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CONCHOIDAL RULED SURFACES

Boris ODEHNAL and Marco HAMANN
Dresden University of Technology, Germany

ABSTRACT: This paper aims at the definition of a line-geometric conghi@nsform for ruled sur-
faces in three-dimensional Euclidean space. The presdefettion of the transform preserves ruled
surfaces as well as rational parametrizations of rulechsed. Here we give examples of conchoids
to some simple ruled surfaces and collect some propertidéseahereby obtained surfaces. Upper
bounds on algebraic degrees of conchoidal ruled surfaeeslso derived.
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1. INTRODUCTION study in [7]. In the latter work the authors fo-
The construction of a conchoid of a plane curvecus on rational parametrizations since these are
cis well known: We choose a fixed poiRtand  useful in CAGD. Unfortunately, the method pre-
a real valued. AssumeX is a point onc, then  sented inl[[7] does not preserve ruled surfaces.
we find a pointXq on the line[F, X] such thatthe  Our work is dedicated to the definition of con-
signed distancX Xy equalsd, seel[l, 2]. The set choids of ruled surfaces which themselves are
cq of all pointsXy asX varies inc is called the  ryled surfaces. The conchoidal ruled surface of
conchoid ofc with focusF at distanced. An a ruled surface is obtained by applying the con-
example is displayed in Figuigé 1. Especially, choidal transform to any of its generators. The
the conchoid of Nicomedes.e., the conchoid presented kind of line-geometric conchoid trans-
of a line, plays an important role for problems form uses the affine ratioi,e., it is invariant

of cube duplication, angle trisection, heptagonunder affine transformations, but it also allows

construction, see[2] 3]. a generalization to a projectively invariant con-
choid transform. Both constructions, the affine
X Cd and the projective version, do not only preserve

ruled surfaces (in contrast to the approach in
[7]), they also preserve rational parametrizations
of ruled surfaces.

The outline of this paper is organized as fol-
lows. In Sectio 2, we provide some well-know
facts on ruled surfaces as needed for the defi-
nition of the line-geometric conchoid transform
in Section[B. In Sectionl4, we give examples
of conchoids to some simple ruled surfaces and
collect some properties of the thereby obtained
surfaces in Sectidn 5.

X_d

Figure 1. Conchoiay of a linec with unsigned
distanced and focus-.

In the last three years conchoids have been re2- PRELIMINARIES
discovered for CAGD, see![4],/[5, 6]. The case Assumel C R is an open intervai: | — R3 is
of conchoids to surfaces has undergone intensiva curve ance: | —  is a unit vector field. A
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ruled surface? in three-dimensional Euclidean with u € R andA = /€ + (cota)2u2. One can

spaceR? is parametrized by easily check thatZ forms an orthogonal hyper-
bolic paraboloid® with equationxz = yetana.
r(u,v) =a(u)+ve(u) (1)  Thex-axis is contained itZ. It is the generator

_ _ Lo := L(0) through the vertex ob
with (u,v) € I x R. The curvea is referred to

as a directrix ane is the spherical image of’.

Furthermore, the curvegup, v) for fixed up € | L
are called rulings ofZ. We denote the canonical
scalar product of arbitrary vectotsv € R3 by
u-v. The thus induced cross produck v yields

a vector which is orthogonal to both, andv,
respectively.

In order to simplify computations, we replace
the directrix a by the vector-valued function
€:= ax ewhich is obviously independent of the
choice ofa on .Z. For anyyp € I, the vector
€(up) =: g is the momentum vector of the ruling
Lo € .. Moreover.e x € parametrizes the set of
pedal points onZ and therefore it is a directrix.
The vector

(e0,€0) T = (€1,€,€3,€4,65,66) | .
with ) Figure 2: RegulusZ of an orthogonal hyper-
bolic paraboloid: bijective correspondence be-
€-&@=1 e-&=0 tween points of contact and the tangent planes
(discs) along the vertex-generalgy of the op-

is usually called thepear coordinates vectaf posite regulus?.

the oriented lineLo. Conversely, any 6-tuple
(f,f) T € RO satisfying Equatiori{2) uniquely de-
fines an oriented line ik3. In the following, we
identify anyL c R3 with its unique spear coordi-
nates and writg((L,L) := 2e-€=0in Equation
@). Two linesL; = (e1,€1), Lo = (e2,6) are
intersecting or parallel exactly if their spear co-
ordinates fulfillu(Ly,Ly) :=e1-€+€ -6 =0,
and vice versa, see![8].

Example 1: We examine the set of rulings of an
orthogonal hyperbolic paraboloide., a regulus Reguli of hyperbolic paraboloids in three-
Z. It can be defined using theaxis and the dimensional space have one generator at infinity.
line F given byf(u) = (e,ucota,u) ' (see Figure Here the cross ratio simplifies to the affine ratio
[2): The regulus? is the set of all line4 being  ar(...) of three proper lines. Consequently, the
parallel to thelx,y]-plane, and intersecting both parameter is an affine onieg., the affine ratio.
lines. Its spear coordinates are

For reguli.Z in projective three-dimensional
space, one can use the cross ratio for
parametrization. For any four lings, € .Z with
i €{0,1,2,3}, it is defined as the cross ratio of
the points of intersectiop; with an arbitrary line
of the opposite regulusge.,

Cr(L07 L17 L27 L3) = Cr( Po, P1, P2, p3)

1The z-axis is the generatdr, of the opposite regulus

1 5 T ZLofd through the vertex? is the set of lines intersect-
L(u) = X(e’ cotau,0,—cotau”,eu0)’ (3)  ingalllines of #.



Example 2: We continue Examplel 1. In order
to obtain the generatdr., at infinity of ., we
substituteu = t1 /tg and multiply Equatiorn((3) by
t2. And let (to: t;) = (0 : 1), which results in
Lo :=L(0:1)=(0,0,0,1,0,0)". Itis the line at
infinity of all planesa L L. In terms of spear
coordinates this reads, = (0,ep) .

The (constant) distribution parameter along the
vertex generatarg relates its points to their tan-
gent planes ofb, see[8]. This parameter is de-
fined byd, = —u/tang, where¢ is the oriented
angle enclosed by the tangent planesi@at 0
andu; = d. For the set of proper lines o, we
obtain

d+D tan
Cr(Ld+D7 Ld7 L07 LOO) =79 = _Lll

= (4)
d tang Figure 3: Conchoidal ruled surfa@é of a ruled
which is set o aliLq, o, La, Lo), See Figur&l2. surface.Z with focal line A and a regulus?.

3. CON,CHOIDAL RULED SURFAC_ES independent of the position & It can be called
We assign the definition of conchoidal surfaces . yase ruled surface In the cased — 1. all
to ruled surfaces. On the contrary to Peternell €lines of %1 coincide withA, which shall né)t be
al. [7], our definition should preserve the type of considered in the foIIowin’g

the surfacei.e., a conchoid of a ruled surface is '

again a ruled surface.

Definition 1. Let A be a line, which neither has
an intersection withZ’ nor is orthogonal to any
generatorL(up) € .. There is a uniquely de-
fined regulusZy := #(up) on A andL(up) of

Any regulusZ can be parametrized using the
cross ratiod of a generatoR € &% with respect
to three distinct generators of the regulus. La-
belling these lines byR; with j € {0,1,2}, it
reads

an orthogonal hyperbolic paraboloid with € 1
%o and L(ug) being its vertex-generator. Let R= A ((1=0) (R, Re)Ro+ O (o, Re) Ry
C(uo) € %o with +(8—1)8(Ro,R1) Ry).

(6)

For & =0 (1,), we obtainRy (Rg,R2). One
further easily verfies that Equatiohl (6) fulfills
U(RR) = 0 for anyd = &. With the proper
choice ofA, we can also achieve-e=1, see
Equation [[2). Hence, Equatiof](6) gives the
Remark 1: For o = 0, the surface? = %pis  spear coordinates of a ruled surface. Rgan
contained in the set of conchoidal ruled surfacespe written in Bézier form with control vectors
depending oy, R1, Ry, it describes a quadratic

2The definition of conchoidal ruled surfaces by means ruled surface. Itis a requlus of a ruled quadric. if
of the cross ratio allows some freedom: For example, one : g q !

could also use the right hand side of Equatioh (4) with and only if, all factorsu(R;, R;) in Equation [(6)
D = const in Equation[(5). are different from zero.

3

ar(C,A/L)(u) =29 (5)

for a fixedd € R. The set of lines := {C(u) :
u € l} is again a ruled surface for adyc R. It
shall be called theonchoidal ruled surfac&s
of .Z with respect tAl]




We apply Definitio ]l and use Equatidn (6) in
order to parametriz&s by lettingRy = Lo, R; = b

—(1_3\— iny — T
A, Ry = L (Up). HereLw(Up) denotes the line Cluy=0Q 5))\ (0,0,1,sinu, —cosu, 0)
at infinity with the coordinate vectdr.(Up) = o T
(0,€) T(up), c.f. ExampléR. We obtain +5(0,2b,0,—eheq)
+(6— 1)%(e—cosu) (0,0,0,0,0,1)T
1
C(u) = 5 (1= ) H(A La) L+ S (L, Leo) A (8)
+(0—1)0 H(L,A) L) (U) with L, = (0,0,0,0,0,1)Tforalluel. If e<

(7)1 there exist twaig € [0,2m) for which the last
summand in Equation}8) vanishesei¥ 1 (e >
1) there exists one (no such) valug. Further
one can easily see thé&j is again a cylinder for

4. SOME EXAMPLES the first spear vector equatéup) = co = const

. . forall ug.
We present examples of conchoids of some sim- It is easily verified that(c x ) /A2(u) is a

ple ruled surfaces such as cylinders and reg- . . :
. . conic section and thus planar and rational of de-
uli. We also show that some properties of the

base surface are preserved on the associated coﬁii?nz'le?:;ggz :i ; qlljéd:latlc cylinder. An
choidal ruled surface while others do not. In or- P 9 '
der to discuss all conchoidal ruled surfaces of a4 2 Regulus in a quadric of revolution

given ruled surface, we have to distinguish all Gjyen a regulusZ of a one-sheeted hyperboloid
positions ofA with respect toZ'. of revolution. We suppose that its axis coincides
with the z-axis of a Cartesian coordinate system
and thus it can be parametrized by

whereC(u) are the spear coordinateséj.

4.1 Cylinder of revolution

Assume we are given a cylinder of revolutiéfi

With respect to a Cartesian coordinate system “i_(u) _ (—msinu, mcosu, n, nsinu, —ncosu,m) T
can be parametrized by ’ o1 , ;

u € [0,2m), wherem = cosa, n = sina, anda
L(u) := (0,0,1,sinu, —cosu,O)T, uc [0,2m). is the (constant) angle enclosed by the rulihgs
and thefx, y]-plane. Note thatr # 0 anda # 7.

With the same argument as above, the lnean
Here the axis ofZ coincides with the-axisand  pe chosen orthogonal to theaxis. Therefore,

the directrix in the plane = O is the circle with A contains the poinB = (e,0, f) T with f € R,
radiusr = 1. and thus we findA = (0,a,b,—fa,—ebea)T.
As all generators are parallel, there are onlyHere we allow also the limit caske .. There
three cases to be discussed: The Wnean be are further positions oA with regard to.# to
tangent to.Z, it can be intersecting, or non- be discussed. It might be chosen skewit
intersecting. We have to exclude | L and or tangent, or intersecting, or parallel to one
Al Lfor L € . Without loss of genaralitA=  L(uo) € £ (or even parallel to one generator of
(0,a,b,0,—ebea) T withe> 0anda®?+b?=1, the opposite regulus).
whereab # 0 is assumed. Then the conchoidal We focus on two special cases: At first we
ruled surfacesés to . and A can be para- takeA=Lg,thatis,e=1, f=0andthusn=a,
metrized with help of Equatioril7). We obtain n=b. For any fixedd the conchoidal ruled sur-
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Figure 4: Conchoidal ruled surfaégs (6 = 1%) of a cylinder of revolutionZ for various positions
of the lineA, intersectingZ in two points (left), touching it (center) at one generatod &eing skew
to .Z (right).

face?s of ¥ andAis then parametrized by 5. SOME PROPERTIES
The above construction of conchoids of ruled
1 5 surfaces results in ruled surfaces as is clear
C(u):x((l—é)(mzcosw—n )L+0Lo @) from Definition (1. It also preserves ratio-
+ 25(5 — 1)mn(1 — cosu) L) nal parametrizationsi.e., if . has a rational
parametrization the#’s also has one, see Equa-
tion (). Counting the degrees in Equatian (7)

_ _mci T . .
where Le(u) = (0,0,0,—msinu,mcosu,n) for a rational/algebrait, we can state:

represents the generator at infinity &,, see
Definition[d. Foru — 0, we getC(0) € %5 with
C(0) = Lo for any o as a limit position, see
Equation [(9). We replace sinand cos! with
rational expressions and obtain a parametriza
tion of the conchoidal ruled surface which is
obviously of degree four. An example is shown

in Figure(3 (left) _ Theorentl allows us to estimate the algebraic

Secondly, we chooseA as the axis of gegree of conchoidal ruled surface obtained in
<, hence, A = (0,0, 1,0,0,00T. Here the the way explained in Definitidd 1. Rational ruled
parametrization reads surfaces lead to rational ruled surfaces. Actual
degrees will not exceed the upper bound given
in Theoreni 1L, but may sometimes be lower. We
apply our construction of conchoids to some spe-
cial rules surfaces in order to find some exam-
ples which is an objective of this paper. In the
following we discuss some further properties of
conchoidal ruled surfaces.

Theorem 1. The conchoidal ruled surfaces of
a given rational ruled surface with polynomial
degree n are again rational ruled surfaces with
polynomial degree of at mo2h, independent on
the choice ob (J # 1)E

C(u) = )\l ((1—9)nL+0A+ (0 — 1)mls)

(10)
which evidently results in a rational parametriza-
tion with polynomial degree 2 if we replace sin
and cosl by rational expressions. Thus, we ob-
tain a coaxial regulus for alb, see Figurdl5
(right). 3The case = 1 is discussed in Remalrk 1.




Figure 5: Conchoidal ruled surfac#g of a regulus of revolutiot, where the linéA coincides with
one of its generators (left) respectively with its axis.

Remark 2: Based on Definition]1 also the con- to Propositiori 2, we obtain here that the corre-

struction of conchoidal line-manifolds/-setdef  sponding generat@ € ¢5 of a torsal, but non-

parametric manifolds/sets of linéls< 3) is pos-  cylindric, generatok € . needs not to be tor-

sibled Both properties, preserving the basic ele-sal.

ment and the rational parametrization, evidently

hold true also for manifolds/sets of lines. Proposition 3. The generator g:= C(up) of a
We have already seen that the conchoidalconchoidal ruled surfac&’s associated with a

ruled surface of a cylinder might again be atorsal and non-cylindric generatord.c £ is

cylinder. Extending this to general cylinders, we forsal, if and only if,u(Co, Co) = 0, which yields

can state: at U

Proposition 2. Given any cylindet?, and any (A, L) u(A,L) + p(A Le) u(A,L) =0. (11)

line A which is neither parallel nor orthogonal

to a generator Le .. Then all conchoidal sur- Proof. We defineC* = AC with Equation [(7).

faces®s are again cylinders. Without loss of generality, we may examine
_ _ u(Cs,C5) = 0 for all up € 1 becaus€* = AC +

Proof. Analogously to the example in Sectidn 4, ) ¢ andu(C,C) — 0. Then the derivative ot*

we compute the direction vectarof €. Itis i respect tai can be given as

easy to see that it does not depend on the param-
eteru of L(u) for the vectore with e-e= 1 and C*=(1-9) (H(A, Loo) L+ (A, Leo) |'_)
ado not. = +0 (M(L, Leo) + p(L, Le)) A

In general, a regular generatbfup) € . is +(6-1)8 (u(L,A) Leo + p(L,A) Lw) )
torsal,i.e., locally either that of a cylinder, or of

a cone, or of a tangent surface of a grad curvecalculating the expressiop(C*,C*), we may

if and Only if H(L,L) =0 (the dot denotes the assumeu(L, Loo) —e-e =1 and thus have
derivative with respect ta), seel[8]. In contrast (L L) + p(L,Le) = 2u(L,Lo) = 0. Anal-

4For example, conchoids of a bundle of lines or of a OQOUS|y_’ _the |dent|tyu(L, L? - O holds. If
linear line congruence, which might have impact in geo- W€ additionally reparametriz€*(u) such that
metric optics. H(C*,C%)(s) =1,i.e, changing to the arc length
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parametrization of the spherical image@fwe
obtain

H(C5.C5)

_(1_ 5)26 (“(A7 L°°) “(A7 L)

+ IJ(A7 L°°) H(A7 L)) (Uo)
—0

atup € | and thus verify Equation.(11).

O

6. CONCLUSIONS

We proposed a definition of conchoid transform
for straight line sets in three-dimensional space. ABoUT THE AUTHORS
This transform acts within the space of lines.

ruled surfaces are mapped to ruled surfaces. We
gave some examples of conchoids to some sim-
ple ruled surfaces and collected some properties

of the thereby obtained ruled surfaces.
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