U(1+U2)
(

δ3(δ+2σ)(δ2+2δσ+4σ2)U8−δ2(δ4+4δ3σ−9δ2σ2−
−32δσ3−8σ4)U6+δσ(4δ4 + 39δ3σ + 88δ2σ2 + 39δσ3 + 4σ4)U4+

+σ2(8δ4+32δ3σ+9δ2σ2−4δσ3−σ4)U2+σ3(σ+2δ)(4δ2+2δσ+σ2)
)

y+

+4δσ4(δ + σ)(σ + 2δ)2 + 4δ4σ(δ+σ)(δ+2σ)2U12−
−δ3(δ+2σ)(3δ4−6δ3σ−56δ2σ2−60δσ3−16σ4)U10+

+4δ2σ(6δ5 + 45δ4σ + 110δ3σ2 + 106δ2σ3 + 43δσ4 + 5σ5)U8+
+2δσ(2δ6 + 34δ5σ + 136δ4σ2 + 199δ3σ3 + 136δ2σ4 + 34δσ5 + 2σ6)U6+

+4δσ2(5δ5 + 43δ4σ + 106δ3σ2 + 110δ2σ3 + 45δσ4 + 6σ5)U4+
+σ3(σ + 2δ)(16δ4 + 60δ3σ + 56δ2σ2 + 6δσ3 − 3σ4)U2 = 0.

(20)

The cubic polynomial is annihilated by the vertices coordinates (18) and de-
scribes a one-parameter family of rational circular cubic curves. Their singulari-
ties are the points given in (15) which are isolated double points and located on
the ellipse ei with the equation (13). �

In a similar way, we can show that there are some further points on the
parabolas’ axes that trace cubic curves. Even the envelopes of the parabolas’
directrices are rational cubic curves. Thm. 7 is illustrated in Fig. 6.
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