
Computer Aided Geometric Design 25 (2008) 116–129

www.elsevier.com/locate/cagd

Convolution surfaces of quadratic triangular Bézier surfaces

Martin Peternell ∗, Boris Odehnal

University of Technology Vienna, Department of Mathematics, Wiedner Hauptstrasse 8-10, Vienna, Austria

Received 31 October 2006; received in revised form 22 May 2007; accepted 22 May 2007

Available online 29 May 2007

Abstract

In the present paper we prove that the polynomial quadratic triangular Bézier surfaces are LN-surfaces. We demonstrate how
to reparameterize the surfaces such that the normals obtain linear coordinate functions. The close relation to quadratic Cremona
transformations is elucidated. These reparameterizations can be effectively used for the computation of convolution surfaces.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Quadratic triangular Bézier surfaces are a well explored area, and many textbooks on CAGD, e.g., Farin et al.
(2002), Hoschek and Lasser (1993) are covering this topic. Thus one may wonder what else can be said about them?
Surprisingly, in connection with the computation of convolution surfaces it has been proved recently in Lávička and
Bastl (2006) that the convolution surfaces of quadratic triangular Bézier surfaces and any arbitrary rational surface
are always rational. This result is quite surprising, since the rationality condition for the convolution surfaces is rather
strong. One direct consequence is that the offset surfaces of quadratic triangular Bézier surfaces are rational surfaces.
Unfortunately Lávička and Bastl (2006) does not disclose the geometric properties being responsible for the rationality
of the convolution surfaces.

Earlier it has been proved in Sampoli et al. (2006) that the convolution surface of an LN-surface and an arbitrary
rational surface is always rational. LN-surfaces have been introduced in Jüttler (1998) and denote a special class of
surfaces whose normal vectors admit a linear parameterization depending on the surface parameters.

The main contribution of this article is to prove with geometric reasons that quadratic triangular Bézier surfaces
are LN-surfaces and to study the geometric background of this property. This brings the result of Lávička and Bastl
(2006) in connection to what has been proved in Sampoli et al. (2006). This property is not immediately seen from the
standard parameterization, but geometric considerations concerning the structure of the family of their tangent planes
lead to reparameterizations proving this fact. These special parameterizations simplify the computation of convolution
surfaces.
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The notion of convolution appears in two different ways: In computer graphics a convolution surface is defined
as level set of an implicit function f (x) = g(x) � h(x) = ∫

R3 g(t)h(x − t) dt, called the convolution of the geometry
function g and the kernel function h, see Bloomenthal and Shoemake (1991), Oeltze and Preim (2005), Sherstyuk
(1999).

In geometric modeling the convolution surface of two surfaces F and G in Euclidean three-space R
3 is defined by

F � G = {
f + g | f ∈ F, g ∈ G, nF ‖ nG

}
, (1)

where f(u, v) and g(s, t) are the respective parameterizations and nF and nG are the respective normal vectors of f
and g, see, e.g., Lee et al. (1998a, 1998b), Mühlthaler and Pottmann (2003).

Geometrically speaking one forms the sum f + g of vectors for those points whose normal vectors are parallel.
Considering G as family of translations, the convolution surface F � G is the envelope of F under the translations
defined by vectors g. In general we cannot expect that F and G are parameterized in a way that their normal vectors
nF = f,u × f,v and nG = g,s × g,t are parallel for (u, v) = (s, t). Typically it is necessary to reparameterize one of the
input surfaces, say G.

Assume that f(u, v) and g(s, t) are rational parameterizations. The question arises in which cases the convolution
surface F � G again admits a rational parameterization. It turned out in Peternell and Manhart (2003) and Sampoli
et al. (2006) that F � G is rationally parameterized if F is a paraboloid or more general an LN-surface and G is
any rational surface. Earlier it was shown in Mühlthaler and Pottmann (2003) that two rational skew ruled surfaces
F and G always yield a rational convolution surface F � G. These results already indicate that the rationality of the
convolution surface is in close relation to the structure of the families of tangent planes of F and G.

This topic is related to the question which rational surfaces possess rational offset surfaces. Surfaces with rational
offsets are called PN-surfaces and their unit normal vectors are a rational parameterization of the Euclidean unit
sphere S2. An explicit construction of these surfaces has been given in Pottmann (1995a) and several surprising
examples are given in Peternell and Pottmann (1998). Rational offsets of LN-surfaces are discussed in Jüttler and
Sampoli (2000). An approach using classical geometries for NURBS curves and surfaces is presented in Pottmann
(1995b).

The paper is organized as follows: Section 2 explains some geometric properties of LN-surfaces, quadratic trian-
gular Bézier surfaces, the Veronese surface V 2

2 and its projections. In Section 3 we discuss the dual representation of
quadratic triangular Bézier surfaces and the computation of base points is explained too. After that planar quadratic
Cremona transformations follow in Section 4, which are the key to the reparameterization. In Section 5 we give a
proof of the LN-property of quadratic triangular Bézier surfaces. A synthetic proof of this property can already be
found in Section 2.4. Section 6 contains examples of the reparameterization and of the convolution surface of two
quadratic triangular Bézier surfaces. Finally we conclude in Section 8.

2. Geometric background

Points in R
3 are represented by their coordinate vectors x = (x, y, z). The projective closure of R

3 is denoted by
P

3 and points in P
3 are identified with their homogeneous coordinate vectors

xR = (x0, x1, x2, x3)R = (x0 : x1 : x2 : x3), with x �= o.

Choosing the plane at infinity ω as x0 = 0, the interchange between homogeneous and Cartesian coordinates for points
in R

3 is realized by

x = x1

x0
, y = x2

x0
, z = x3

x0
. (2)

Similarly we use (u, v) as affine coordinates in the parameter plane R
2 and (u0 : u1 : u2) as homogeneous coordinates

in the projective closure P
2 of R

2. The analogous relation between affine and homogeneous parameters reads

u = u1

u0
, v = u2

u0
. (3)

Moreover, we have to consider the dual projective space P
3�, whose points are identified with the family of

planes in P
3. Let e0 + e1x + e2y + e3z = 0 be the equation of a plane E. The homogeneous coordinate vector

Re = R(e0, e1, e2, e3) is identified with E. If especially E: h+ux + vy + z = 0 is given as graph of a linear function,
we may use the affine coordinates (h,u, v) of E too.
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2.1. LN-surfaces

A rational surface S is called an LN-surface if there exists a rational parameterization s(u, v) such that a normal
vector field n(u, v) of S can be linearly parameterized as

n(u, v) = pu + qv + r, (4)

where p, q, and r are vectors in R
3. A particular parameterization s(u, v) of S may not show the LN-property (4) at

once. A rational reparameterization may be required.
Depending on the rank of M := (p,q, r) we have to distinguish the following cases: If rkM = 1, S is a part of a

plane and if rkM = 2 the unit normals n0 = n/‖n‖ of S are contained in a great circle on the Euclidean unit sphere
S2. This implies that S is contained in a cylinder.

In the following we assume rkM = 3. This implies that the unit normal vectors of S parameterize a two-dimensional
subset of S2. An appropriate choice of the coordinate system yields

p = (1,0,0)T , q = (0,1,0)T , r = (0,0,1)T ,

and the normal vector simplifies to n(u, v) = (u, v,1)T . Thus the tangent planes T (u, v) of an LN-surface allow the
quite simple representation

T (u, v): h(u, v) + ux + vy + z = 0, (5)

where h(u, v) is a rational function (support function of T ). With respect to the chosen coordinate system, the tangent
planes T (u, v) are graphs of linear functions over the [x, y]-plane. The representation (5) allows to treat (u, v,h(u, v))

as affine coordinates of T . Using (U,V,W) as coordinate functions of planes, the dual affine equation of an LN-
surface S is W = h(U,V ). This representation says that LN-surfaces are graphs of rational functions in an affine part
of dual projective space P

3�
.

Assume that S is of class n, i.e., the number of tangent planes of S passing through a generic line is n. Then
the numerator a and denominator b of h are polynomials of degrees k and l, respectively. We change from affine
coordinates U,V,W to homogeneous coordinates Y0, Y1, Y2, Y3 by letting U = Y1/Y3, V = Y2/Y3, W = Y0/Y3.
Inserting this into W = h(U,V ) = a(U,V )/b(U,V ) and multiplying with Yn

3 leads to the homogeneous polynomial
equation

S: Y0Y
k−l−1
3 b(Y1, Y2, Y3) − a(Y1, Y2, Y3) = 0, if k � l + 1,

S: Y0b(Y1, Y2, Y3) − Y l+1−k
3 a(Y1, Y2, Y3) = 0, if l + 1 � k. (6)

One might call (6) the dual equation of S. Consider the polynomial in (6) which is sorted with respect to powers of
Y0. All partial derivatives up to order n − 2 with respect to Y0, . . . , Y3 vanish at (1,0,0,0). This says that the plane at
infinity ω = R(1,0,0,0) with equation x0 = 0 is an n − 1-fold plane of S.

This property has the following important consequence: For any vector n = (u, v,1)T there exists a unique tangent
plane T (u, v) of S having n as normal vector and there exists exactly one point of contact of S and T . In other words:
for any plane E: z = ax + by + c in R

3 there exists exactly one tangent plane T of S with E ‖ T and a unique
point of contact. This unique-tangent-plane-property is the reason for the rationality of the convolution surfaces with
any arbitrary rational surface which has been proved in Sampoli et al. (2006). We say that a surface S satisfies the
LN-property (4) if the tangent planes T (u, v) of S admit a representation (5).

We summarize these results:

Lemma 1. The family of tangent planes T (u, v) of an LN-surface S can be represented in plane coordinates by
the graph (u, v,h(u, v)) of a rational function h. The plane at infinity is an n − 1-fold tangent plane of S and this
property (6) characterizes LN-surfaces. Conversely, the graph of a rational function represents the tangent planes
(5) of an LN-surface. The convolution surfaces S � F of an LN-surface S and any arbitrary rational surface F are
rational.

A particular parametric representation s(u, v) of a surface S may not show the LN-property directly. An appropriate
reparameterization may be necessary. Admissible reparameterizations are so called Cremona transformations which
will be explained in Section 4.
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Fig. 1. Quadratically parameterized Steiner surface with three double lines concurrent in the triple point and conics touching at the pinch points.

2.2. Quadratic triangular Bézier surfaces

Let u = (u0 : u1 : u2) be homogeneous coordinates in the projective plane P
2. A surface Q in projective 3-space

P
3 admitting a parameterization of the form

q(u)R = (
q0(u), . . . , q3(u)

)
R, (7)

where qi(u) are homogeneous quadratic polynomials, is called a quadratically parameterizable surface. These so-
called Steiner surfaces form a remarkable class of rational surfaces of order four and class three which have attracted
the interest of mathematicians in the past (Kummer, 1865; Meyer, 1903–1915; Steiner, 1882; Wunderlich, 1962, 1968,
1969) and also nowadays (Albrecht, 2002; Apery, 1987; Coffmann et al., 1996; Degen, 1994; Peters and Reif, 1998;
Sederberg and Anderson, 1985).

By letting q0(u) = u2
0 one obtains the family of polynomial quadratically parameterizable surfaces. Dividing

q1, q2, q3 by q0 and changing from homogeneous parameters (u0 : u1 : u2) to affine coordinates (u, v) by (2), the
representation (7) becomes the familiar parameterization

s(u, v) = 1

2
au2 + buv + 1

2
cv2 + du + ev + f. (8)

The vectors a, b, c, d, e, and f in R
3 comprise the coefficients of the polynomials qi . In general these surfaces contain

a two-parameter family of parabolas (curves of degree two) corresponding to the lines in the [u,v]-plane. An example
of this kind of surface can be seen in Fig. 1.

These surfaces are frequently called quadratic Bézier triangles and admit quadratic parameterizations in terms of
barycentric coordinates with respect to a triangle in the affine parameter plane R

2 (Hoschek and Lasser, 1993).

2.3. Veronese variety

The surfaces (8) can be parameterized over the affine plane as well as over the projective plane. For the moment let
S be parameterized over the projective plane with coordinates (u0 : u1 : u2). We consider the quadratic mapping

(u0 : u1 : u2) ∈ P
2 �→ (

u2
0 : u0u1 : u0u2 : u2

1 : u1u2 : u2
2

) ∈ P
5, (9)

called Veronese mapping. The right hand side of (9) is a parameterization of the Veronese variety V 2
2 , see Apery

(1987), Schreier and Sperner (1961). It is an embedding of the projective plane P
2 as a regular surface in P

5. It is
immediately seen that the lines of P

2 are mapped to the two-parameter family of conics on V 2. Any two different
2
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conics in V 2
2 intersect in exactly one point just like any two different lines in P

2 do. As shown in Albrecht (2002),
Degen (1994), all quadratically parameterizable surfaces (7) are obtained as projections of the Veronese surface V 2

2 .

2.4. Projections of the Veronese variety

We restrict ourselves to the polynomial case (8). In order to explain how to obtain the parameterization s(u, v)

as projection of V 2
2 , we homogenize (8) according to (2). This results in the parameterization s(u0, u1, u2). The

projection π : P5 → P
3 which yields π(V 2

2 ) = S is realized by

π :

[
u2

0

s(u0, u1, u2)

]
=

[
1 0 0 0 0 0

f d e a b c

]
· [u2

0, u0u1, u0u2, u
2
1, u1u2, u

2
2

]T
, (10)

where a, . . . , f, s ∈ R
3 are column vectors. The surfaces (10) carry a two-parameter family of conics. Some of these

surfaces (b = (0,0,0)) can be generated by translating parabolas along each other (Wunderlich, 1968), others only
allow more complicated kinematic generations (Wunderlich, 1969).

Let ω : x0 = 0 be the plane at infinity in the projective extension P
3 of R

3 and let c = S ∩ ω be the curve at
infinity of S. From the projection (10) it follows that c is obtained by u2

0 = 0. This implies that c is a double curve
parameterized by(

au2
1 + 2bu1u2 + cu2

2

)
R ∈ ω.

Here (u1 : u2) is considered as homogeneous parameter on c. For linearly independent vectors a, b, and c one obtains
conics, otherwise c is degenerate.

This proves again that ω is a tangent plane of multiplicity two. Since triangular quadratic Bézier surfaces are of
class three, the dual equation of S looks like (6). The geometric meaning is the following: Let g ∈ P

3 be a line in
general position to S. Algebraically counting, there exist three tangent planes of S passing through g. Thus for any
line h ∈ ω in general position there is exactly one tangent plane T �= ω passing through h. These synthetic geometric
considerations already prove the LN-property of the triangular quadratic Bézier surfaces.

Corollary 2. Quadratic triangular Bézier surfaces are LN-surfaces.

Although these ideas do not lead immediately to LN-parameterizations, their existence is shown. We will present
a more constructive proof of the LN-property of triangular quadratic Bézier surfaces. Therefore we investigate the
normal vectors associated to the parameterization (8) and show explicitly that there exist reparameterizations of S in
order to obtain linearly parameterized normal vectors.

3. Dual representation of triangular quadratic Bézier surfaces

To prove the LN-property of a triangular quadratic Bézier surface S we have to investigate the structure of the
family of tangent planes. Using the affine parameterization (8) the partial derivatives of s with respect to u and v are

s,u(u, v) = au + bv + d, s,v(u, v) = bu + cv + e. (11)

The tangent planes T (u, v) of S are given by

T (u, v):
(
x − s(u, v)

)T · (s,u × s,v)(u, v) = 0, (12)

with support function h = −det(s, s,u, s,v) and normal vector s,u × s,v . The partial derivatives s,u and s,v define affine
mappings in the [u,v]-plane. These mappings can be extended to projective mappings p,q : P2 → P

2. Defining the
matrices P := (d,a,b) and Q := (e,b, c), the projective mappings read

p : uR �→ (P u)R, q : uR �→ (Qu)R, with u = (u0, u1, u2)
T . (13)

Let u�
R be a point in P

2. If rk (P u�,Qu�) = 1, then n(u�) = (0,0,0)T and t(u�) = (0,0,0,0)T holds. Thus we say
that the parameterization t(u) of the tangent planes T (or the parameterization n(u) of the normal vector) has a base
point at u�

R if and only if the vectors P u� and Qu� are linearly dependent.
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Fig. 2. Construction of base points: the case rkP = 2, rkQ = 3 (left); the case rkP = rkQ = 2 (right).

Excluding planar and cylindrical surfaces S we can assume that the matrices P and Q from (13) are not scalar
multiples of each other and that rkP � 2 as well as rkQ � 2. Base points allow degree reductions of parameterizations.
Thus it is the key point of the reparameterization to detect the base points u�

R of the parameterization t(u) of the
family of tangent planes.

3.1. Computation of the base points

Let S be a triangular quadratic Bézier surface parameterized by (8) and let p and q be the projective mappings
defined by (13). The computation of the base points of the dual parameterization distinguishes between the following
cases, depending on the ranks of the matrices P and Q.

rkP = 3 and rkQ = 3: If both mappings p and q are regular, the fixed points of q−1p are the base points of the
parameterization. Their homogeneous coordinates are the eigenvectors of the matrix Q−1P . We obtain either
three different real base points, or one real base point together with a pair of conjugate complex base points,
or two real base points, or one real base point.

rkP = 2 and rkQ = 3: Obviously the point A = aR with a = kerP is a base point. Let a be the line defined by
imp ⊂ P

2 and let further be q−1(a) its pre-image with respect to q . The restriction of q to q−1(a) is a
projective mapping and there is either one point X1 or there are two (real or a pair of conjugate complex)
points X1 and X2 both contained in q−1(a) with p(Xi) = q(Xi) = Yi , see Fig. 2.

Note that q−1(a) may pass through A. Finally we obtain either three real base points, or one real base
point, or a pair of conjugate complex base points, two real base points, or one real base point.

If rkP = 3 and rkQ = 2 we interchange u and v in the parameterization of s and obtain the situation
rkP = 2 and rkQ = 3.

rkP = 2, rkQ = 2: The points A and B determined by kerP and kerQ respectively, are base points. Let a and b be
lines defined by imp and imq and let further D = a ∩ b, see Fig. 2. There exist fiber lines x = p−1(D) and
y = q−1(D) and C = x ∩ y is a base point of the construction. Since C = A or C = B is possible and even
A = B might happen we obtain three, two or one real base points.

4. Quadratic Cremona transformations

In order to reparameterize the family of tangent planes we study quadratic Cremona transformations in the pro-
jective plane P

2. Assume u = (u0 : u1 : u2) are homogeneous coordinates of points U in the projective plane P
2.

A mapping ϕ : P2 → P
2 with U �→ V is called a quadratic Cremona transformation if the homogeneous coordi-

nates vR of the image points V can be expressed in the form

vR = (
q0(u) : q1(u) : q2(u)

)
(14)
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Fig. 3. Pencils of conics 1: first, second, and third kind.

where qi are homogeneous quadratic polynomials and additionally the inverse ϕ−1 is of the same form. Because of
the latter property Cremona transformations are often called birational.

Here we remark that qi cannot be prescribed independently. They have to satisfy certain relations in order to define
a birational transformation, see Fladt (1933). It is obvious that qi = 0 are the equations of conics in P

2. From the
theory of Cremona transformations we know that these three conics have to have three points in common. These
points are called fundamental points of the transformation and define their exceptional set. Sometimes it occurs that
two or all three of the base points coincide. This gives rise to a projective classification of quadratic planar Cremona
transformations.

In the following we give a brief overview on certain sets of conics, namely pencils and nets, in the projective plane
in order to understand the geometry behind Cremona transformations.

4.1. Conics

It is well known that a conic k (or more generally speaking: a curve of degree two) can be defined as the set of
points X with homogeneous coordinate vectors xR = (x0, x1, x2)R satisfying a homogeneous quadratic polynomial
equation

k: xT Kx = 0, (15)

where K is a symmetric 3 × 3-matrix with real entries. In order to avoid lengthy discussions we view those subsets
of P

2 defined by singular matrices K also as conics and call them singular. This includes pairs of lines (real ones or
a pair of conjugate complex ones) or a single double line, depending on the normal form of K . If rkK = 3 and K is
positive definite the curve k is empty (in the real projective plane).

4.2. Pencils of conics

Let k and l be two curves of degree two given by the respective equations k: xT Kx = 0 and l: xT Lx = 0. The
curves are assumed to be distinct which is guaranteed if K �= λL. We call the set P of conics (including singular ones)
defined by the linear combination

P: xT (κK + λL)x = 0 (16)

a pencil of conics. The pencil P can be spanned by any two different conics in it. The singular conics contained in
P which correspond to the solutions (κ : λ) of the homogeneous cubic equation det(κK + λL) = 0 can also serve as
base conics.

There are five types of pencils of conics depending on the number of common points and/or common tangents of
the conics in the pencil. Note that we do not care whether an intersection point of two conics is a real or a complex
one.
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Fig. 4. Pencils of conics 2: fourth and fifth kind.

Four common points: Two conics k and l and thus all conics in the pencil share the points A, B , C, and D. These
points form a quadrangle by obvious reasons. The pencil P contains three different singular conics, i.e., three
pairs of lines (AB,CD), (AC,BD), (AD,BC), see Fig. 3.

Two points and one line element:1 Any two different conics k and l in P intersect at the points A, B , and C while
touching at A the common tangent TA. This pencil contains two singular conics: the pairs of lines (BC,TA)

and (AB,AC), see Fig. 3.
Two line elements: Any two conics k and l in P share the line elements (A,TA) and (B,TB), i.e., any two conics of

P touch at A the line TA, analogously at B the line TB . The singular conics in this pencil are the double line
AB and the pair (TA,TB) of lines, see Fig. 3.

Point and osculating element: Any two conics of the pencil are in contact of order two at the point A. Thus they share
the line element (A,TA) and a further point B �= A. The pair (AB,TA) of lines is the only singular conic in
the pencil, see Fig. 4.

When viewing A as the intersection of two conics k and l in P , it is of multiplicity three. The conics k

and l are said to osculate each other at A.
Hyperosculating element: Any two conics in the pencil are in contact of order three at the line element (A,TA). The

only singular conic in the pencil is the double line TA, see Fig. 4.
Considered as a point of intersection of any two conics in this pencil, the point A is of multiplicity four.

Any two conics in the pencil are said to hyperosculate each other at A.

We call a pencil of conics of the first, second, third, fourth, or fifth kind according to its place in our list.

4.3. Nets of conics

By removing one condition (one point) from the determining elements of a pencil of conics one obtains a net of
conics. Note that this is a special kind of a two-parameter family of conics: conics passing through three points, or
conics sharing a line element and a further point, or conics osculating each other at a certain point.

For any quadratic Cremona transformation ϕ : P2 → P
2 there exists an associated net of conics. The fundamental

set of the net are the base points of ϕ, where all the conics of the net are passing through.

Conics through three points: We let A = (1 : 0 : 0), B = (0 : 1 : 0) and C = (0 : 0 : 1) be the three base points of the
net of conics. It is spanned by the three pairs of lines x1x2 = 0, x2x0 = 0, and x0x1 = 0. Thus the general
conic c of the net has the equation αx1x2 +βx2x0 + γ x0x1 = 0, where (α : β : γ ) �= (0 : 0 : 0). The Cremona
transformation ϕ with this fundamental set and its inverse are given by

1 We call the pair consisting of a point P and an incident line L a line element and denote it by (P,L).
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ϕ : (x0 : x1 : x2) �→ (x′
0 : x′

1 : x′
2) = (x1x2 : x0x2 : x0x1), (17)

ϕ−1 : (x′
0 : x′

1 : x′
2) �→ (x0 : x1 : x2) = (x′

1x
′
2 : x′

0x
′
2 : x′

0x
′
1).

The net of conics appearing here is obtained from a pencil of the first kind by removing one base point.
Conics through one point and one line element: We choose the line element A = (1 : 0 : 0) and a: x2 = 0 and the

additional point B = (0 : 0 : 1). The net is spanned by the curves x1x2 = 0, x0x2 = 0, and x2
1 = 0. The

generic equation of a curve of the net is αx1x2 + βx2x0 + γ x2
1 = 0, where (α : β : γ ) �= (0 : 0 : 0). The thus

defined Cremona transformation and its inverse are given by

ϕ : (x0 : x1 : x2) �→ (x′
0 : x′

1 : x′
2) = (x1x2 : x0x2 : x2

1), (18)

ϕ−1 : (x′
0 : x′

1 : x′
2) �→ (x0 : x1 : x2) = (x′

1x
′
2 : x′

0x
′
2 : x′2

0 ).

The net of conics associated with this type of Cremona transformation is obtained from a pencil of the second
kind by removing one base point different from the point of contact.

Osculating element: Consider the conic k: x2
1 −x0x2 = 0 and the point A = (1 : 0 : 0). The net is formed by all curves

c of degree two osculating k at A. It is spanned by k and the pair of lines with equations x1x2 = 0 and x2
2 = 0.

The Cremona transformation and its inverse are given by

ϕ : (x0 : x1 : x2) �→ (x′
0 : x′

1 : x′
2) = (x1x2 : x2

1 − x0x2 : x2
2), (19)

ϕ−1 : (x′
0 : x′

1 : x′
2) �→ (x0 : x1 : x2) = (x′2

0 − x′
1x

′
2 : x′

0x
′
2 : x′2

2 ).

The associated net of conics is obtained from the pencil of conics of the fourth kind by removing the base
point different from the point of osculation.

The pencils of third and fifth kind do not lead to base conics of quadratic Cremona transformations. Removing one
base point removes all of them in case of a pencil of fifth kind. It leaves only two base points or a line element in the
case of a pencil of third kind and the set of conics through this elements is a three-parametric one.

A Cremona transformation ϕ maps a line g in general position to a conic ϕ(g) passing through the base points.
Any conic c in general position is mapped to a rational curve ϕ(c) of degree four. The conics of the associated net
pass through the base points and are thus mapped to straight lines. This will help to reparameterize the tangent planes
of a quadratically parameterizable surface when proving the LN-property.

5. Proving the LN-property

Given a quadratic triangular Bézier surface S with polynomial parameterization (8) we show that S satisfies the
LN-property. This means that the tangent planes T (u, v) admit a representation (5). The proof is split into two parts: At
first let n = s,u × s,v be a normal vector field of s. We show that the conics ni (u, v) = 0 determined by n’s coordinate
functions define a net of conics. Second we give a practical reparameterization method which is illustrated at hand of
examples in Section 6.

Theorem 3. The conics ni (u, v) = 0, i = 1,2,3, form a net.

Proof. Assume S is parameterized by s from (8). The normal vector n(u, v) reads

n(u, v) = (a × b)u2 + (a × c)uv + (b × c)v2 + (a × e + d × b)u + (b × e + d × c)v + d × e. (20)

The coordinate functions of n define conics ni (u, v) = 0 in the [u,v]-plane. We show that these conics form a net.
Consider two conics n1(u, v) = 0 and n2(u, v) = 0. The u-coordinates of their intersection points are the zeros of the
resultant Res (n1,n2, v) of n1 and n2 with respect to v. We prove that the resultants Res (n1,n2, v), Res (n2,n3, v),
and Res (n1,n3, v) with respect to v share a cubic factor p(u) and thus there are three common points (algebraically
counted) of the conics ni = 0. The resultants are

Res (n1,n2, v) = (
b3e3 − c3d3 + (

b2
3 − a3c3

)
u
)
p(u), (21)

Res (n2,n3, v) = (
b1e1 − c1d1 + (

b2
1 − a1c1

)
u
)
p(u), (22)

Res (n1,n3, v) = (
b2e2 − d2c2 + (

b2 − a2c2
)
u
)
p(u). (23)
2
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The zeros of p(u) determine the u-coordinates of three intersection points of any pair of the conics ni (u, v) = 0. The
number and the multiplicity of intersection points is independent of the chosen coordinate system. This proves that the
conics ni (u, v) = 0 share three points (algebraically counted) which are the base points of the corresponding Cremona
transformation. The coefficients of the polynomial p(u) = ∑

i ciu
i are listed below. �

In addendum we give the coefficients of the cubic polynomial p(u):

c3 = det(a,b, c)2,

c2 = det(a,b, c)
(
2det(b, c,d) − det(a, c, e)

)
,

c1 = 2det(a,b, c)det(c,d, e) + det(a,b, e)det(b, c, e) + det(b, c,d)2 − det(a, c,d)det(b, c, e),

c0 = det(b, c,d)det(c,d, e) − det(b, c, e)det(b,d, e).

Theorem 4. The quadratic triangular Bézier surfaces are LN surfaces.

Proof. Assume that S is given by the parameterization (8). We have to prove that the tangent planes of S admit the
representation (5). The partial derivatives s,u and s,v according to (11) define projective mappings p and q given
by (13). The base points of the parameterization n(u, v) of the normal vector field are uniquely determined by p

and q and computed according to Section 3.1. The configuration of the base points defines the type of net of conics
determined by ni (u, v) = 0.

Depending on the type of net of conics one can perform a coordinate transformation in order to apply the normal
form of the appropriate Cremona transformation from Section 4.3. This transforms the net of conics to the two-
parameter family of straight lines of P

2. Thus the normals of S become linearly parameterized and this completes the
proof of the LN-property. �

It would have been sufficient to prove the LN-property for the affine normal forms given in Peters and Reif
(1998). The parameterizations (u2 + v2, u, v) and (uv,u, v) describe paraboloids, further (u2, u, v), (u2, v2, u), and
(u2, uv,u) are patches on parabolic cylinders and finally (u2, v2, uv) is a cone. Since the LN-property of these
quadrics is obvious we focus on the nine remaining surface classes of degree three and four. Table 1 shows the
nine types of affine normal forms of quadratic triangular Bézier surfaces of degree > 2 according to Peters and Reif
(1998). We list the parameterization, the type of Cremona transformation, the affine form of the reparameterization,
and finally the homogeneous equation in dual coordinates proving that these surfaces possess ω: x0 = 0 as tangent
plane of multiplicity two, compare Section 2.4. Line three and four of Table 1 represent two ruled surfaces of order
three: The Whitney umbrella, an affine version of Plücker’s conoid and the Cayley surface, respectively.

Table 1
Affine normal forms, type of Cremona transformation and dual equation of quadratic triangular Bézier surfaces

Parameterization Type Transformation Dual homogeneous equation

1 f = (u2, v2, u + v) 1 u = −1
2s

, v = −1
2t

4Y0Y1Y2 − Y 2
3 (Y1 + Y2) = 0

2 f = (u2, v2 + u,v) 2 u = −t
2s

, v = −1
2t

4Y0Y1Y2 − Y 3
2 − Y1Y 2

3 = 0

3 f = (u2, uv, v) 2 u = −1
t , v = 2s

t2 Y0Y 2
2 + Y1Y 2

3 = 0

4 f = (u2 + v,uv,u) 3 u = −s
t , v = 2s2−t

t2 Y0Y 2
2 + Y 3

1 − Y1Y2Y3 = 0

5 f = (u2 − v2, uv,u) 1 u = −2s

4s2+t2 , v = −t

4s2+t2 Y0(Y 2
2 + 4Y 2

1 ) − Y1Y 2
3 = 0

6 f = (u2, v2, uv + u) 2 u = 2t
1−4st

, v = −1
1−4st

Y0(4Y1Y2 − Y 2
3 ) − Y2Y 2

3 = 0

7 f = (u2, v2, uv + u + v) 1 u = 2t−1
1−4st

, v = 2s−1
1−4st

Y0(4Y1Y2 − Y 2
3 ) + Y 3

3

−Y 2
3 (Y1 + Y2) = 0

8 f = (u2, v2 + u,uv) 3 u = 2t2

1−4st
, v = −t

1−4st
Y0(4Y1Y2 − Y 2

3 ) + Y 3
2 = 0

9 f = (u2, v2 + u,uv − v) 2 u = 1+2t2

1−4st
, v = −t−2s

1−4st
Y0(4Y1Y2 − Y 2

3 ) − Y 3
2

−Y 2
3 (Y1 + Y2) = 0
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6. Examples

In this section we demonstrate the reparameterization method at hand of three examples of the affine normal forms
given in Peters and Reif (1998) corresponding to different types of Cremona transformations.

(1) Let s = (u2, v2, u + v)T , which is the affine normal form 1 from Table 1. An example is shown in Fig. 5. This
surface can be obtained by translating the parabolas (u2,0, u)T and (0, v2, v)T along each other. It is one of the
surfaces mentioned in Wunderlich (1968). We find the normal vector n = (−2v,−2u,4uv)T , or (depending on
homogeneous parameters) n = (−2u0u2,−2u0u1,4u1u2)

T . The associated projective mappings p and q from
(13) are both singular: rkP = rkQ = 2. The corresponding Cremona transformation is of type 1 and reads

ϕ−1: u0 = 2u′
1u

′
2, u1 = −u′

0u
′
2, u2 = −u′

0u
′
1.

With this reparameterization the normal n changes to (u′
1, u

′
2, u

′
0)

T after cancellation of the factor 4u′
0u

′
1u

′
2. In

terms of affine coordinates u and v the Cremona transformation ϕ is

ϕ−1: u = − 1

2s
, v = − 1

2t
(24)

and yields the affine parameterization of the normal vector n = (s, t,1)T . Here and in the following we let u′
1/u

′
0 =

s and u′
2/u

′
0 = t . This leads to the LN-parameterization s and the representation of S’s tangent planes by

s(s, t) = 1

4s2t2

(
t2, s2,−2st (s + t)

)T
, T (s, t):

s + t

4st
+ sx + ty + z = 0.

So we find the dual equation of the surface S as 4Y0Y1Y2 − Y 2
3 (Y1 + Y2) = 0.

(2) Let S be parameterized by s = (u2, v2 + u,v)T , affine normal form 2 from Table 1, which can be obtained by
translating the parabolas (u2, u,0)T and (0, v2, v)T along each other, see Wunderlich (1968). An example is
shown in Fig. 5. Its normal vector is n = (1,−2u,4uv)T and the homogeneous version is (u2

0,−2u0u1,4u1u2)
T .

The base points are given by kerQ and kerP , respectively. Since there exists no additional base point, the suitable
Cremona transformation is of type 2 and reads

ϕ−1: u0 = −4u′
1u

′
2, u1 = 2u′2

2 , u2 = 2u′
0u

′
1.

The normal changes to (u′
1, u

′
2, u

′
0)

T if we remove the dispensable factor 16u′2
2 u′

1. In terms of affine parameters ϕ

reads

ϕ−1: u = − t

2s
, v = − 1

2t
. (25)

Fig. 5. Quadratically parameterized surfaces: Affine normal forms 1 and 2.
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Fig. 6. Quadratically parameterized surface: Affine normal form 8 (left) and the straightening of the parameter lines via the Cremona transformation
from Eq. (26) (right).

and yields the affine LN-parameterization s of S and its tangent planes T

s(s, t) = 1

4s2t2

(
t4, s

(
s − 2t3),−2s2t

)T
, T (s, t):

s + t3

4st
+ sx + ty + z = 0.

The dual equation of the surface reads 4Y0Y1Y2 − Y 3
2 − Y 2

3 Y1 = 0.
(3) Let S be parameterized by s = (u2, v2 + u,uv)T (affine normal form 8). An example is displayed in Fig. 6. Its

normal vector is either n = (u − 2v2,−2u2,4uv)T or (u0u1 − 2u2
2,−2u2

1,4u1u2)
T . There is only one base point

determined by kerQ and the suitable Cremona transformation of type 3 is

ϕ−1: u0 = u′2
0 − 4u′

1u
′
2, u1 = 2u′2

2 , u2 = −u′
1u

′
2.

An affine version of ϕ is given by

ϕ−1: u = 2t2

1 − 4st
, v = −t

1 − 4st
. (26)

The LN-parameterization of S and the equation of its tangent planes are

s(s, t) = 1

(4st − 1)2

(
4t4,−t2(8st − 3),−2t3)T

, T (s, t):
s + t − 1

4st − 1
+ sx + ty + z = 0.

Thus the dual equation of S reads Y0(4Y1Y2 − Y 2
3 ) − Y 3

2 = 0.

7. Convolution surface

Finally we compute the convolution surface C = F � G of two quadratically polynomial parameterized surfaces.

• Let F and G be given by f = (u2, v2 + u,v)T and g = (st, s2, s + t)T , respectively. First we reparame-
terize both surfaces F and G such that equal parameters correspond to parallel normals. With the normals
nF = (1,−2u,4uv)T and nG = (2s, s − t,−2s2)T of F and G we find the affine versions of the Cremona trans-
formations in the [u,v]-plane and in the [s, t]-plane, respectively:

ϕ−1
F : u = − y

, v = − 1
, ϕ−1

G : s = − 1
, t = 2y − x

2
.

2x 2y x x
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Fig. 7. Convolution surface of two Steiner surfaces: F (left), G (middle), C = F � G (right).

Inserting the latter equations into the parameterizations of F and G we obtain

f(x, y) = 1

4x2y2

(
y4, x

(
x − 2y3),−2x2y

)T
, g(x, y) = 1

x3

(
x − 2y, x,2x(y − x)

)T
.

A parameterization c of the convolution surface C is thus computed as the sum of f(x, y) and g(x, y) and thus we
have

c(x, y) = 1

4x2y2

(
xy2 + 4x − 8y, x2 − 2xy3 + 4y2,4y2 − x2 − 4xy

)T
.

Fig. 7 shows the surfaces F and G as well as their convolution surface C.
• Let F and G be given by f = (2u2,2v2,2(u + v))T and g = (s2, t, t2 + s)T , respectively. First we reparame-

terize both surfaces F and G such that equal parameters correspond to parallel normals. With the normals
nF = (−8v,−8u,16uv)T and nG = (−1,−4st,2s)T of F and G we find the affine versions of the Cremona
transformations in the [u,v]-plane and in the [s, t]-plane, respectively:

ϕ−1
F : u = − 1

2y
, v = − 1

2x
, ϕ−1

G : s = −y

2
, t = − 1

2x
.

Inserting the latter equations into the parameterizations of F and G we obtain

f(x, y) = 1

2x2y2

(
y2, x2,−2xy(x + y)

)T
, g(x, y) = 1

4x2

(
1,−2xy, x

(
xy2 − 2

))T
.

A parameterization c of the convolution surface C is thus computed as the sum of f and g as

c(x, y) = 1

4x2y2

(
3y2,2x2(1 − y3), xy

(
xy3 − 4x − 6y

))T
.

Fig. 8 shows the surfaces F and G as well as their convolution surface C.

8. Conclusion

We have given several geometric arguments which prove the LN-property of quadratic triangular Bézier surfaces.
Planar Cremona transformations are used in order to straighten the parameter lines (conics) in the parameter plane.
We have given several examples including convolution surfaces to illustrate the method.

The LN-property in general can be characterized by the fact that the dual surface S is a graph of a rational function
which is equivalent to the fact that the plane at infinity is an (n − 1)-fold tangent plane of surfaces S of class n.
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Fig. 8. Convolution surface of two Steiner surfaces: F (left), G (middle), C = F � G (right).
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