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Abstract

The locus of points that determine a con-
stant product of their distances to the sides
of a triangle is a cubic curve in the projec-
tively closed Euclidean triangle plane. In
this paper, algebraic and geometric proper-
ties of these distance product cubics shall
be studied. These cubics span a pencil of
cubics that contains only one rational and
non-degenerate cubic curve which is known
as the Bataille acnodal cubic determined
by the product of the actual trilinear co-
ordinates of the centroid of the base trian-
gle. Each triangle center defines a distance
product cubic. It turns out that only a
small number of triangle centers share their
distance product cubic with other centers.
All distance product cubics share the real
points of inflection which lie on the line at
infinity. The cubics’ dual curves, their Hes-
sians, and especially those distance product
cubics that are defined by particular trian-
gle centers shall be studied.

Keywords: Triangle cubic, elliptic cubic,
rational cubic, trilinear distance, constant
product, Steiner inellipse, triangle centers.

MSC 2010: 51M04, 51N35, 14H52, 14N25.

1 Introduction

Cubics occur frequently in triangle geome-
try. Sometimes, cubics are defined as lo-
cus of points satisfying certain geometric
or algebraic conditions. There are many
well-known cubics such as the Neuberg cu-
bic, the Thomson cubic, the Darboux cu-
bic to name just the most prominent exam-
ples. These triangle cubics are known to
carry some triangle centers together with
points related to the triangle, and besides
their (in principle) Euclidean generation,
some of them allow for a projective gener-
ation, cf. [8]. In many cases, these cubics
pass through the vertices of the base trian-
gle: For example, the Thomson cubic K002

(sometimes called seventeen-point cubic, il-
lustrated in Figure 1) passes through the
vertices of the base triangle and carries the
triangle centers Xi with Kimberling indices

i∈{1, 2, 3, 4, 6, 9, 57, 223, 282, 1073
1249, 3341, 3342, 3343, 3344, 3349, 3350,

3351, 3352, 3356, 14481, 39161, 39162,

39163, 39164, 39165, 40989, 40990, 40991,
40992, 46978, 46979},

the midpoints of ∆’s sides, the midpoints of
∆’s altitudes, the vertices of the Thomson
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triangle, and the excenters (which are actu-
ally 38 points), see [4]. The numbering of
triangle centers follows the exhaustive En-
cyclopedia of Triangle Centers by Clark

Kimberling, see [6, 7]. For example, the
triangle centers X39161 and X39162 are the
real foci of the inscribed Steiner ellipse e.
On the other hand, the names and numbers
of triangle cubics are taken from Bernard

Gibert’s pages [2].

Further, K002 is a self-isogonal cubic with
the centroid X2 of ∆ as its pivot point. 26
geometric definitions of the Thomson cubic
can be found on Gibert’s page [4], dedi-
cated exclusively to the Thomson cubic.
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Figure 1: The Thomson cubic K002 with 23
triangle centers on it.

The cubics which shall be studied here, do
not pass through the vertices of the triangle.
Moreover, the number of triangle centers lo-
cated on these cubics is rather small except
in one case. In many cases, it is impossi-
ble to find more than one triangle center
on such a cubic. Nevertheless, it is surpris-
ing that no one has payed attention to the
set of points forming a constant product of
distances to the triangle sides.

What is the reason for the interest espe-

cially in these curves? It is well-known
that elliptic cubics carry a group struc-
ture. The operation on the set of points
on an elliptic cubic can be seen as an ad-
dition. Furthermore, it is well known that
these groups contain finitely generated sub-
groups, cf. [10]. Generators of these groups
of finite order are highly sought after. Once,
rational (or polynomial) points on elliptic
curves are known, many more of them can
be generated by simply doubling the initial
points. Until now, only a few examples of
finitely generated groups on elliptic curves
are known. Within the huge amount of tri-
angle cubics carrying rational points, it may
be possible to find some more examples.

The paper is organized as follows: In the
remaining part of this section, the equa-
tion of the distance product cubics are de-
termined. Further, some geometric proper-
ties of these particular cubics are deduced.
Then, the equations of the dual curves and
the curves in the Hessian pencil are given.
For the sake of completeness, the Weier-
straß normal form of the distance product
cubics is derived. Section 2 deals with the
very special distance product cubics defined
by triangle centers. A complete list (as to
February 2024) of groups of triangle cen-
ters sharing their distance product cubics
is given. It is described how these centers
on such cubics can be found in an efficient
way and attention is paid to special con-
figurations of triangle centers on their re-
spective distance product cubics. Then, in
Section 3, some (until now) unknown trian-
gle centers on some distance product cubics
that contain only one known triangle center
are given. Only triangle centers with a rela-
tively short trilinear center function (homo-
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geneous polynomial in the three side lengths
a, b, c) shall be listed. Finally, Section 4
will outline future work and discusses com-
putational problems and challenges. The
present paper is an extension and comple-
tion of [9].

1.1 Prerequisites

In triangle geometry, trilinear coordinates
proved useful. For that purpose, the ver-
tices A, B, and C of the base triangle
∆ (with side lengths a = BC , b = CA,
c = AB) are described by the homogeneous
coordinates

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1),

i.e., the vectors of the canonical basis in R
3.

The projective frame shall be completed by
choosing

X1 = (1, 1, 1)

as the unit point. At this point, it shall
be said that the centroid X2 of ∆ (like
any other center) can also serve as the unit
point. With X2 as the unit point, barycen-
tric coordinates of points in the plane of the
triangle are well-defined, cf. [6]. In the fol-
lowing, trilinear coordinates are preferred,
since distances of points to the sides of the
base triangle are involved.

Each point X in the plane of ∆ can be
uniquely determined by its homogeneous
trilinear coordinates

X = (ξ, η, ζ) 6= (0, 0, 0),

which are the ratios of the oriented dis-
tances of X to ∆’s oriented side lines. The
side lines are oriented as AB (from A to

B), BC, and CA. From homogeneous tri-
linear coordinates, the (inhomogeneous) ac-
tual trilinear coordinates (ξa, ηa, ζa) consist-
ing of the three oriented distances of X to
∆’s side lines can be computed by

(ξa, ηa, ζa) =
2F

aξ + bη + cζ
(ξ, η, ζ), (1)

where F equals the area of the triangle.
This normalization fails if

ω : aξ + bη + cζ = 0.

This is the equation of the ideal line ω

(line at infinity) and all points (ξ, η, ζ) on it
are ideal points (points at infinity). These
points shall be excluded from the follow-
ing considerations (although there are more
than one thousand triangle centers on the
ideal line), cf. [7].

1.2 Basic properties

If one multiplies the actual trilinear coordi-
nates of a point in the plane of the triangle
and sets this product equal to a constant
δ ∈ R, it is possible to state:

Theorem 1. The locus of points X in the
(Euclidean) plane of the triangle ∆ that
form a constant product δ ∈ R \ {0} of dis-
tances to the side lines of ∆ is a planar cu-
bic curve with the equation

kδ : 8F 3ξηζ − δ(aξ + bη + cζ)3 = 0 (2)

in terms trilinear coordinates.

Proof. The equation (2) is obtained by mul-
tiplying ξa, ηa, ζa from (1)

ξaηaζa =
8F 3

(aξ + bη + cζ)3
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and, subsequently, setting this product
equal to δ ∈ R \ {0}. The equation (2)
is homogeneous and of degree three, and
thus, it describes a planar cubic curve in
the projective plane. A simple computa-
tion shows that if (2) is fulfilled by the ac-
tual trilinear coordinates of a point, then
it is also fulfilled by an arbitrary multiple
of these coordinates of the same point, and
vice versa.

The equations (2) of the distance product
cubics depend linearly on one parameter
δ ∈ R \ {0}. Thus, the distance product
cubics form a pencil of cubics. Replacing
the inhomogeneous parameter δ in (2) by
a homogeneous parameter δ = δ1δ

−1
0 (with

δ0 : δ1 6= 0 : 0), shows that there are two
degenerate cubics in the pencil:

(i) If δ0 : δ1 = 1 : 0, the equations of the
cubics simplify to

ξηζ = 0,

which is the equation of the union of ∆’s
side lines.

(ii) In the case δ0 : δ1 = 0 : 1, remainder of
(2) equals

(aξ + bη + cζ)3 = 0,

which is the equation of the ideal line ω

with multiplicity 3. Figure 2 shows a pro-
jective view of a few cubics from the pencil
together the three common (collinear) real
points of inflection I1, I2, I3.

From the fact that the equations of the dis-
tance product cubics are linear combina-
tions of ξηζ = 0 and (aξ+bη+cζ)3 = 0, it is
clear that the ideal points of ∆’s side lines
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Figure 2: A projective view onto the pencil
of distance product cubics shows the three
real points of inflection I1, I2, I3 on ω.

are the ideal points of the distance prod-
uct cubics. Furthermore, the intersection
of either side line with the each cubic in the
pencil is of multiplicity three: For example,
ξ = 0 yields (bη + cζ)3 = 0, and therefore,
I1 = (0,−c, b) as the intersection point with
multiplicity three. This can be summarized
in:

Theorem 2. The distance product cubics
(2) share the three real inflection points,
which are at the same time the three ideal
points of the cubis. The homogeneous tri-
linear coordinates of the points of inflection
are

I1=(0,−c, b), I2=(c, 0,−a),

I3=(−b, a, 0).

The harmonic polar of a regular point P ∈
k with respect to a non-degenerate cubic
curve k is defined in the following way: Let
P be a point on the cubic k and let l be
a line through P different from the tangent
of k at P . Then, in general, l meets the
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cubic in two further points, say Q and R.
Provided, that Q 6= R (l is not tangent to
k at some point off P ) and Q,R 6= P (l is
not an inflection tangent), then there exists
exactly one point S which is the harmonic
conjugate of P with respect to Q and R.
The locus of S for all l in the pencil about
P is called the harmonic polar of P with re-
spect to k. The harmonic polars of the in-
flection points on cubics are straight lines,
cf. [1]. In the case of the distance prod-
uct cubics, the three harmonic polars corre-
sponding to the three real inflection points
have a special geometric meaning:

Theorem 3. The harmonic polars of the
three inflection points of the distance prod-
uct cubics are the medians of the base tri-
angle independent of the choice of δ.

Proof. The lines l pencil about I1=(0,−c, b)
can be parametrized by

l(λ, µ) = λ(0,−c, b) + µ(u, v, w)

with λ : µ 6= 0 : 0, where it means no re-
striction to assume that Q = (u, v, w) is a
further point on k with equation (2). Now,
the intersection R of any l with the cubics
equals

R = (bcu, c2w, b2v).

Hence, the harmonic conjugate of I1 with
respect to k is the point

S = (2bcu, c(bv + cw), b(bv + cw)).

The point S lies on the line bη − cζ = 0,
which is the median through A. In the same
way it can be shown that the harmonic po-
lars of I2 and I3 are the medians through
B and C, respectively. Obviously, the har-
monic polar of I1 is independent of δ, and
so are the harmonic polars of I2 and I3.

Since the three harmonic polars correspond-
ing to the real inflection points common to
all cubics are the medians, the centroid X2

must have a special meaning for the dis-
tance product cubics. Now, the following
can be shown:

Theorem 4. The distance product cubic k2
through the centroid of ∆ is the only ratio-
nal cubic (among the regular ones) in the
pencil and the centroid is an isolated node
on k2.

Remark 1. Rational cubics are often re-
ferred to as singular cubics, because a ra-
tional cubic needs to have a singularity. We
would like to put emphasis on the fact that
rational cubics are regular except in one
point and the term singular often indicates
degeneracy which is definitely not the case
here.

Proof. The equation of the cubic k2 is deter-
mined by inserting the (homogeneous) tri-
linear coordinates of

X2 = (bc, ca, ab)

(see [6, 7]) into (2). This yields the corre-
sponding parameter (in the pencil of cubics)

δ2 =
8F 3

27abc
(3)

and the equation of the cubic by inserting
(3) into (2):

k2 : 27abcξηζ − (aξ + bη + cζ)3 = 0. (4)

Now it is easily verified that X2 is the only
singular point on k2. (Compute the gradi-
ent of k2 with respect to (ξ, η, ζ) at X2 and
recall that a non-degenerate cubic cannot
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have more than one singularity.) The tan-
gents to k2 at X2 are given by the equation

∑

cyclic

a2ξ2 − bc ηζ = 0. (5)

In order to show that k2 is the only singular
(non-degenerate) cubic in the pencil (2), the
singular points of all cubics in the pencil are
computed. For that purpose, first the gradi-
ent grad k is computed. Second, the equa-
tion (2) is used to eliminate all variables
but one, say ξ. In an intermediate step,
the factor aξ + bη is cut out from two re-
sultants. This is admissible, since together
with the third resultant aξ+ bη = 0 implies
ξ = 0, and then η = 0 which does not yield
a proper point on any of the cubics. In the
last elimination step, the final resultant is
obtained and reads

27a3bcδ(27abcδ − 8F 3)2(27abcδ + 64F 3)ξ4

which can only be zero if either

27abcδ − 8F 3 = 0

or
27abcδ + 64F 3 = 0,

since a, b, c 6= 0 (and hence F 6= 0, other-
wise there is no triangle) and ξ = 0 only
yields the inflection point I2 ∈ ω.

The first equation leads precisely to δ2 and
k2, while the second equation yields

δ = − 64F 3

27abc

which determines a regular elliptic cubic.

The choice of the variable to be eliminated
does not matter.

Among the cubics (2), the cubic k2 is the
only cubic that can be found on Bernard

Gibert’s page [3], where it is labeled as
K656 and has the name Bataille acnodal
cubic. Figure 3 shows an example of the
Bataille acnodal cubic. It is easily verified
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Figure 3: The Bataille acnodal cubic K656

with 16 known centers on it.

that the Bataille acnodal cubic K656 car-
ries 21 known and labeled triangle centers.
These are the centers Xi with the Kimber-
ling numbers

2, 3081, 6545, 8027, . . . , 8032,

23610, . . . , 23616, 46048, . . . , 46052,

see also [3]. This is by far the highest num-
ber of known triangle centers on a distance
product cubic.

The cubic k2 = K656 admits the surprisingly
simple parametrization

(bcm3,−ca(m+n)3, abn3) with m :n 6= 0:0.

In terms of homogeneous barycentric coor-
dinates, the equation of k2 becomes very
simple and reads

27ξηζ − (ξ + η + ζ)3 = 0.
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1.3 Dual curves, Hessian pen-

cils, and Weierstraß form

It is well-known that elliptic cubics are of
class 6, while rational cubics are of class 4
or 3, depending on whether the singular-
ity is a node (isolated or not) or a cusp.
The latter case cannot occur: According to
Theorem 4, the curve k2 is only singular dis-
tance product cubic. The equations of the
tangents d1 and d2 at the double point X2

are the two (complex conjugate) linear fac-
tors of the singular quadratic form (5) and
read

d1 : 2aξ − b(
√
3i + 1)η + c(i

√
3− 1)ζ = 0,

d2 : 2aξ + b(
√
3i− 1)η − c(i

√
3 + 1)ζ = 0.

Only in the case d1 = d2, X2 becomes a
cusp. Since d2 = d1 would imply d1 = d1,
and thus, both tangents would have to be
real, which is the case only if b = c = 0.
Hence, we have:

Theorem 5. The distance product cubics
(2) are of class 6 if δ 6= δ2. If δ = δ2,
the corresponding distance product cubic is
rational and of class 4.

Especially in the case of k2 = K656 there are
remarkable connections between the dual k⋆

2

of the distance product cubic k2 and some
conics deduced from the base triangle ∆:

Theorem 6. The dual curve k⋆
2 of k2 is

the isogonal image of the Steiner inellipse
e and the isotomic image of the triangle’s
inellipse i with the third Brocard point X76

for its Brianchon point (after the canonical
identification of homogeneous line and point
coordinates).

Proof. The dual curve of k2 (or K656) has
the equation

k⋆
2 :

∑

cyclic

(a2u1u2 − 2bcu2
0)u1u2 = 0 (6)

which can be found by eliminating ξ, η, ζ ,
and ρ from the following system of equa-
tions:

grad k2 = ρ · (u0, u1, u2).

(Note that ξ, η, and ζ are subject to (2)
which has to be taken into account dur-
ing the elimination process.) In order to
verify that (6) is the isogonal image of the
Steiner inellipse e, homogeneous line coor-
dinates u0 : u1 : u2 6= 0 : 0 : 0 are iden-
tified with homogeneous point coordinates
ξ : η : ζ 6= 0 : 0 : 0. Then, the substitution
of u0 = x1x2 (cyclic, cf. [5]) into (6) indeed
yields the equation of the Steiner inellipse

ι(k⋆
2) = e :

∑

cyclic

a2x2
0 − 2bcx1x2 = 0

after canceling the (cyclic symmetric) factor
x2
0x

2
1x

2
2 that describes the sides of ∆’s sides

(each with multiplicity 2).

Finally, it remains to show that the curve
k⋆
2 is also the isotomic image of the inellipse

with Brianchon point X76 (the 3rd Brocard
point) and center X141 (the complement of
the Symmedian point X6). Applying the
isotomic transformation to k⋆

2 means to sub-
stitute u0 = b2c2x1x2 (cyclic, cf. [5]) into
(6). In doing so, one finds

τ(k⋆
2) = i :

∑

cyclic

a6x2
0 − 2b3c3x1x2 = 0.

Like in the previous cases, the factor x2
0x

2
1x

2
2

is cut out. It is a rather elementary task,
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to determine the Brianchon point and the
center of i, see [5].

The curve k⋆
2 has three ordinary cusps at

the vertices of ∆ which correspond to the
three inflection tangents. Again, homoge-
neous line coordinates are interpreted as ho-
mogeneous point coordinates in the plane of
the base triangle and in the underlying pro-
jective coordinate system (A,B,C;X1).

A B

C

k2 k2

k2

X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2

ei

k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2
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2

k⋆
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k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2

k⋆
2

X76X76X76X76X76X76X76X76X76X76X76X76X76X76X76X76X76

X141X141X141X141X141X141X141X141X141X141X141X141X141X141X141X141X141

Figure 4: The cubic k2, its dual k⋆
2 (inter-

preted as a point curve), the Steiner inel-
lipse e as the isogonal conjugate e = ι(k⋆

2),
and the inellipse i as the isotomic conjugate
i = τ(k⋆

2).

Figure 4 shows the curves e, i, k2, and k⋆
2

mentioned in Theorem 6.

The computation of the dual curves of
the non-rational distance product cubics is
much more complicated. In contrast to the
case of the rational curve k2, one cannot rely
on a parametrization of the curve. Thus,
the homogeneous point coordinates ξ, η,
and ζ have to be eliminated from the fol-

lowing system of equations

∂ξkδ = u0ρ, ∂ηkδ = u1ρ, ∂ζkδ = u2ρ,

8F 3ξηζ − δ(aξ + bη + cζ)3 = 0.

in order to obtain the implicit equation of
the dual curves of (2) (in terms of homoge-
neous line coordinates u0 : u1 : u2). This
yields the sextic curves

k⋆
δ : 27δ

2
∏

cyclic

(bu2−cu1)
2−

−16δF 3
∏

cyclic

(au1u2+bu0u2−2cu0u1)=

= 64F 6u2
0u

2
1u

2
2

(7)

whose equations depend quadratically on
the parameter δ ∈ R \ {0}. The sextic
curves (7) have three real and six complex
cusps corresponding to the three real and
six complex points of inflection on the cu-
bics (2). The nine cusps of (7) form a Hesse
configuration (94,123) if u0 : u1 : u2 are
viewed as homogeneous point coordinates.

1.4 Hessian pencil

The equation of the Hessian curve Hc of an
algebraic curve c with the implicit homo-
geneous equation F (x0, x1, x2) = 0 is given
by

Hc : det (∂ijF ) = 0. (8)

It intersects c at ordinary inflection points
with multiplicity one (while it intersects c

at its singularities with multiplicities larger
than 6). Clearly, the Hessian curves of cu-
bics are again cubics.

In the particular case of distance product
cubics, one can show:

8



Theorem 7. The Hessian curves of the dis-
tance product cubics (2) form a pencil of
cubics which is spanned by the degenerate
cubics e ∪ ω (union of the Steiner inellipse
e and the line at infinity ω) and the three
side lines of ∆.

Proof. The equations of the Hessian curves
of the cubics (2) are computed via (8). This
results in

Hkδ : δ




∑

cyclic

aξ





︸ ︷︷ ︸
ω

·




∑

cyclic

aξ(2bη−aξ)





︸ ︷︷ ︸

Steiner inellipse

=
8

3
F 3ξηζ.

(9)

Since the equations (9) of the Hessian
curves are linear in δ, they form a pencil
of cubics like the distance product cubics
do. The choice of δ = 0 yields ξηζ = 0
which is the equation of the three side lines
of ∆. Replacing the affine parameter δ by
the homogeneous parameter δ0 : δ1 6= 0 : 0
and setting δ1 = 0 (while δ0 6= 0) yields the
right-hand side of (9) which factors into the
equation of the ideal line ω and the equation
of the Steiner inellipse e.

The fact that one factor of the right-hand
side of (9) is the equation of ω clearly shows
that for each δ ∈ R \ {0} the corresponding
distance product cubic kδ and its Hessian
curve Hkδ intersect in the ideal points of ∆’s
side lines (to mention only the real points).
This again shows that the three real points
of inflection of the distance product cubics
(2) are the ideal points of ∆’s side lines (cf.
Theorem 2).

1.5 Weierstraß form

The treatment of elliptic cubic curves is
usually done in an affine setting. The choice
of an affine coordinate frame properly at-
tached to the cubic curve transforms the
cubic’s equation into the Weierstraß normal
form, cf. [10]. Based on this normal form,
many computations – especially those re-
lated to the group structure on the curve –
can be performed in a very simple way.

We set ζ = 1 and substitute

ξ = 2F 3
−3abcδ

6a2bδ
− 1

64F 6a2bδ
(4F 3X+Y ),

η= 2F 3
−3abcδ

6ab2δ
− 1

64F 6ab2δ
(4F 3X−Y ).

into (2). This yields the Weierstraß normal
form of distance product cubics:

kW : Y 2=X3+ 28

3
(3abcδ−F 3)F 9X+

+210

33
(33(abcδ)2−62abcδF 3+23F 6)F 12.

(10)

The j-invariant j(e) of an elliptic curve

e : y2 = x3 + 3px+ 2q

is computed via

j(e) =
26 · 33 · p3
p3 + q2

.

The j-invariant of all distance product cu-
bics kδ equals

j(kδ) =
212F 3(F 3 − 3abcδ)3

(abcδ)3(23F 3 − 33abcδ)

and becomes undetermined if, and only if,
δ = δ2 from (3).

9



2 Triangle centers with

equal distance product

The triangle centers listed in Kimber-

ling’s Encyclopedia of Triangle Centers
[6, 7] determine cubic curves as loci of
points with the equal product of trilinear
distances. Finding triangle centers located
on the same cubic curve is equivalent to
finding triangle centers with the same prod-
uct of trilinear distances. This would be
another classification of triangle centers.

Surprisingly, among the many known,
listed, and in principle arbitrarily numbered
triangle centers, there is only a small num-
ber of triangle centers that gather on the
same cubic.

Until now (as to February 2024), only the
following groups of triangle centers located
on the same cubic are known:

Theorem 8. The groups of triangle centers
with equal distance product to the sides of a
triangle are given in Table 1.

Proof. In order to verify the results given
in the above theorem, it is sufficient to in-
sert the trilinear representations of the re-
spective centers into to the equations of the
cubic curves.

Just inserting trilinear representations of
triangle centers into the equations of a par-
ticular distance product cubic is not a very
efficient search for triangle centers on a cu-
bic. It requires the presence of trilinear rep-
resentations of triangle centers which is not
the case for some triangle centers, cf. [7].

Complicated algebraic expressions involv-
ing cube roots or nested square roots can
hardly be handled properly with computer
algebra systems.

We can improve the search by recalling the
following facts: A cubic curve is a triangle
cubic if its equations in terms of homoge-
neous (trilinear or barycentric) coordinates
is invariant under the cyclic substitution

a → b → c → a and ξ → η → ζ → ξ.

According to this, the cubics (2) and (9) are
triangle cubics. Once a center C on a trian-
gle cubic k is known, one can immediately
find a new triangle center R as the inter-
section of k’s tangent TCk (at C) with k.
The point R shall henceforth be called the
tangential remainder or simply remainder
of C. This yields – besides the contact point
C with multiplicity 2 – exactly one further
point R, provided that C is not a point of
inflection. Once a rational point 1 on the el-
liptic cubic k is known, a sequence of further
rational points can be generated (see Figure
5; note that the chain depicted there is not
closed). Only in some rare cases, periodic
sequences of remainders (or closed chains)
are known and correspond to the groups of
finite order on the elliptic curve, see [10].

On the distance product cubics mentioned
in Theorem 8, one can observe the following
relations between centers and their remain-
ders:

Type 1: For example, on k1, the center
R1 = X764 is the intersection of k1 with the
tangent T1 at X1, see Figure 6. Note that

δ1 = r3,

10
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Figure 5: A sequence of (rational) points
on an elliptic cubic k. Each successor i+ 1
is the intersection ( 6= i) of the tangent Ti k

at i with k. Only for points of finite order,
such chains are closed.

X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1

X764

k1 k1

k1

k1k1k1k1k1k1k1k1k1k1k1k1k1k1k1k1k1

A

B

C

Figure 6: The distance product cubic k1
defined by the incenter X1. The center
X764 ∈ k1 is the intersection of k1’s tangent
at X1.

i.e., the trilinear distance product of the
points on the cubic k1 equals the cube of
∆’s inradius r. Hence, the triangle center
X764 is another triangle center with trilinear

distance product δ764 = r3.

Type 2: The cubic k875 is an example of a
distance product cubic with three collinear
centers on it. These are the centers

X875, X4375, X4444,

which are shown together with k875 in Fig-
ure 7. In this case the search for further
(already known) triangle centers on the cu-
bic fails. None of the tangential remainders
is a known triangle center. The two cen-

X875

X4375

X4444

k875

k875

k875

A B

C

Figure 7: A triple of three collinear centers
on k875: X875, X4375, and X4444.

ters X649 and X693 also form the same dis-
tance product, and thus, they both lie on
the curve k649. Clearly, the line

L649,693 := [X649, X693]

meets k649 in a further center R with trilin-
ear center function

αR = b2c2(b− c)(a2 − bc)3.

Unfortunately, this point cannot be found
in Kimberling’s encyclopedia (cf. [7]) al-
though it has a relatively simple algebraic
representation compared to other centers.
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Type 3: The cubic k42, also hosts three
(known) triangle centers. However, the
points

X42, X321, X8034

on k42 are not collinear. The centers X42

and X321 have the same remainder

R42 = R321 = X8034,

see Figure 8. Therefore, we could expect
to find more triangle centers sending their
tangents to X8034. Unfortunately, the cor-
responding polynomial equation of degree
6 has only two rational solutions leading to
the already known centers X42 and X321.

X8034

X42X42X42X42X42X42X42X42X42X42X42X42X42X42X42X42X42

X321X321X321X321X321X321X321X321X321X321X321X321X321X321X321X321X321

k42

k42k42k42k42k42k42k42k42k42k42k42k42k42k42k42k42k42

k42

k42

A B

C

Figure 8: The tangents to k42 at X42 and
X321 meet in X8034 ∈ k42.

Remark 2. At this point it shall be said
that the assignment of numbers (Kimber-
ling numbers) to triangle centers is done
rather arbitrarily. Therefore, the configu-
ration of known centers on their particular
distance product cubic has no deeper geo-
metric meaning.

Table 2 collects triangle centers and their
tangential remainders on their respective

distance product cubics. Table 3 gives the
trilinear center function of the tangential re-
mainders common to two different (known)
triangle centers on their respective distance
product cubic. These points do not occur
in Kimberling’s encyclopedia [7].

3 Tangential remainders

for triangle centers

Table 2 contains a subset of Table 1 and
gives a list of triangle centers with their tan-
gential remainders on their distance prod-
uct cubics. Known centers are given by
their Kimberling numbers, while unknown
tangential remainders of centers Xi are la-
beled with Ri.

Table 3 gives the first trilinear center func-
tions of some of the unknown remainders Ri

mentioned in Table 2, provided that these
remainders are common to at least two cen-
ters and that the respective center function
is of reasonable length.

For the remainders of some of those cen-
ters (not appearing in Theorem 8), Table 4
presents the first trilinear center functions
together with the respective numeric search
value for the triangle

(a, b, c) = (6, 9, 13)

(in order to simplify the identification and
search on [7]).
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4 Outlook, future work,

computational problems

The search of rational points on elliptic tri-
angle cubics, not necessarily distance prod-
uct cubics, sometimes involves quadratic or
cubic field extensions. In the beginning,
i.e., for triangle centers with small Kimber-
ling number, most of the triangle centers
have trilinear coordinates that are polyno-
mials in a, b, c with integer coefficients. The
trilinear representations of the centers X13,
. . . , X18 involve

√
3 which does not cause

problems in symbolic computations.

Square roots show up in the trilinear repre-
sentations that involve half-angle functions.
In order to handle expressions that involve
the area function

F = 1
4

√

(a+b+c)(b+c−a)(c+a−b)(a+b−c)

of the base triangle, we add F as a further
element of the coefficient ring. We have to
add the square roots of 3 and 5 to the ring of
coefficients if multiples of angles of π

3
and π

5

are ingredients of the construction of some
center: F as well as

√
3 appear in the tri-

linear representations of the centers

X13, . . . , X18

(1st and 2nd isogonic center, 1st and 2nd iso-
dynamic point, 1st and 2nd Napoleon point).
The trilinear representations of X1139 and
X1140 (Outer and Inner Pentagon point) in-
volve

√
5.

The triangle centers

X173, X174, X258, X351, . . . , X364

(related with isoscelizers points), involve
square roots of a, b, c and sine and cosine
of half angles. The trilinear representations
of the Square Root point and its isogonal
conjugate

X365 and X366

involve even
√
a,

√
b, and

√
c.

Triangle centers whose trilinear coordinate
functions involve cube roots are also not
tested whether or not they share their tri-
linear distance prodcut with others: These
are centers like

X356, X357, X358

(Morley point, 1st and 2nd Morley-Taylor-
Marr center), and the Burgess point

X1133, α1133 = sin
π−A

3
cosec

π+A

3
.

Here and in the following, the letter A de-
notes the measure of the interior angle at
the vertex A. Thirds of angles are equiva-
lent to roots of cubic polynomials, and thus,
to field extensions of degree 3.

There are triangle centers that could be
termed transcendental, for example:

X359 and X360,

i.e., Hofstaedter One point and the Hof-
steadter Zero point with the trilinear center
functions

α359=
a

A
and α360=

A

a
.

Their trilinear distance product are not
compared with that of other centers, since
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they will hardly produce the same product
as a polynomial center will do. This is also
true for the Pure Angles center, the isogonal
conjugate of the Point Algenib, the point
Algenib, and the Exterior Angle Curvature
Centroid, i.e., for the centers

X1049, X1085, X1028, and, X1115

with the respective trilinear triangle center
functions

α1049 = A, α1085 = A2,

α1028 = A−2, α1115 =
π−A
a

.

The trilinear coordinates of triangle centers
X40297, . . . , X40305 which are related to the
power curve involve even logarithms, and
thus, their trilinear distance products will
not be equal to that of algebraic centers.
Besides, X40297, X40298, X40299 are points at
infinity.

Future work is guaranteed, since the ETC is
growing continuously. Every day a few new
triangle centers are added, awaiting to be
tested whether or not they share their tri-
linear distance product with other centers.
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Large group of 21 centers on k2:

(2,3081,6545,8027 – 8032, 23610 – 23616,

46048 – 46052);

Five triples:

tangent triangle: (42,321,8034),

triangular: (649,693,4105),

(669,850,32320),

(4024,7192,50487),

collinear: (875,4375,4444),

(27919,40217,40730),

Pairs:

(1,764), (4,5489), (6,22260), (7,42462),

(8,21132), (25,394), (55,40166), (57,200),

(75,21143),(76,23099),(86,21131),(99,14444),

(145,23764), (324,418), (455,40144),

(459,3079), (671,14443), (756,8042),

(881,56981), (903,14442), (1022,3251),

(1026,3675), (1422,40212), (1641,14423),

(1646,41314), (1647,17780), (1648,5468),

(1649,5466), (1650,4240), (2421,44114),

(2433,58344), (2501,3265), (2528,58784),

(3051,8024), (3227,14441), (3233,12079),

(3234,15634), (3239,3676), (3572,27855),

(3733,4036), (3776,50514), (4024,7192),

(4358,8661), (4397,43924), (4500,4507),

(4608, 53587), (6358,40213), (6384,8026),

(6544,6548), (6549, 53582), (6557,15519),

(8012,59181), (8013,8025), (8023,8039),

(9178,54274), (13636,30508), (13722,30509),

(14163,14164), (14214,14215), (14401,34767),

(14434,43928), (14999,51428), (15630,15631),

(15632,15635), (16748,21820), (16892, 50521),

(20058,40472), (20696,20700), (21140,23354),

(21438,23655), (23891,52626), (28132,43930),

(33573,56543), (34760,41176), (35910,58343),

(36414,40146), (36890,58347), (40149,40152),

(43665,58262), (44426, 5241), (51227,58348),

(52617,57204), (52619,53581), (52620,53584),

(53149,53173), (53586,58860).

Table 1: Groups of triangle centers with
equal distance product.

Xi Ri=X. Xi Ri=X.

1 764 5468 1648
4 5489 6358, 40213 R6358

6 22260 6384, 8026 R6384

7 42462 6548 6544
8 21132 6557, 15519 R6557

25, 394 R25 8013, 8025 R8013

42, 321 8034 8023, 8039 R8023

55, 40166 R55 9178 54274
57, 200 R57 14999 51428

75 21143 17780 1647
76 23099 20058 40472
86 21131 20696, 20700 R20696

99 14444 23891 52626
145 23764 16748, 21820 R16748

324, 418 R324 23354 21140
455, 40144 R455 27919, 40217 R27919

459, 3079 R459 34760 41176
671 14443 34767 14401

756, 8042 R756 36414, 40146 R36414

903 14442 40149, 40152 R40149

1022 3251 41314 1646
1026 3675 43928 14434

1422, 40212 R1422 2433 58344
1641 14423 35910 58343

3051, 8024 R3051 36890 58347
3227 14441 43665 58262

3733, 4036 R3733 51227 58348
4240 1650 56543 33573
4358 8661
5466 1649

Table 2: The tangent of the triangle center
Xi meets the cubic ki at a further triangle
center given in the column Ri. If this re-
mainder is a known triangle center, then its
number is given.
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remainder of trilinear center function
25, 394 a(b2−c2)3(a2−b2−c2)2

55, 40166 a(b−c)3(a−b− c)·
·(ab+ca−b2−c2)3

57, 200 (b− c)3(a− b − c)2

324, 418 a3(b2−c2)3(a2−b2−c2)5·
·(a2b2+a2c2+2b2c2−b4−c4)

459, 3079 bc(b2−c2)3(a2−b2−c2)2·
·(3a4−2a2(b2+c2)− (b2−c2)2)

756, 8042 (b−c)(b2−c2)2(a2−bc)3

3051, 8024 a3(b2+c2)(b2−c2)3

3733, 4036 a(b−c)(b+c)2·
·(a3(b+c)+a2(b2+c2)−

−a(b3+c3)−b4−c4)3

6358, 40213 a(b+c)2(b−c)3(a−b−c)2·
·(a2−b2+bc−c2)3

6384, 8026 a(b− c)3(ab + ac− bc)2

6557, 15519 bc(b− c)3(a− b− c)·
·(3a− b − c)2

8013, 8025 bc(b−c)(b2−c2)2(2a+b+c)

8023, 8039 a7(b4+c4)(b2−c2)(b2+c2)3

16748, 21820 a4(b−c)(b2−c2)2(ab+ac+2bc)

36414, 40166 a3(b2−c2)3(b2+c2)3·
·(a4−b4−c4)2

40149, 40152 a(b+c)(b−c)3(a−b−c)2·
·(a2−b2−c2)2

27919, 40217 bc(b−c)3(ab+ca−b2−c2)·
·(a2−bc)2

Table 3: Tangential remainders common
to two centers on distance product cubics.
Only those center functions (first trilinear
coordinates) of reasonable length are given.
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Tangential remainders

i trilinear center function search-6-9-13 value i trilinear center function search-6-9-13 value

3 a(b2−c2)3(a2
−b2−c2)4 62.32822092189367 44 (b−c)3(2a−b−c)·

·(a−2b−2c)3 14.27293379474638

5 bc(a2
−b2−c2)3· 45 (b−c)3(a−2b−2c)·

·(a2(b2+c2)−(b2−c2)2) 5.08075321118240 ·(2a−b−c)3 17.54515704225141

7 bc(a−b−c)2(b−c)3 -7.25734135716562 55 a(b−c)3(a−b−c)·

·(ab+ac−b2−c2)3 10.54263482016639

9 (b−c)3(a−b−c)4 -34.83523851439501 56 a(b−c)3(a−b−c)2·

·(ab+ac+b2+c2)3 -2.26993220290925

10 bc(b2−c2)(b−c)2 -2.36106585447966 57 (b−c)3(a−b−c)2 -3.71034493822937

11 bc(a−b−c)(b−c)5 · 58 a(b−c)(b2−c2)2·

·(ab+ac−b2−c2)3 10.57329984291265 (ab+ac+b2+bc+c2)3 -1.45795477222064

20 bc(3a4
−2a2(b2−c2)− 63 (b−c)3(a2

−b2−c2)·

−(b2−c2)2) 176.82315634331623 ·(a−b−c)3 -57.29426844986488

21 (b−c)(a−b−c)· 65 (b+c)(b−c)3(a−b−c)2·

·(b2−c2)2(a2
−b2−c2)3 29.19736986425203 ·(a2+ab+ac+2bc)3 -4.33523005169485

22 a(b2−c2)3(a4
−b4−c4)· 66 bc(b4−c4)3(a4

−b4−c4)2 77.10999885446101
·(a2

−b2−c2)3 -223.89401674331905

23 a(b2−c2)3(a2
−b2−c2)3· 75 a(b−c)3 -0.86891361128715

·(a4
−b4+b2c2−c4) -28.06151358971226

24 a(b2−c2)3(a2
−b2−c2)2· 76 a3(b2−c2)3 -0.5829933417003

·(a4
−2a2(b2+c2)+b4+c4) 14.62241731719719

25, 81 (b+c)2(b−c)3 -1.7256277235825
394 a(b2−c2)3(a2

−b2−c2)2 -5.02132305357783

27 bc(b+c)2(b−c)3· 82 (b−c)3(b2+c2)2·
·(a2

−b2−c2)2 -23.86418264611576 ·(a2+b2+bc+c2)3 -2.7552998535293

28 (b+c)2(b−c)3(a2
−b2−c2)2 -7.98316487555603 83 bc(b2+c2)2(b2−c2)3 -6.1052017302889

31 a2(b−c)3(b2+bc+c2)3 -1.14992786985712 85 a(b−c)3(a−b−c)5 -52.6095855034850

32 a3(b2 − c2)3(b2 + c2)3 -0.94646193660754 86 bc(b+c)2(b−c)3 -2.8159081633291

37 a3(b+ c)(b− c)3 -0.49015639611069 87 (b−c)3(ab+ac−bc)5 -0.0012017084959

38 (b2+c2)(b−c)3(a2
−bc)3 -35.23250675370688 88 (b−c)3(2a−b−c)2 3.8941592730472

39 a7(b2 + c2)(b2 − c2)3 -0.19164804132159 89 (b−c)3(a−2b−2c)2 -2.2543301181918

43 (b−c)3(ab+ac−bc) -0.19597779819792 94 a3(b2−c2)3·

·(a2
−b2−bc−c2)2 -17.011141733428

98 bc(b2−c2)3· 99 bc(b2−c2)2(2a2
−b2−c2)3 14.834689935205

·(a2b2+a2c2−b4−c4)2 56.616091423347

100 (b−c)2(ab+ac−b2−c2)3 10.408092032867

Table 4: Tangential remainders (not listed in Kimberling’s encyclopedia of some trian-
gle centers. The remainders of centers are added to this list only if their trilinear center
function is of reasonable length.
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