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ABSTRACT: Asking for the set of all points P in the Euclidean plane for which the feet of normals

drawn to the sides of a triangle ∆ are collinear, we find the points of the circumcircle u of ∆. In

Euclidean three-space, the triangle is replaced by a skew quadrilateral and we ask for all points P

whose normals have coplanar feet. It is known that the locus of such points P is a cubic surface K ,

see [4, 5]. In this contribution, we ask for conditions on the quadrilateral such that K degenerates,

i.e., it becomes either the union of a quadric and a plane or the union of three planes. For that we

develop algebraic conditions on the coefficients of K ’s equation such that it degenerates. Since there

are some cases to be distinguished, we unfortunately do not find a single condition. These conditions

are polynomials of relatively high degree, but can nevertheless be used and handled with a computer

algebra system. Testing several types of skew quadrilaterals, we are able to give examples of skew

quadrilaterals which determine degenerate cubic surfaces K as the locus of points P whose four

normals to the sides of the quadrilateral have coplanar feet.

Keywords: skew quadrilateral, tetrahedron, cubic surface, degenerate surface, quadric, degeneracy

conditions, computer algebra, commutative algebra, symmetry.

1. INTRODUCTION

It is well known that the zeros of a quadratic

equation ∑
i+ j≤2

ai jx
iy j = 0 in two variables, say x

and y, are the points (x,y) of a conic including

degenerate cases. If ai j ∈ R and (x,y) are inter-

preted as Cartesian coordinates in the Euclidean

plane, there are the following types of conics:

the regular conics such as the ellipse (i.a), the

parabola (i.b), the hyperbola (i.c), and the empty

set (i.d); the singular conics such as a pair of

lines (parallel or not) (ii.a), a single point (which

is the intersection of a pair of complex conjugate

lines - parallel or not) (ii.b), or a repeated line

(line with multiplicity two) (iii), cf. Fig. 1.

The singular and regular conics can eas-

ily be characterized if we switch to homoge-

neous coordinates by letting x = x1x−1
0 , y =

x2x−1
0 , x = (x0,x1,x2), and writing the equation

(i.a) (i.b) (i.c)

(ii.a) (ii.b) (iii)

Figure 1: Conics in the Euclidean plane: regular

(top row), singular or degenerate (bottom row).

∑
i+ j≤2

ai jx
iy j = 0 in the form

c : (x0,x1,x2)





a00 a01 a02

a01 a11 a12

a02 a12 a22









x0

x1

x2



=xTAx=0

where A is a symmetric 3× 3-matrix with real

entries. If A is regular, so is the conic c. If A

is singular, we call the conic also singular or de-

generate. The condition on A to be singular, or

equivalently, the condition on c to be degenerate

is simply

detA = 0.



Assuming that the conic c is degenerate (pair of

lines or a repeated line), we can write down the

homogeneous equation as a product of two linear

homogeneous equations: L ·M = (l0x0 + l1x1 +
l2x2)(m0x0+m1x1+m2x2) = 0 with arbitrary co-

efficients li,mi ∈ C for i ∈ {0,1,2}. Though

ai j ∈ R, it is useful to assume that li,mi ∈ C.

For example (x1 + ix2)(x1 − ix2) = x2
1 + x2

2 = 0

is the real equation of a complex conjugate pair

of lines containing only one real point (1 : 0 : 0).
Comparing the coefficients of the monomials

xix j in the product L ·M with those in the equa-

tion of c, yields a system of six equations:

limi=aii, i ∈ {0,1,2},
lim j+l jmi=2ai j, (i, j) ∈ {(0,1),(0,2),(1,2)}.

From the latter system, li and mi can be elimi-

nated. This results in a condition on the coeffi-

cients ai j that is to be satisfied in order to make

them the coefficients of a singular quadratic

form. The thus obtained condition equals

a00a11a22 +2a01a02a12 −a00a2
12−

−a2
01a22 −a2

02a11 = detA = 0.

In the case of planar cubics, we have to dis-

tinguish between much more cases: A classifica-

tion of planar cubics with respect to projective

transformations in the real projective plane P2

yields four non-singular types. There are ellip-

(i.a) (i.b) (i.c) (i.d)

Figure 2: Non-degenerate cubics in the plane.

tic cubics, carrying no singular point (i.a) and

the rational cubics, carrying precisely one sin-

gular point: an ordinary double point (i.b), or a

cusp of the first kind (i.c), or an isolated double

point (i.d), cf. Fig. 2. Up to projective transfor-

mations, there are eight different types of degen-

erate plane cubics: the union of a conic (carrying

real points) with a line (three types depending on

the number of common points) (ii.a), the union

of an empty conic (with a real equation) and a

real line (only one case) (ii.b), a triple of real

lines (not incident with a single point) (iii.a), the

union of a pair of complex conjugate lines with a

real line (not incident with a single point) (iii.b),

a triple of real and concurrent lines (iv.a), a triple

of concurrent lines containing a complex conju-

gate pair of lines intersecting in a (real) point on

the real line (iv.b), the union of a repeated line

with a different real line (v), and a three-fold

line (vi), see Fig. 3. The more we specialize the

(ii.a) (ii.b) (iii.a) (iii.b)

(iv.a) (iv.b) (v) (vi)

Figure 3: Degenerate cubics in the plane.

group of transformations to which the classifica-

tion of planar cubics is made, the more cases are

to be distinguished. However, we cannot expect

to find a single condition on the coefficients of a

cubic’s equation. We make use of the fact that

any univariate cubic polynomial with real coeffi-

cients has at least one real root. Thus, any trivari-

ate cubic polynomial that factors has at least one

factor of degree one.

The computation of degeneracy conditions for

multivariate inhomogeneous cubic polynomials

uses the same technique as described above for

the case of degenerate conics.

In the following, we shall leave the plane be-

hind. We show how to find degeneracy condi-

tions for cubic surfaces. The main part of the

computation of degeneracy conditions is more or

less technical. Furthermore, we are not aiming

at a complete discussion of degenerate cubic sur-

faces. The conditions on the coefficients of cubic

surfaces in Euclidean three-space R3 shall not be

computed for their own sake. They shall be used

for the discussion of a geometric problem which

was addressed in [4–6].
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In Sec. 2, we give the basic setup for our com-

putations. Sec. 3 is dedicated to the computation

of degeneracy conditions. To be honest, we shall

not write down all the degeneracy conditions in

full length, because some of them are very long.

The use of these conditions needs a CAS. It

is necessary to precompute these equations and

store them in order to make use of them. Some-

times, we will only give the degree, the number

of terms, and the degree of these polynomials

considered as polynomials in certain variables.

In Sec. 4, we apply the degeneracy conditions

to the most general form of a skew quadrilat-

eral. Unfortunately, this gives only rise to the

Conjecture 4.1, since we were not able to finish

the computations due to the lengths of the resul-

tants to be built and because of limited memory.

The computations were done with Maple 18© on

a PC with an Intel© core iS-4460 with 3.2GHz

and 7.8GB RAM.

In Sec. 5 we bring in the harvest and give

examples of special skew quadrilaterals in R
3.

All these quadrilaterals have in common that

their cubics K degenerate and for all points

P ∈ K the four feet are coplanar. The degen-

eracy conditions derived in Sec. 3 allow us to

find metric conditions on the lengths and an-

gles in the skew quadrilateral such that K de-

generates. This way of attacking the problem

seems to be more efficient than just testing skew

quadrilaterals whether K degenerates or not.

Moreover, a CAS may not be able to factorize

a trivariate polynomial with coefficients taken

from some commutative field, because the factor-

ization may need a proper field extension. The

latter has to be found first and there are no algo-

rithms for that.

2. THE PROBLEM - WALLACE-SIMSON

The result dealing with triangles in the Euclidean

plane (also valid on the Euclidean unit sphere,

see [2]) is due to W. Wallace and is often as-

cribed to R. Simson (see [1, 3]):

Lemma 2.1. Let ∆ = ABC be a triangle in the

Euclidean plane and let u be its circumcircle.

The feet of normals from P to ∆’s side lines are

collinear if, and only if, P ∈ u, see Fig. 4.

A

B

C

∆

P

u

Figure 4: The three collinear feet of the normals

from P ∈ u to the sides of ∆.

In the following, we try a variation in Eu-

clidean three-space R3: Assume that ABCD is

a skew quadrilateral in R3, i.e., the vertices of

a tetrahedron. Let further P be some point with

Cartesian coordinates x = (x,y,z) ∈ R3. Then,

we draw the normals n[A,B], n[B,C], . . . from P

to the lines [A,B], [B,C], . . . which meet in the

feet F[A,B], F[B,C], . . . . Now the question arises:

Where to choose P such that the four pedal

points are coplanar? According to [4] and [6],

the points P gather on a cubic surface K .

Our aim is to give conditions on the points

A,B,C,D such that the cubic surface K degen-

erates, i.e., it splits into a plane and a quadric.

It means no restriction to assume that the

Cartesian coordinates of A,B,C,D are

a = (0,0,0), b = (a,0,0),

c = (b,c,0), d = (d,e, f ),
(1)

see Fig. 5. The choice of A = (0,0,0) simpli-

fies the computations. Choosing B = (a,0,0)
raises the computational symmetry rather than

the choice B = (1,0,0) simplifies it. The points

A, B, C, D are not allowed to lie in a single plane,

and thus, det(b,c,d) = ac f 6= 0.
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In almost all further cases, A will always co-

incide with the origin of the coordinate system.

The coordinates of the remaining points will be

chosen appropriately in order to benefit from

symmetries whenever they occur.

The coordinates of the foot on [A,B] are

F[A,B] = a+α(b−a). (2)

The parameter α ∈ R is to be determined such

that [A,B]⊥[P,F[A,B]]. The same has to be done

for the other feet with parameters β , γ , δ . Since

A is represented by o, we find

α =
〈x,b〉
‖b‖2

, β =
〈x−b,c−b〉
‖c−b‖2

,

γ =
〈x− c,d− c〉
‖d− c‖2

,δ =
〈d−x,d〉
‖d‖2

(3)

where 〈u,v〉 is the canonical scalar product of

two vectors u,v ∈ R3 and ‖u‖ =
√

〈u,u〉 is the

Euclidean length of a vector u ∈ R3. Combining

(2) and (3), we find the four feet as

F[A,B] = αb, F[B,C] = b+β (c−b),

F[C,D] = c+ γ(d− c),F[D,A] = (1−δ )d.
(4)

Four points P, Q, R, S with coordinate vectors p,

q, r, s are coplanar if, and only if,

det(p,q,s)+det(q,r,s)+

+det(r,p,s)−det(p,q,r) = 0.
(5)

x

y

z

A

B

C

D

b

c
d
e

f

ABCD

ABDC

ACBD

Figure 5: The tetrahedron ABCD and the three

different skew quadrilaterals.

If we insert the feet (4) into (5), we obtain a

condition on α , β , γ , δ which can be written in

terms of the elementary symmetric polynomials

ε0 = 1, ε1 = α +β + γ +δ ,

ε2 = αβ +αγ +αδ +βγ +βδ + γδ ,

ε3 = αβγ +αβδ +αγδ +βγδ

as

K : ε0 − ε1 + ε2 − ε3 = 0 (6)

where det(b,c,d) = ac f 6= 0 is canceled. The

equation (6) is indeed an equation of a cubic sur-

face since the elementary symmetric polynomial

ε4 = αβγδ does not show up and α , β , γ , and δ
are linear in x.

It is easy to verify that a, b, c, d annihilate (6),

and therefore, the points A, B, C, D are located

on the cubic surface K .

The cubic equation (6) is one of the main in-

gredients of the following computations. In the

next section, we try to elaborate conditions on a

general cubic equation in three unknowns x, y,

z such that the cubic equation factors, and thus,

the corresponding cubic surface degenerates.

3. THE DEGENERACY CONDITIONS

A cubic surface in three-space can degenerate in

several ways but all these have one thing in com-

mon: a plane splits off. Therefore, we only dis-

cuss the case that the cubic becomes the union

of a plane and some quadratic variety, whatever

it may look like.

Allthough the initial example for the compu-

tation of a degeneracy condition starts with the

homogeneous equations of the involved compo-

nents, we now use the inhomogeneous equations,

because it is sufficient to do so. We use the tech-

nique sketched in Sec. 1 and assume that the cu-

bic surface K has the equation

K : ∑
r+s+t≤3

kr,s,tx
ryszt = 0 (7)

in terms of Cartesian coordinates x, y, z. Then,

we assume that K is degenerate and splits into

a plane P and the set Q of zeros of a trivariate
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polynomial of degree 2 with the respective equa-

tions

P : l0 + l1x+ l2y+ l3z = 0,

Q : ∑
r+s+t≤2

qr,s,tx
ryszt = 0. (8)

We do not care whether Q is a regular or singu-

lar quadric. Since A ∈ K shall always coincide

with the origin of the coordinate frame, we have

k000 = 0. (9)

There are two cases which have to be treated

separately: (A) The component P contains the

point A, and thus, l0 = 0. (B) The component Q

passes through the point A, and hence, q000 = 0.

Note that A equals the origin of the coordinate

system.

Case (A): If K =P∪Q, then (7) is the prod-

uct of the quadratic and linear equations in (8).

We compare the coefficients and arrive at the sys-

tem of equations

l1qi−1,0,0 = ki,0,0, l2q0,i−1,0 = k0,i,0,
l3q0,0,i−1 = k0,0,i,

l1q110+l2q200=k210, l1q020+l2q110=k120,

l1q010+l2q100=k110, l1q101+l3q200=k201,

l1q002+l3q101=k102, l1q001+l3q100=k101,

l2q011+l3q020=k021, l2q002+l3q011=k012,

l2q001+l3q010=k011,

l1q011 + l2q101 + l3q110 = k111,

(10)

with i ∈ {1,2,3}. From (10), we eliminate li and

qi jk and obtain the conditions on the coefficients

krst in K ’s equation such that K is the union of

a quadric and a plane

k3
010k300−k2

010k100k210+k010k2
100k120−k030k3

100=0,

k3
001k300−k2

001k100k201+k001k2
100k102−k003k3

100=0,

k3
001k030−k2

001k010k021+k001k2
010k012−k003k3

010=0,

k2
010k200−k010k100k110+k020k2

100=0,

k2
001k200−k001k100k101+k002k2

100=0,

k2
001k020−k001k010k011+k002k2

010=0,

−2k001k3
010k300+k00,1k2

010k100k210 −k001k030k3
100

+k3
010k100k201−k2

010k2
100k111+k010k021k3

100=0.

(11)

Note that (9) has to be fulfilled too.

Case (B): In this case, the polynomials com-

prising the set of degeneracy conditions will be

to long to be written down explicitly. Just in or-

der to give an idea of the shape of these polyno-

mials, we give a list L(p) for each polynomial p

that contains the following entries

L(p) = [d,n, [v1,d1], . . . , [vk,dk]]

with d = deg p, n is the number of terms (if p is

expanded), and [vi,di] gives the degree of p con-

sidered as a polynomial in the variable vi. The

equations (11) in Case (A) yield:

[4,4, [k010,3], [k030,1], [k100,3], [k120,1], [k210,1], [k300,1]],

[4,4, [k001,3], [k003,1], [k100,3], [k102,1], [k201,1], [k300,1]],

[4,4, [k001,3], [k003,1], [k010,3], [k012,1], [k021,1], [k030,1]],

[3,3, [k010,2], [k020,1], [k100,2], [k110,1], [k200,1]],

[3,3, [k001,2], [k002,1], [k100,2], [k101,1], [k200,1]],

[3,3, [k001,2], [k002,1], [k010,2], [k011,1], [k020,1]],

[5,6, [k001,1], [k010,3], [k021,1], [k030,1], . . .

. . . [k100,3], [k111,1], [k201,1], [k210,1], [k300,1]].

In the case (B) with l0 6= 0 and q000 = 0, i.e.,

A ∈ Q but A /∈ P , we find degeneracy condi-

tions which contain (9) and seven further equa-

tions of the folllowing shape:

[12,116, [k010,6], [k020,6], [k030,4], [k100,6], [k120,4], . . .

. . . [k200,6], [k210,4], [k300,4]],

[12,116, [k001,6], [k002,6], [k003,4], [k100,6], [k102,4], . . .

. . . [k200,6], [k201,4], [k300,4]],

[12,116, [k001,6], [k002,6], [k003,4], [k010,6], [k012,4], . . .

. . . [k020,6], [k021,4], [k030,4]],

[10,84, [k010,6], [k020,2], [k030,2], [k100,6], [k110,4], . . .

. . . [k200,6], [k210,4], [k300,4]],

[10,84, [k001,6], [k002,2], [k003,2], [k100,6], [k101,4], . . .

. . . [k200,6], [k201,4], [k300,4]],

[10,84, [k001,6], [k002,2], [k003,2], [k010,6], [k011,4], . . .

. . . [k020,6], [k021,4], [k030,4]],

[28,23470, [k001,4], [k002,4], [k003,4], [k010,12], . . .

. . . [k020,12], [k021,8], [k030,8], [k100,12], [k111,8], . . .

. . . [k200,12], [k201,8], [k210,8], [k300,8]].

At this point, we have to recall that the degen-

eracy conditions are necessary conditions. We

do not know if they are sufficient for a trivariate

cubic polynomial with coefficients krst to be a

product of two polynomials of degree 1 and 2.
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4. APPLICATION TO SKEW QUADS

With the preparations from Sec. 2 and 3, we are

able to attack the main problem, i.e., the search

for skew quadrilaterals that lead to degenerate

cubic surfaces K all of whose points send nor-

mals with coplanar feet to the sides of the quadri-

lateral.

In [4], it was recognized that symmetries of

the tetrahedron ABCD may lead to a degenerate

cubic surface K . The mere choice of a tetra-

hedron yields 4!=24 differently labelled quadri-

laterals. Infact, there are only three labellings

that lead to different cubic surfaces K since it

doesn’t matter if we start counting at a particu-

lar vertex or if we traverse the quadrilateral in

the opposite direction. So, there are three rep-

resentatives, one of each orbit: We distinguish

between the three quadrilaterals ABCD, ABDC,

and ACBD, cf. Fig. 5. We shall call these the

three orbits. The respective cubics shown in Fig.

6 share at least the four given points A, B, C, D.

Testing the degeneracy conditions by inserting

the coefficients of the equations of K for either

orbit gives rise to the following

Conjecture 4.1. If the tetrahedron ABCD with

vertices (1) has no symmetries and shows no

right angles between any pair of edges (whether

skew or not), then none of the three cubic sur-

faces K from (6) associated with the three types

of skew quadrilaterals (ABCD, ABDC, ACBD)

degenerates.

Justification: A conjecture needs no proof,

only a verification or a falsification. The rea-

sons why the above statement is only a conjec-

ture shall be given here. Firstly, we are not able

to compute all necessary resultants (at least at

the moment) due to their lengths, degrees, and

the complexity of the computations. We shall

explain the details below. Secondly, the degen-

eracy conditions given in Sec. 3 are necessary

conditions on the coefficients of a trivariate cu-

bic polynomial in order to make it a factorizable

polynomial. Unfortunately, we do not know if

these conditions are sufficient.

Figure 6: Three quadrilaterals and three cubics.

There is also a good reason why we describe

these computations though they do not enable us

to verify (or falsify) the conjecture. During the

computations we get an idea what are possible

conditions on the vertices A, B, C, and D such

that the cubic surfaces K degenerate.

In the following, we do as if we were prov-

ing a theorem. We compute the cubics (6) and

extract the coefficients from the respective equa-

tions. Note that the coefficients are polynomials

in a, . . . , f whose degree is at most 6. Then,

we insert them into the equations of the degener-

acy conditions (11) for case (A). For the sake of

completeness, we also insert these coefficients

into the degeneracy conditions for case (B), the

ones we haven’t written down explicitly because

6



of their lengths. In any case, the eighth equation

k000 = 0 is automatically fulfilled because of the

choice a = (0,0,0).
Case (A): After inserting the coefficients into

the degeneracy conditions for case (A), we arrive

at three sets of polynomial conditions on a, . . . ,

f : one for each orbit. In any of the three sub-

cases, we observe that some equations are ful-

filled automatically.

Some linear, quadratic, cubic, and even quar-

tic factors can be canceled for they are not al-

lowed to be zero: If a, b, c, d, e, or f equals

zero, we have A = B; <) BAC = π
2

; A, B, C are

collinear; <) BAD = π
2

; <) [A,B,C], [A,B,D] = π
2

;

or ABCD is planar. So we can cancel any powers

of a, . . . , f as well as any sum of even powers of

a, . . . , f from the degeneracy conditions. As we

shall see, when handling the polynomial degen-

eracy conditions, there are far more such factors:

a−b 6= 0 otherwise <) ABC= π
2

; A 6=D is equiva-

lent to d2+e2+ f 2 6= 0; <) ACB= π
2

corresponds

to ab− b2 − c2 = 0. Further, C 6= D ⇐⇒ (b−
d)2+(c−e)2+ f 2 6= 0; <) ADC = π

2
if, and only

if, bd + ce− d2 − e2 − f 2 = 0 and <) ACD = π
2

if, and only if, b(b− d)+ c(c− e) = 0; A 6= C

if b2 + c2 6= 0. If the angle along [B,C] is right,

then b(e2 + f 2)− cde = 0. The normal vector

to the plane [A,C,D] is not the zero vector, and

thus, b2e2 +b2 f 2 + c2e2 6= 0. Since none of the

variables a, . . . , f is zero, any sum of squares of

these variables cannot be zero. In total there are

more than 60 such non-vanishing factors that can

be canceled from the evaluated degeneracy con-

ditions.

In order to find solutions to the initial problem,

i.e., quadrilaterals depending on a, . . . , f with

degenerate cubic surface K , we start to elim-

inate variables from the remaining equations.

Maple’s Groebner package renders the func-

tion InterReduce(P,T,p) that computes

from a list P of polynomials according to some

monomial order T (eventually with respect to

some positive characteristic p) a list of polyno-

mials defining the same ideal as P such that

no polynomial can be reduced by the leading

term of another polynomial. We cancel the non-

vanishing factors and reduce the polynomials.

This simplifies the representation of the polyno-

mial ideal and drops the degree of the basis. Tab.

1 shows the characteristics of the remaining poly-

nomials for any of the three orbits.

ABCD

[ 5, 11, [a,1], [b, 3], [c, 3], [d,2], [e, 2], [ f , 2]]

[12, 651, [a,4], [b, 9], [c, 9], [d,6], [e, 9], [ f , 8]]

[15,1561, [a,5], [b,10], [c,10], [d,9], [e,11], [ f ,10]]

[16,1979, [a,6], [b,10], [c,10], [d,9], [e,12], [ f ,12]]

ABDC

[12, 604, [a,4], [b,6], [c,6], [d, 8], [e, 9], [ f ,6]]

[15,1706, [a,4], [b,8], [c,8], [d, 9], [e,11], [ f ,8]]

[16,2118, [a,4], [b,8], [c,9], [d,11], [e,12], [ f ,8]]

ACBD

[ 5, 25, [a,2], [b, 3], [c, 2], [d, 3], [e, 2], [ f ,2]]

[ 7, 51, [a,4], [b, 4], [c, 4], [d, 4], [e, 4], [ f ,4]]

[ 9, 111, [a,5], [b, 5], [c, 4], [d, 5], [e, 4], [ f ,4]]

[11, 142, [a,5], [b, 7], [c, 6], [d, 4], [e, 4], [ f ,4]]

[11, 331, [a,6], [b, 6], [c, 5], [d, 6], [e, 5], [ f ,4]]

[16,1094, [a,7], [b, 8], [c, 8], [d, 8], [e, 8], [ f ,6]]

[23,4112, [a,9], [b,12], [c,11], [d,11], [e,11], [ f ,8]]

Table 1: Degrees of reduced evaluated degener-

acy conditions with non-vanishing factors can-

celed in case (A) for all three orbits.

From the remaining 4, 3, 7 equations in Case

(A), we start to eliminate a, . . . , f in order to find

solutions, i.e., tetrahedrons (skew quadrilaterals)

without symmetries or right angles but with de-

generate cubic surfaces K . Until now, all fac-

tors of resultants that show up during the com-

putation turn out to correspond to solutions with

symmetries or right angles. In many cases we

were not able to finish the computations due to

the circumstances described in Sec. 1.

Case (B): If now A lies in the quadratic part,

then we use the second kind of degeneracy con-

ditions. In this case, the computations are not
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nearly as fruitful as in the first case. We cancel

the non-vanishing factors and reduce the polyno-

mials and arrive at polynomials whose character-

istics can be seen in Tab. 2. The computational

ABCD

[39, 82424, [a, 12], [b, 21], [c, 23], [d, 24], [e, 24], [f, 18]]

[43, 110994, [a, 12], [b, 25], [c, 27], [d, 25], [e, 26], [f, 22]]

[≤168, ?, [a, ?], [b, ?], [c, ?], [d, ?], [e, ?], [f, ?]]

ABDC

[39, 80604, [a, 13], [b, 24], [c, 24], [d, 21], [e, 23], [f, 16]]

[43, 117506, [a, 13], [b, 25], [c, 26], [d, 25], [e, 27], [f, 20]]

ACBD

[23, 6099, [a, 10], [b, 12], [c, 11], [d, 14], [e, 12], [f, 10]]

[27, 6775, [a, 9], [b, 15], [c, 12], [d, 16], [e, 14], [f, 14]]

[30, 11356, [a, 11], [b, 17], [c, 12], [d, 18], [e, 16], [f, 16]]

[30, 17065, [a, 12], [b, 16], [c, 16], [d, 19], [e, 16], [f, 14]]

[45, 103418, [a, 14], [b, 25], [c, 22], [d, 25], [e, 23], [f, 18]]

[53, 186696, [a, 16], [b, 29], [c, 26], [d, 29], [e, 27], [f, 22]]

[≤168, ?, [a, ?], [b, ?], [c, ?], [d, ?], [e, ?], [f, ?]]

Table 2: Degrees of reduced evaluated degener-

acy conditions with non-vanishing factors can-

celed in case (B) for all three orbits.

problems in the Case (B) are even worse than in

the Case (A). The seventh condition which is of

degree 28 from the beginning becomes a poly-

nomial of degree 168 when we insert the coef-

ficients of the cubic equations. Even the expan-

sion fails, and thus, the reduction fails too. ♦

5. EXAMPLES

From the previous section we have learned that

skew quadrilaterals without symmetry or right

angles may not lead to degenerate cubic surfaces

K . So it makes sense to study special classes

of quadrilaterals. For some special choices of

skew quadrilaterals we shall compute the cubic

surfaces K , insert their coefficients into the de-

generacy conditions. This yields conditions on

the coordinates a, . . . , f of the quadrilaterals’ ver-

tices such that the surfaces K degenerate.

5.1 Quads with one plane of symmetry

A tetrahedron ABCD with one plane of symme-

try is given by

A = (0,0,0), B = (a, b,0),

C = (c,0,d), D = (a,−b,0).

The only plane of symmetry of ABCD is π3 : y =
0, provided that c2 − 2ac+ d2 6= 0. In this par-

Q

π3

A B

C

D

Figure 7: One plane of symmetry (top) and two

degenerate cubics (bottom).

ticular case, the cubic corresponding to ABCD

splits into the plane π3 and a quadric Q with the

equation

Q : (b2c2−a2d2−2ab2c)x2+b2(c2+d2−2ac)y2

+d2(a2+b2)z2−2d(a−c)(a2+b2)xz

−(a2+b2)(a2c−2ac2+c3−2ad2−b2c+cd2)x
+d(a2+b2)(a2+b2−c2−d2)z

+(a2+b2)(ac−c2−d2)(a2−ac+b2)=0.

8



The quadric Q is centered at

M =
1

2ad

(

dl2
1 ,0,al2

2 − cl2
1

)

with l1 := AB = AD and l2 := BC = CD. Its

longest (real) axis is parallel to (0,1,0) ‖ [B,D].
The quadric Q splits into a pair of planes

Q : (cz−dx)(cx+dz) = 0

if 2ac− c2 − d2 = 0. In this case the, the point

C can be choosen on a circle in the plane π3 cen-

tered at (a,0,0) = P ∩ [B,D] with radius a and

the quadrilateral has a second plane of symmetry,

namely the bisector of the segment CD.

In any case, the points A,C ∈ P , whereas

B,D ∈ Q. In case of a2 − ac+ b2 = 0, all ver-

tices of the quadrilateral lie in Q.

5.2 Quads with two planes of symmetry

We specialize the quadrilaterals of the previous

case by assuming that AB = BC = CD = DA

which yields an equilateral skew quadrilateral as

long as d 6= 0. Here, ABCD has four equally

long edges. If further AC = AB, the quadrilat-

eral ACBD has four equally long edges. Finally,

the case AC = BD = AB all three skew quadrilat-

erals ABCD, ABDC, and ACBD are equilateral.

The last case is more or less trivial and is added

at the end of the section in order to be complete.

The tetrahedron ABCD is not a regular tetra-

hedron unless AC = BD = AB which shall be

excluded for the moment. The equilateral skew

quadrilateral ABCD can be obtained by folding

a planar rhombus along a diagonal [B,D]. The

vertices of the skew quadrilateral shall now be

A = (0,0,0), B = (a,b,0),

C =
(

2a
1+t2 ,0,

2at
1+t2

)

, D = (a,−b,0)
(12)

with t ∈ R\{0}. If t=0, the quadrilateral is pla-

nar. Instead of the rational expressions for C’s

coordinates we could have taken the parametriza-

tion c(ω)=(a(1+cosω),0,asinω) with ω ∈
]0,π [ but we prefer the rational expressions be-

cause of their computational advantages. Note

that ω 6= 0,π otherwise ABCD is planar.

π3
σ

τ

Ψ

MA
B

C

D

Figure 8: Skew quadrilateral with two planes of

symmetry and a triple of planes as degenerate

cubic K (top). The cubics for ABDC and ACBD

do not degenerate (bottom).

With (6) and (12) we find the equation of the

cubic surface K corresponding to the quadri-

lateral ABCD (after canceling constant and non-

vanishing factors) as

K : y(x+tz−a)·
·(2at(tx−z)−(a2+b2)t2+a2−b2)=0.

Obviously, the cubic surface K is the union of

three planes, see Fig. 8. It is worth to have a

closer look at these planes. The factor y gives

the equation of the [x,z]-plane π3, if set equal to

zero. This is a plane of symmetry of the quadri-

lateral ABCD and comes as no big surprise, see

the previous case in Sec. 5.1. The quadratic part

of K corresponds to a pair of planes

σ : x+tz−a=0,

τ : 2at(tx−z)−(a2+b2)t2+a2−b2=0.

9



The triple (π3,σ ,τ) consists of three mutually

orthogonal planes all concurrent in the point

M =
1

2

(

a2 +b2

a
,0,

a2 −b2

at

)

.

Note that t 6= 0. If t traces R \ {0}, the plane σ
traverses the pencil about the line s = (a,λ ,0)
(with λ ∈ R). The one-parameter family of

planes τ is the set of tangent planes of the

parabolic cylinder

Ψ : a2z2 −2a(a2 −b2)x+a4 −b4 = 0.

In the case a = b the parabolic cylinder also de-

generates and becomes a pair of planes through

a real line. Therefore, the family of planes τ is

then a pencil of planes.

The cubic surfaces corresponding to ABDC

and ACBD do not degenerate, see Fig. 8. How-

ever, this could not be expected since the planes

of symmetry of ABCD will in general not coin-

cide with those of ABDC or ACBD.

5.3 Quadrilaterals with axial symmetry

A skew quadrilateral ABCD with axial symmetry

can be given by

A = (0,0,0), B = (a+ c,b+d,0),

C = (a,b,h), D = (c,d,h)
(13)

where only the coordinate vectors of B and C

differ from those in (1). From (13) and (6) we

find the degenerate cubics for ABCD, ABDC,

and ACBD being unions of planes and quadrics:

Ki = Pi ∪Qi (with i ∈ {1,2,3}. The planes

have the equations

P1 : d = 2y, P2 : a = 2x, P3 : h = 2z. (14)

The three quadratic components share the center

M = 1
2
(a,d,h) which lies in all the three planes.

The equations of the quadrics are

Q1 : a2Sdh(a− x)x+d2Dah(d − y)y+

+h2Sad(z−h)z = 0,

Q2 : a2Sdh(a− x)x+d2Sah(d − y)y+

+h2Sad(z−h)z = 0,

Q3 : a2Sdh(a− x)x+d2Sah(y−d)y+

+h2Dad(h− z)z = 0

(15)

Figure 9: A skew quadrilateral with axial sym-

metry and the three degenerate cubic surfaces.

where Suv := u2 + v2 and Duv := u2 − v2. Note

that b and c do not show up in (15), and there-

fore, they have no influence on the shape and de-

generation of the cubic (quadratic) surfaces.

In three further special cases, at least one of

the quadrics degenerates and becomes the union

of two planes:

a = h ⇐⇒ Q1 : (x− z)(h− x− z) = 0,

h = d ⇐⇒ Q2 : (y− z)(d− z− y) = 0,

d = a ⇐⇒ Q3 : (x− y)(a− y− x) = 0.

These latter cases also cover the very special

case of the quadrilaterals taken from the regular

tetrahedron shown in Sec. 5.6.

5.4 Orthoschemes

Among the tetrahedrons we find orthoschemes,

i.e., tetrahedrons with a chain of three subse-

quent orthogonal edges. Consequently, the faces
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of an orthoscheme are four right triangles. Any

cuboid can be disssected into six orthoschemes,

see Fig. 10. Up to orientation preserving affine

Figure 10: The six orthoschemes in cuboid ar-

ranged in two groups.

transformations, we find two different types of

orthoschemes cut out of a cuboid. However, it is

sufficient to treat only one orthoscheme that can

be parametrized by (1). Let

a = (0,0,0), b = (a,0,0),

c = (a,b,0), d = (a,b,c)

and observe that replacing c by −c yields a copy

of this orthoscheme which can be obtained by

applying an orientation reversing transformation

to ABCD. The cubic surface K associated to

the quadrilateral ABDC degenerates if the or-

thoscheme shows an axial symmetry, and thus,

c = ±a (or b = ±a) and becomes (in the first

case)

(x∓ z)(by2 +axy±ayz∓bxz− (a2 +b2)y) = 0.

The planar component contains A and D, while

B and C lie on the quadric with center 1
2
(a,b,±a)

which is a one-sheeted hyperboloid (which is

never a quadric of revolution), see Fig. 11.

5.5 Corner of a cuboid

Cutting off a corner of a cuboid leads to a tetra-

hedron with vertices

a = (0,0,0), b = (a,0,0),

c = (0,c,0), d = (0,0, f )

where ac f 6= 0. The cubic surfaces correspond-

ing to the quadrilaterals ABCD, ABDC, ACBD

degenerate if a=± f , a=±c, a=±c, according

Figure 11: The degenerate cubic surface K of

an orthoscheme with axial symmetry.

to the results given in Sec. 5.1, since then there

exists at least one plane of symmetry. Then, the

planar parts are

x± z = 0, x± y = 0, y± z = 0

while the quadrics are

cy2∓ f xy∓cxz− f yz±c f x−(c2− f 2)y+c f z−c f 2=0,

f z2± f xy∓cxz−cyz±c f x+c f y−( f 2−c2)z−c2 f =0,

ax2−cxy∓cxz∓ayz−(a2−c2)x+acy±acz−ac2=0,

with centers 1
2
(± f ,c, f ), 1

2
(±c,c, f ), 1

2
(a,c,±c).

If further a = c = f , then the tetrahedron has

three congruent right faces and K for either or-

bit does not degenerate any further.

5.6 Regular quadrilaterals

A tetrahedron is called regular, if all faces

are congruent equilateral triangles. On a reg-

ular tetrahedron we find three equilateral skew

quadrilaterals. The coordinates of the vertices

are (1) with a = 1, b = d = 1
2
, c =

√
3

2
, e =

√
3

3
,

and f =
√

6
3

. In this case, all three cubics de-

generate simultaneously and become the onion

of three planes. Any such triple of planes passes

through the center of the tetrahedron. Especially
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for the case of a regular tetrahedron, it is ad-

vantageous to give up the coordinatization of

the vertices (1). We assume that A = (0,0,0),
B = (1,1,0), C = (0,1,1), D = (1,0,1).

Clearly, this tetrahedron is regular but the

edge length equals
√

2. This doesn’t matter since

we are dealing with a problem which is invariant

with respect to equiform transformations.

It turns out that the cubic surface K associ-

ated to ABCD is the union of three mutually or-

thogonal planes and has the equation

K : (y− z)(2x−1)(y+ z−1) = 0.

The cubics associated to ABDC and ACBD can

be obtained by changing the variables according

to x → y, y → z, z → x once and twice. The three

planes contain the two planes of symmetry of the

quadrilateral.

6. DISCUSSION

The degeneracy conditions we have presented

are necessary conditions on the coeffcients of a

trivariate cubic polynomial such that it can be

factorized. The sufficiency is not shown so far.

We haven’t given a complete list of special

tetrahedrons with degenerate cubic sufrcae K

because it is unclear whether the degeneracy con-

ditions are only necessary or not.

Due to the lack of power and capacity of the

author’s computer, solving the systems of equa-

tions emerging from the degeneracy conditions

failed. It is not necessary to write down the de-

generacy conditions in full length, but we should

at least be able to insert the coefficients of the cu-

bic equations and the solve the systems of equa-

tions.

The geometric problem that deals with the feet

of normals from a point to the faces of a tetrahe-

dron can be treated in the same way.
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