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ABSTRACT: This paper aims at the definition of a line-geometric conchoid transform for ruled sur-
faces in three-dimensional Euclidean space. The presenteddefinition of the transform preserves ruled
surfaces as well as rational parametrizations of ruled surfaces. Here we give examples of conchoids
to some simple ruled surfaces and collect some properties ofthe thereby obtained surfaces. Upper
bounds on algebraic degrees of conchoidal ruled surfaces are also derived.
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1. INTRODUCTION
The construction of a conchoid of a plane curve
c is well known: We choose a fixed pointF and
a real valued. AssumeX is a point onc, then
we find a pointXd on the line[F,X] such that the
signed distanceXXd equalsd, see [1, 2]. The set
cd of all pointsXd asX varies inc is called the
conchoid ofc with focus F at distanced. An
example is displayed in Figure 1. Especially,
the conchoid of Nicomedes,i.e., the conchoid
of a line, plays an important role for problems
of cube duplication, angle trisection, heptagon
construction, see [2, 3].
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Figure 1: Conchoidcd of a linec with unsigned
distanced and focusF.

In the last three years conchoids have been re-
discovered for CAGD, see [4], [5, 6]. The case
of conchoids to surfaces has undergone intensive

study in [7]. In the latter work the authors fo-
cus on rational parametrizations since these are
useful in CAGD. Unfortunately, the method pre-
sented in [7] does not preserve ruled surfaces.

Our work is dedicated to the definition of con-
choids of ruled surfaces which themselves are
ruled surfaces. The conchoidal ruled surface of
a ruled surface is obtained by applying the con-
choidal transform to any of its generators. The
presented kind of line-geometric conchoid trans-
form uses the affine ratio,i.e., it is invariant
under affine transformations, but it also allows
a generalization to a projectively invariant con-
choid transform. Both constructions, the affine
and the projective version, do not only preserve
ruled surfaces (in contrast to the approach in
[7]), they also preserve rational parametrizations
of ruled surfaces.

The outline of this paper is organized as fol-
lows. In Section 2, we provide some well-know
facts on ruled surfaces as needed for the defi-
nition of the line-geometric conchoid transform
in Section 3. In Section 4, we give examples
of conchoids to some simple ruled surfaces and
collect some properties of the thereby obtained
surfaces in Section 5.

2. PRELIMINARIES

AssumeI ⊂ R is an open interval,a : I → R
3 is

a curve ande : I → S2 is a unit vector field. A



ruled surfaceL in three-dimensional Euclidean
spaceR3 is parametrized by

r(u,v) = a(u)+v e(u) (1)

with (u,v) ∈ I ×R. The curvea is referred to
as a directrix ande is the spherical image ofL .
Furthermore, the curvesr(u0,v) for fixed u0 ∈ I
are called rulings ofL . We denote the canonical
scalar product of arbitrary vectorsu,v ∈ R

3 by
u ·v. The thus induced cross productu×v yields
a vector which is orthogonal to both,u andv,
respectively.

In order to simplify computations, we replace
the directrix a by the vector-valued function
ê := a×ewhich is obviously independent of the
choice ofa on L . For anyu0 ∈ I , the vector
ê(u0) =: ê0 is the momentum vector of the ruling
L0 ∈ L . Moreover,e× êparametrizes the set of
pedal points onL and therefore it is a directrix.
The vector

(e0, ê0)
T = (e1,e2,e3,e4,e5,e6)

T

with

e0 ·e0 = 1, e0 · ê0 = 0

(2)

is usually called thespear coordinates vectorof
the oriented lineL0. Conversely, any 6-tuple
(f, f̂)T ∈R

6 satisfying Equation (2) uniquely de-
fines an oriented line inR3. In the following, we
identify anyL⊂R

3 with its unique spear coordi-
nates and writeµ(L,L) := 2e· ê= 0 in Equation
(2). Two linesL1 = (e1, ê1), L2 = (e2, ê2) are
intersecting or parallel exactly if their spear co-
ordinates fulfillµ(L1,L2) := e1 · ê2+ ê1 ·e2 = 0,
and vice versa, see [8].

Example 1: We examine the set of rulings of an
orthogonal hyperbolic paraboloid,i.e., a regulus
L . It can be defined using thez-axis and the
line F given byf(u)= (e,ucotα,u)T (see Figure
2): The regulusL is the set of all linesL being
parallel to the[x,y]-plane, and intersecting both
lines. Its spear coordinates are

L(u) =
1
λ
(e,cotα u,0,−cotα u2,eu,0)T (3)

with u∈ R andλ =
√

e2+(cotα)2u2. One can
easily check thatL forms an orthogonal hyper-
bolic paraboloidΦ with equationxz= yetanα.
Thex-axis is contained inL . It is the generator
L0 := L(0) through the vertex ofΦ.1
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Figure 2: RegulusL of an orthogonal hyper-
bolic paraboloid: bijective correspondence be-
tween points of contact and the tangent planes
(discs) along the vertex-generatorL̃0 of the op-
posite regulusL̃ .

For reguliL in projective three-dimensional
space, one can use the cross ratio for
parametrization. For any four linesL∞ ∈L with
i ∈ {0,1,2,3}, it is defined as the cross ratio of
the points of intersectionpi with an arbitrary line
of the opposite regulus,i.e.,

cr(L0,L1,L2,L3) = cr(p0, p1, p2, p3).

Reguli of hyperbolic paraboloids in three-
dimensional space have one generator at infinity.
Here the cross ratio simplifies to the affine ratio
ar(. . .) of three proper lines. Consequently, the
parameter is an affine one,i.e., the affine ratio.

1Thez-axis is the generator̃L0 of the opposite regulus
L̃ of Φ through the vertex.̃L is the set of lines intersect-
ing all lines ofL .
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Example 2: We continue Example 1. In order
to obtain the generatorL∞ at infinity of L , we
substituteu= t1/t0 and multiply Equation (3) by
t2
0. And let (t0 : t1) = (0 : 1), which results in
L∞ := L(0 : 1) = (0,0,0,1,0,0)T. It is the line at
infinity of all planesα ⊥ L0. In terms of spear
coordinates this readsL∞ = (o,e0)

T.
The (constant) distribution parameter along the
vertex generator̃L0 relates its points to their tan-
gent planes ofΦ, see [8]. This parameter is de-
fined byδa =−u/ tanϕ, whereϕ is the oriented
angle enclosed by the tangent planes atu0 = 0
andu1 = d. For the set of proper lines ofL , we
obtain

cr(Ld+D,Ld,L0,L∞) =
d+D

d
=

tanψ
tanϕ

(4)

which is set to ar(Ld+D,Ld,L0), see Figure 2.

3. CONCHOIDAL RULED SURFACES
We assign the definition of conchoidal surfaces
to ruled surfaces. On the contrary to Peternell et
al. [7], our definition should preserve the type of
the surface,i.e., a conchoid of a ruled surface is
again a ruled surface.

Definition 1: Let A be a line, which neither has
an intersection withL nor is orthogonal to any
generatorL(u0) ∈ L . There is a uniquely de-
fined regulusR0 := R(u0) on A and L(u0) of
an orthogonal hyperbolic paraboloid withA ∈
R0 and L(u0) being its vertex-generator. Let
C(u0) ∈ R0 with

ar(C,A,L)(u0) = δ (5)

for a fixedδ ∈ R. The set of linesCδ := {C(u) :
u∈ I} is again a ruled surface for anyδ ∈ R. It
shall be called theconchoidal ruled surfaceCδ
of L with respect toA.2

Remark 1: For δ = 0, the surfaceL = C0 is
contained in the set of conchoidal ruled surfaces,

2The definition of conchoidal ruled surfaces by means
of the cross ratio allows some freedom: For example, one
could also use the right hand side of Equation (4) with
D = const. in Equation (5).
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Figure 3: Conchoidal ruled surfaceC of a ruled
surfaceL with focal lineA and a regulusR.

independent of the position ofA. It can be called
the base ruled surface. In the caseδ = 1, all
lines ofC1 coincide withA, which shall not be
considered in the following.

Any regulusR can be parametrized using the
cross ratioδ of a generatorR∈ R with respect
to three distinct generators of the regulus. La-
belling these lines byRj with j ∈ {0,1,2}, it
reads

R=
1
λ
((1−δ )µ(R1,R2)R0+δ µ(R0,R2)R1

+(δ −1)δ µ(R0,R1)R2) .

(6)

For δ = 0 (1,∞), we obtainR0 (R1,R2). One
further easily verfies that Equation (6) fulfills
µ(R,R) = 0 for any δ = δ0. With the proper
choice ofλ , we can also achievee· e= 1, see
Equation (2). Hence, Equation (6) gives the
spear coordinates of a ruled surface. AsR can
be written in Bèzier form with control vectors
depending onR0, R1, R2, it describes a quadratic
ruled surface. It is a regulus of a ruled quadric, if
and only if, all factorsµ(Ri ,Rj) in Equation (6)
are different from zero.
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We apply Definition 1 and use Equation (6) in
order to parametrizeCδ by lettingR0 = L0, R1 =
A, R2 = L∞(u0). HereL∞(u0) denotes the line
at infinity with the coordinate vectorL∞(u0) =
(o,e)T(u0), c.f. Example 2. We obtain

C(u) =
1
λ
((1−δ )µ(A,L∞)L+δ µ(L,L∞)A

+(δ −1)δ µ(L,A)L∞)(u)
(7)

whereC(u) are the spear coordinates ofCδ .

4. SOME EXAMPLES

We present examples of conchoids of some sim-
ple ruled surfaces such as cylinders and reg-
uli. We also show that some properties of the
base surface are preserved on the associated con-
choidal ruled surface while others do not. In or-
der to discuss all conchoidal ruled surfaces of a
given ruled surface, we have to distinguish all
positions ofA with respect toL .

4.1 Cylinder of revolution

Assume we are given a cylinder of revolutionL .
With respect to a Cartesian coordinate system it
can be parametrized by

L(u) := (0,0,1,sinu,−cosu,0)T, u∈ [0,2π).

Here the axis ofL coincides with thez-axis and
the directrix in the planez= 0 is the circle with
radiusr = 1.

As all generators are parallel, there are only
three cases to be discussed: The lineA can be
tangent toL , it can be intersecting, or non-
intersecting. We have to excludeA ⊥ L and
A ‖ L for L ∈ L . Without loss of genaralityA=
(0,a,b,0,−eb,ea)T with e≥ 0 anda2+b2 = 1,
whereab 6= 0 is assumed. Then the conchoidal
ruled surfacesCδ to L and A can be para-
metrized with help of Equation (7). We obtain

C(u) = (1−δ )
b
λ
(0,0,1,sinu,−cosu,0)T

+
δ
λ
(0,a,b,0,−eb,ea)T

+(δ −1)
δa
λ
(e−cosu)(0,0,0,0,0,1)T

(8)

with L∞ = (0,0,0,0,0,1)T for all u ∈ I . If e<
1 there exist twou0 ∈ [0,2π) for which the last
summand in Equation (8) vanishes; ife= 1 (e>
1) there exists one (no such) valueu0. Further
one can easily see thatCδ is again a cylinder for
the first spear vector equalsc(u0) = c0 = const.
for all u0.

It is easily verified that(c× ĉ)/λ 2(u) is a
conic section and thus planar and rational of de-
gree 2. So anyCδ is a quadratic cylinder. An
example is shown in Figure 4.

4.2 Regulus in a quadric of revolution
Given a regulusL of a one-sheeted hyperboloid
of revolution. We suppose that its axis coincides
with thez-axis of a Cartesian coordinate system
and thus it can be parametrized by

L(u)= (−msinu,mcosu,n,nsinu,−ncosu,m)T

u ∈ [0,2π), wherem= cosα, n = sinα, andα
is the (constant) angle enclosed by the rulingsL
and the[x,y]-plane. Note thatα 6= 0 andα 6= π

2 .
With the same argument as above, the lineA can
be chosen orthogonal to thex-axis. Therefore,
A contains the pointB = (e,0, f )T with f ∈ R,
and thus we findA = (0,a,b,− f a,−eb,ea)T.
Here we allow also the limit caseA∈ L . There
are further positions ofA with regard toL to
be discussed. It might be chosen skew toL ,
or tangent, or intersecting, or parallel to one
L(u0) ∈ L (or even parallel to one generator of
the opposite regulus).

We focus on two special cases: At first we
takeA= L0, that is,e= 1, f = 0 and thusm= a,
n= b. For any fixedδ the conchoidal ruled sur-
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Figure 4: Conchoidal ruled surfaceCδ
(
δ = 3

10

)
of a cylinder of revolutionL for various positions

of the lineA, intersectingL in two points (left), touching it (center) at one generator and being skew
to L (right).

faceCδ of L andA is then parametrized by

C(u) =
1
λ
(
(1−δ )(m2cosu+n2)L+δL0

+ 2δ (δ −1)mn(1−cosu)L∞)
(9)

where L∞(u) = (0,0,0,−msinu,mcosu,n)T

represents the generator at infinity ofRu, see
Definition 1. Foru→ 0, we getC(0) ∈ Cδ with
C(0) = L0 for any δ as a limit position, see
Equation (9). We replace sinu and cosu with
rational expressions and obtain a parametriza-
tion of the conchoidal ruled surface which is
obviously of degree four. An example is shown
in Figure 5 (left).

Secondly, we chooseA as the axis of
L , hence, A = (0,0,1,0,0,0)T. Here the
parametrization reads

C(u) =
1
λ
((1−δ )nL+δA+δ (δ −1)mL∞)

(10)
which evidently results in a rational parametriza-
tion with polynomial degree 2 if we replace sinu
and cosu by rational expressions. Thus, we ob-
tain a coaxial regulus for allδ , see Figure 5
(right).

5. SOME PROPERTIES
The above construction of conchoids of ruled
surfaces results in ruled surfaces as is clear
from Definition 1. It also preserves ratio-
nal parametrizations,i.e., if L has a rational
parametrization thenCδ also has one, see Equa-
tion (6). Counting the degrees in Equation (7)
for a rational/algebraicL, we can state:

Theorem 1. The conchoidal ruled surfaces of
a given rational ruled surface with polynomial
degree n are again rational ruled surfaces with
polynomial degree of at most2n, independent on
the choice ofδ (δ 6= 1).3

Theorem 1 allows us to estimate the algebraic
degree of conchoidal ruled surface obtained in
the way explained in Definition 1. Rational ruled
surfaces lead to rational ruled surfaces. Actual
degrees will not exceed the upper bound given
in Theorem 1, but may sometimes be lower. We
apply our construction of conchoids to some spe-
cial rules surfaces in order to find some exam-
ples which is an objective of this paper. In the
following we discuss some further properties of
conchoidal ruled surfaces.

3The caseδ = 1 is discussed in Remark 1.
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Figure 5: Conchoidal ruled surfacesCδ of a regulus of revolutionL , where the lineA coincides with
one of its generators (left) respectively with its axis.

Remark 2: Based on Definition 1 also the con-
struction of conchoidal line-manifolds/-sets ofk-
parametric manifolds/sets of lines(k≤ 3) is pos-
sible.4 Both properties, preserving the basic ele-
ment and the rational parametrization, evidently
hold true also for manifolds/sets of lines.

We have already seen that the conchoidal
ruled surface of a cylinder might again be a
cylinder. Extending this to general cylinders, we
can state:

Proposition 2. Given any cylinderL , and any
line A which is neither parallel nor orthogonal
to a generator L∈ L . Then all conchoidal sur-
facesCδ are again cylinders.

Proof. Analogously to the example in Section 4,
we compute the direction vectorc of Cδ . It is
easy to see that it does not depend on the param-
eteru of L(u) for the vectorsewith e·e= 1 and
a do not.

In general, a regular generatorL(u0) ∈ L is
torsal,i.e., locally either that of a cylinder, or of
a cone, or of a tangent surface of a grad curve,
if and only if µ(L̇, L̇) = 0 (the dot denotes the
derivative with respect tou), see [8]. In contrast

4For example, conchoids of a bundle of lines or of a
linear line congruence, which might have impact in geo-
metric optics.

to Proposition 2, we obtain here that the corre-
sponding generatorC0 ∈ Cδ of a torsal, but non-
cylindric, generatorL0 ∈ L needs not to be tor-
sal.

Proposition 3. The generator C0 := C(u0) of a
conchoidal ruled surfaceCδ associated with a
torsal and non-cylindric generator L0 ∈ L is
torsal, if and only if,µ(Ċ0,Ċ0) = 0, which yields
at u0

µ(A, L̇∞)µ(A, L̇)+µ(A,L∞)µ(A,L) = 0. (11)

Proof. We defineC⋆ = λC with Equation (7).
Without loss of generality, we may examine
µ(Ċ⋆

0,Ċ
⋆
0) = 0 for all u0 ∈ I becauseĊ⋆ = λ̇C+

λĊ andµ(C,Ċ) = 0. Then the derivative ofC⋆

with respect tou can be given as

Ċ⋆ = (1−δ )
(
µ(A, L̇∞)L+µ(A,L∞) L̇

)

+δ
(
µ(L̇,L∞)+µ(L, L̇∞)

)
A

+(δ −1)δ
(
µ(L̇,A)L∞ +µ(L,A) L̇∞

)
.

Calculating the expressionµ(Ċ⋆,Ċ⋆), we may
assumeµ(L,L∞) = e · e = 1 and thus have
µ(L̇,L∞) + µ(L, L̇∞) = 2µ(L̇,L∞) = 0. Anal-
ogously, the identityµ(L̇,L) = 0 holds. If
we additionally reparametrizėC⋆(u) such that
µ(Ċ⋆,Ċ⋆

∞)(s)= 1, i.e., changing to the arc length
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parametrization of the spherical image ofC, we
obtain

µ(Ċ⋆
0,Ċ

⋆
0) =−(1−δ )2δ

(
µ(A, L̇∞)µ(A, L̇)

+ µ(A,L∞)µ(A,L))(u0)

= 0

at u0 ∈ I and thus verify Equation (11).

6. CONCLUSIONS
We proposed a definition of conchoid transform
for straight line sets in three-dimensional space.
This transform acts within the space of lines,e.g.
ruled surfaces are mapped to ruled surfaces. We
gave some examples of conchoids to some sim-
ple ruled surfaces and collected some properties
of the thereby obtained ruled surfaces.
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