
Equioptic curves of conic sections

B. Odehnal

August 16, 2010

Abstract

Given two plane curves c1 and c2 we call the set of points from which

c1 and c2 are seen under equal angle the equioptic curve. We give

some basic results concerning equioptic curves in general. Then we pay

our attention to the seemingly simple case of equioptic curves of conic

sections. Mainly we are interested in upper bounds of the algebraic

degree of these curves. Some examples illustrate the results.

1 Introduction

To any given plane curve c the locus i of points where c is seen under a given

fixed angle φ is called the isoptic curve of c. Curves appearing as isoptic

curves are well studied, see for example [4] and [8] and the references given

there. The papers [10, 11] deal with curves having a circle or an ellipse for

an isoptic curve.

The name isoptic curve was suggested first by Taylor in [7]. The kinematic

generation of isoptic and orthoptic curves is also studied there. The locus of

points where a tangent of c1 intersects a tangent of c2 at a certain angle φ is

considered as a generalization of the classical notion of isoptic curves. These

investigations also deal with the general forms of pedal curves. Especially the

isoptics of concentric cycloids are studied in [9].

Due to the algebraic nature of its definition it is clear that the isoptic of an

algebraic curve is also algebraic. The Plücker characteristics of the isoptic of

a curve c can be expressed in terms of the characteristics of c, cf. [6, 7].
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Isoptic curves of conic sections have been studied in [3] and [5]. It turned

out that the isoptic curves of ellipses or hyperbolae, i.e., conic sections with

center having an equation of the form

αx2 + βy 2 = 1 (1)

are quartic curves given by

i : (α+ β − αβ(x2 + y 2))2 sin2 φ− 4αβ(αx2 + βy 2 − 1) cosφ2 = 0. (2)

where φ is the desired optic angle.

It is not mentioned in the literature - though very easy to verify - that the

isoptic curves of parabolae with equation

2py = x2 (3)

are hyperbolae given by

(4x2 + (p − 2y)2) cos2 φ− (p + 2y)2 = 0. (4)

Fig. 1 displays some isoptic curves of the three affine types of conic sections.

Special cases of so called orthoptics, which are the isoptics for φ = π
2
are well

known in any case: If c is an ellipse with a and b for the lengths of its major

and minor axis, then the orthoptic curve is a concentric circle with radius√
a2 + b2. In case of a hyperbola c we find a circle concentric with c with

radius
√
a2 − b2 provided that a > b. The orthoptic curve of a parabola is its

directrix. This is clear when inserting φ = π

2
into the respective equations of

isoptics.1

Further it is worth to be noted that any quartic curve that appears as the

isoptic curve of a conic section c is the isoptic curve of a further conic section

c ′ 6= c at the same time, see [4].

The isoptics of conic sections are spiric curves, see [4, 8], which can be ob-

tained as planar intersections of a torus. Naturally these curves are bicircular

like the torus, i.e., the curves have double points at the absolute points (of

Euclidean geometry) whereas the surface has the absolute conic (of Euclidean

geometry) for a double curve, see [4].

1It is clear from Eq. (2) that the orthoptic of a conic section with center is also a quartic

curve. To be more precise it is a circle of multiplicity 2. Similiarly the orthoptic of a parabola

is a repeated line.
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Figure 1: Isoptics of a hyperbola, an ellipse, and a parabola.

So far we have collected some facts on isoptic curves and the interested reader

may ask himself: What has all this to do with equioptic curves? Consider a

point X on the equioptic curve e(c1, c2) of two different plane curves c1 and

c2.
2 The generic point X ∈ e is the common point of two tangents of c1

enclosing a certain angle, say φ. So X is a point of the isoptic curve i1(φ)

of c1 to the angle φ. Since X is also a common point of two tangents of

c2 enclosing the same angle φ, it is a point of the isoptic curve i2(φ) of c2,

cf. Fig. 2. Hence any point of the equioptic curve e(c1, c2) of curves c1 and

c2 is the intersection of two isoptic curves i1(φ) and i2(φ), respectively, for a

certain value of φ. So we have

e(c1, c2) = {i1(φ) ∩ i2(φ) : φ ∈ [0, 2π[}. (5)

It will turn out that the curve e has real branches even if φ is not real and

| cosφ| > 1. Basically, these branches consist of interior points of curves
(especially in the case of conic sections).

The aim of this paper is to give some basic results on equioptic curves. We

pay our attention to algebraic curves, especially to conic sections. Further we

want to show the algebraic way to find the equations of equioptics of a pair of

algebraic curves. For that purpose we describe curves in terms of Cartesian

coordinates in Euclidean plane R2. Whenever necessary we use the projective

closure and the complex extension of R2.

2At first we do not restrict the huge class of plane curves. We only assume that they

have tangents at any point, i.e., from the differential geometric point of view we assume that

the curves c1 and c2 are of class C
1.
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Figure 2: Two curves ci and a point X on the equioptic curve e, the tangents

Ti , T
′

i and the corresponding contact points Xi , X
′

i .

The paper is organized as follows: First we collect some facts on equioptic

curves of algebraic curves in general in Sec. 2 and then we focus on conic

sections and their equioptics in Sec. 3. Unfortunately pairings of different

affine types of conic sections need separate treatment. Sec. 4 is devoted

to the study of existence and the counting of equioptic points of three given

conic sections. Finally we conclude in Sec. 5 and address some open problems.

2 General remarks on equioptics

Let c1 and c2 be two algebraic curves of respective degrees d1 and d2. The

equation of either curve shall be given in implicit form by a polynomial Fi(x, y)

of degree di . We try to find an upper bound for the algebraic degree of the

equioptic e(c1, c2). For this purpose we write down the system of (algebraic)

equations determining the equioptic.

Any point X = [x, y ]T on e(c1, c2) is the locus of concurrency of two tangents

T1, T
′

1
of c1 and two further tangents T2, T

′

2
of c2. We assign the coordinates

Xi = [xi , yi ]
T, X ′i = [ξi , ηi ]

T to the contact points of the tangents Ti and T
′

i
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Eq. x1, y1 ξ1, η1 x2, y2 ξ2, η2 x, y

(6.1) d1 0 0 0 0

(6.2) 0 d1 0 0 0

(6.3) 0 0 d2 0 0

(6.4) 0 0 0 d2 0

(7.1) d1 − 1 0 0 0 1

(7.2) 0 d1 − 1 0 0 1

(7.3) 0 0 d2 − 1 0 1

(7.4) 0 0 0 d2 − 1 1

(8) 2(d1 − 1) 2(d1 − 1) 2(d2 − 1) 2(d2 − 1) 0

Table 1: Degrees of Eqs. (6), (7), (8).

with the respective curves ci , cf. Fig. 2. The contact points have to fulfil

F1(x1, y1) = 0, F1(ξ1, η1) = 0,

F2(x2, y2) = 0, F2(ξ2, η2) = 0.
(6)

Now we introduce the abbreviations gi := grad Fi(Xi) and g
′

i := grad Fi(X
′

i ).

The tangents Ti and T
′

i have to pass through X which gives further relations

between coordinates of contact points and the point X on e:

〈g1, X − X1〉 = 0, 〈g′1, X − X ′1〉 = 0,
〈g2, X − X2〉 = 0, 〈g′2, X − X ′2〉 = 0.

(7)

Finally the condition on the tangents T1 and T
′

1
to enclose the same angle as

T2 and T
′

2
is given by

〈g1, g′1〉2 · ‖g2‖2 · ‖g′2‖2 = 〈g2, g′2〉2 · ‖g1‖2 · ‖g′1‖2. (8)

Eqs. (6) and (7) together with Eq. (8) are nine equations in ten unknowns

X1, Y1, ξ1, η1, X2, Y2, ξ2, η2, x , y . In order to determine an equation of

e(c1, c2) one has to eliminate all but x and y from these equations.

Table 1 shows the degrees of the nine equations with respect to the unknowns.

One can easily see from Table 1 that the system of algebraic equations (6),

(7), and (8) is solved by successive elimination of variables. In a first cycle

we eliminate X1, ξ1, X2, and ξ2 by computing the resultants

Res((6.1), (7.1), X1), Res((6.2), (7.2), ξ1),

Res((6.3), (7.3), X2), Res((6.4), (7.4), ξ2),
(9)
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Eq. y1 η1 y2 η2 x, y

(9.1) d1(d1 − 1) 0 0 0 d1(d1 − 1)
(9.2) 0 d1(d1 − 1) 0 0 d1(d1 − 1)
(9.3) 0 0 d1(d1 − 1) 0 d2(d2 − 1)
(9.4) 0 0 0 d1(d1 − 1) d2(d2 − 1)
(10) 2d1(d1 − 1) 2d1(d1 − 1) 2d2(d2 − 1) 2d1(d1 − 1) 0

Table 2: The degrees of the resultants given in Eq. (9) and Eq. (10).

and

Res(Res(Res(Res((8), (6.4), ξ2), (6.3), X2), (6.2), ξ1), (6, 1), X1). (10)

Table 2 collects the degrees of the resultants in the remaining unknowns Y1,

η1, Y2, η2, and x , y .

The entries of the last column are actually max(di(di − 1), di) = di(di − 1),
since in general di 6= 0.

In order to obtain an upper bound for the degree of the equioptic curve, we

compute the final resultant of resultants

Res(Res(Res(Res((9.4), (10), η2), (9.3), Y2), (9.2), η1), (9.1), Y1). (11)

which is of degree d2
1
d2
2
(d1 − 1)2(d2 − 1)2. Hence we have:

Theorem 2.1.

Let c1 and c2 be two algebraic curves of degree d1 and d2, respectively. The

degree of the equioptic curve e(c1, c2) is at most

d2
1
d2
2
(d1 − 1)2(d2 − 1)2.

Remark:

1. There are several reasons why the actual degree of the equioptic curve

can be lower. The degree of resultants computed in (9), (10), and (11)

can be lower as expected, for example see [1, 2]. Sometimes resultants

can factor and the corresponding components may not be essential. An

example will show up in Sec. (3.1) when we deal with equioptics of

circles.
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2. The geometric definition of the equioptic curve somehow differs from

the algebraic definition. The algebraic formulation of the geometric

properties of the equioptic curves by means of Eqs. (6), (7), and (8)

is not flawless. Especially, after squaring the angle criterion in order to

get (8) it expresses the fact that cos2∠(T1, T
′

1
) = cos2∠(T2, T

′

2
). This

implies that either ∠(T1, T
′

1
) = ∠(T2, T

′

2
) or ∠(T1, T

′

1
) = π−∠(T2, T ′2).

Consequently the algebraically defined equioptic curve contains branches

where the tangents fulfil the desired condition, though the curves c1 and

c2 are not actually seen under the same angle.

This phenomenon will not occur when we compute the equioptic of

conic sections. These curves will be obtained by intersecting isoptics to

equal angles.

3. In general the curves defined by the resultant (11) contain the equioptics

defined by (5) and curves which can be called quasi-equioptics, i.e., the

locus of points where one curve is seen under the angle φ and the other

curve is seen under π − φ.

Furthermore we observe that parasitic branches of the equioptic curve e(c1, c2)

may occur. These are the sets of real points where no real tangents of either

curve may pass through. At these points | cosφ| > 1 and the angle enclosed
by tangents Ti and T

′

i is imaginary.

We observe the following properties of equioptic curves:

Corollary 2.1.

Let c1 and c2 be two (algebraic) plane curves. Denote the intersection points

by Si with and the common tangents by Lj .

1. The equioptic curve e(c1, c2) passes through the common points Si of

c1 and c2.

2. The equioptic curve e(c1, c2) contains the intersection points Li j :=

Li ∩ Lj of common tangents of c1 and c2 if both curves are locally in
the same halfplanes of both tangents Li and Lj , respectively.

Proof. 1. At a point Si ∈ {c1 ∩ c2} the curve c1 as well as c2 are seen
under the angle of 180◦.

2. Let Li j = Li ∩ Lj be one intersection point of i-th and j-th common
tangent of c1 and c2. At the point Li j the tangent Li plays the role of
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T1 and Lj that of T
′

1
, say. Further Li also plays the role of T2 and Lj

that of T ′
2
. Consequently ∠(T1, T

′

1
) = ∠(T2, T

′

2
).

3 Equioptic curves of conic sections

In this section we focus on equioptics of conic sections. We are not only

interested in the degree of such curves. We are also looking for special pairings

of conic section. The singularities of equioptics will also be payed attention

to.

According to Eq. (5) the equioptics of two conic sections c1 and c2 can be

found by writing down the equations of the respective isoptics i1(φ) and i2(φ).

Then we eliminate φ, i.e., we intersect any pair of isoptics to the same angle

φ. From the algebraic degrees of the isoptics we can conclude the following:

Theorem 3.1.

Let c1 and c2 be two conic sections given by irreducible quadratic equations.

Then the algebraic degree of the equioptic curve e(c1, c2) of c1 and c2 is

bounded by the following values:

1. The algebraic degree of the equioptic of two conic sections with center

is at most 6.

2. The algebraic degree of the equioptic of a conic section with center and

a parabola is at most 6.

3. The algebraic degree of the equioptic of two parabolae is at most 4.

Proof. A conic section of any affine type can be transformed into any conic

section of the same affine type by applying an affine mapping. Since we

are interested in certain relations on angles measured between tangents we

restrict ourselves to equiform mappings. The coordinate representation of an

equiform mapping in the Euclidean plane reads
[

x ′

y ′

]

=

[

a −b
b a

] [

x

y

]

+

[

c

d

]

, (12)

which is a Euclidean motion if and only if a2 + b2 = 1. So the only degrees

of freedom when mapping one conic section with center to another one are

the ratio α : β (cf. Eq. (1)), and the two coordinates of the center.
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1. The equioptic of two conic sections with center is obtained by eliminat-

ing φ from two equations of the form (2). Practically this can be done

be letting cos2 φ = K. The algebraic degrees are not harmed when

applying any affine (indeed projective) transformation in order to find

the isoptic of conic sections in more general positions. According to

Bézout’s theorem we can expect that any two isoptics i1(φ) and i2(φ)

to the same angle φ have deg i1 · deg i2 = 4 · 4 = 16 points in common.
Note that this is also true for the orthoptics since these are circles with

multiplicity two. Surprisingly we observe that the resultant of i1 and i2
with respect to K is a polynomial of degree 6 in the unknowns x and y ,

respectively.

The reduction of the degree is caused by the following facts: Since

both absolute points of Euclidean geometry are double points on either

isoptic ij(φ) (for any φ) exactly 8 of the common points coincide with

the absolute points. Further, the ideal line splits off with multiplicity

2 from the equation of the equioptic. (This can be seen by comput-

ing the homogeneous equation of the equioptic from the homogeneous

equations of the isoptics.) Note that from any real ideal point a conic

section with center can be seen under the angle of 0◦.

2. Any parabola can be obtained from the parabola c1 : 2py − x2 = 0
by a suitable equiform transform of the above given kind. Apply the

transform to the parabola as well as to its isoptic hyperbola given in

(4). Then eliminate φ from both, the equations of the isoptic i1 of the

parabola c1 and from the isoptic i2 of the conic section c2 with center

given in (2). This obviously results in a polynomial whose degree is at

most 6 in x and y .

3. For a pair of parabolae we go a similar way and end up with intersecting

two families of hyperbolae comprising the set of equioptic curves of the

two parabolae c1 and c2. So any two isoptics to the same angle intersect

in four points (algebraically counted).

Note that the results on degrees of equioptic curves of conic sections from

Th. 3.1 undershoot the upper bound given in Th. 2.1 by far. According to

Th. 2.1 the degree of e(c1, c2) could reach most 16, provided that c1 and c2
are conic sections, i.e., algebraic curves of degree d1 = d2 = 2.

Remark: The computation of the equioptic curve e(c1, c2) of two conic sec-

tions c1 and c2 can be performed by eliminating φ from the equations of the
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)i2(

π

3
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e(c1, c2)

e(c1, c2)

Figure 3: Points of the equioptic curve e(c1, c2) of two ellipses c1 and c2 can

be found as the intersection of their isoptic curves i1(φ) and i2(φ).

respective isoptic curves. For variable φ the curves i1(φ) and i2(φ) can be

viewed as level sets of two functions defined on the common plane of either

ci . In this sense the equioptic curve e(c1, c2) is the orthogonal projection of

the intersection of two graph surfaces to the plane of either ci .

As a consequence of Cor. 2.1 we have:

Corollary 3.1.

Assume c1 and c2 are two conic sections. Let the common points be denoted

by Si and the common tangents may be labelled by Li .

1. The four intersection points of c1 and c2 belong to the equioptic curve.

2. The six intersection points Li j = Li ∩ Lj of the four common tangents
of the conic sections c1 and c2 are contained in their equioptic curve

e(c1, c2) if both curves are locally in the same halfspace of both tangents

Li and Lj , respectively.
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c1

c2
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e(c1, c2)

S1

S2
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e(c1, c2)

e(c1, c2)

L1
L2

L3

L4

L12

L13

L14
L23
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Figure 4: Left: The common points of c1 and c2 belong to e(c1, c2). Right:

The points Li j of intersection of common tangents Li and Lj of c1 and c2 are

also contained in e(c1, c2).

Fig. 4 illustrates the contents of Cor. 3.1.

As mentioned earlier in this paper the orthoptic curve of an ellipse or hyperbola

is a circle. The orthoptic of a parabola is its directrix. This allows to count

the number of orthoptic points, i.e., points from which either curve can be

seen under right angles:

Theorem 3.2.

For two arbitrarily given conic sections c1 and c2 the number o of points where

both curves can be seen under right angles is at most 2. This bound is sharp

except the case, when c1 and c2 are parabolae.
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Proof. In the case of a conic section with center the orthoptic is a circle,

where as in the case of a parabola it is the directrix. In order to clarify the

number of orthoptic points one has to discuss the possible intersections of

circle and circle, or circle and line, or line and line.

The shape of the equioptic curve of two confocal conics is regulated by:

Theorem 3.3.

Let (c1, c2) be confocal conic sections such that c1 is chosen from one family

and c2 is chosen from the other family.

1. The equioptic curve of a pair (c1, c2) of confocal conic sections (with

center) is the union of the two-fold ideal line, two further pairs of con-

jugate complex lines, and a circle containing the four common points

of c1 and c2.

2. The equioptic curve of a pair (c1, c2) of confocal parabolae is the union

of a straight line connecting the common points of c1 and c2, the ideal

line and the pair of isotropic lines through the common focus of c1 and

c2.

Proof. 1. Assume c1 and c2 are given by an equation of the form (1). Let

α = 1/a2, β = 1/b2 and a > b for c1. Without loss of generality we can

assume that a > b. Further α′ = 1/(c2 − b2) and β′ = −1/(a2 − c2)
guarantee that c1 and c2 span a confocal family. Write down the isoptics

of either conic sections in homogeneous coordinates and eliminate the

angle (parameter). This yields

x2
0
(c2x2

0
−x2
1
−x2
1
)·

·((a2−b2)2x4
0
−2(a2−b2)x2

0
(x2
1
−x2
2
))+(x2

1
+x2
2
)2)=0.

(13)

The first factor corresponds to the two-fold ideal line.

The second factor is the equation of a circle centered at [0, 0]T with

radius c carrying real points if c2 > 0. In this case c1 and c2 have the

four real points

1√
a2 − b2

[

±
√

a(c2 − b2),±
√

b(a2 − c2)
]T

(14)

in common, which are located on the circle. This holds true even if

c2 < 0. Note that the tangents to this circle are bisectors of the angles

enclosed by c1 and c2 at their common points.

12



The third factor splits into the equations of the four isotropic lines

x ±
√

a2 − b2 ± iy = 0 (15)

through c1’s common foci.

2. Assume the parabolae are given by c1 : 2y − x
2

a2
+ a2 = 0 and c2 : 2y +

x2

b2
− b2 = 0. The equioptic curve has the homogeneous equation

x0(x
2

1
+ x2

2
)((a2 − b2)x0 + 2x2) = 0. (16)

The first factor is the equation of the ideal line and the second factor

corresponds to the isotropic lines through the common focus [0, 0]T.

The last factor is the equation of a real line which carries the intersection

points [±ab, 1
2
(a2 − b2)]T of c1 and c2.

F1F2

S1

S2S3

S4

c1

c2
e

F

c1 c2

e

Figure 5: Equioptic curves of pairs of confocal conic sections.

The equioptic curve e(c1, c2) of two conic sections c1 and c2 carries singular-

ities. It is possible to find some of them immediately:

Theorem 3.4.

1. The absolute points of Euclidean geometry are singular points on e(c1, c2).

2. The intersection points of the orthoptics of either conic section are

singular points on e(c1, c2).
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Proof. 1. Any isoptic curve of a conic section has double points at the

absolute points. As the points of the equioptic appear as the intersection

of two isoptics to the same angle both curves share their singularities

and so the family of intersection points also contains these points.

2. The isoptic curves to ellipses and hyperbolae for the angle π
2
are circles

actually having multiplicity 2 as is clearly seen from (2). The orthopic

of a parabola is its directrix which has also multiplicity 2 which follows

from (4) by substituting φ = π

2
. Obviously their common points have

at least multiplicity 2 and therefore they are singular.

c1

c2

e(c1, c2)

N1N2

o1

o2

c1

c2

e(c1, c2)

N1N2

o1

o2

N3

Figure 6: Singular points Ni on an equioptic curve e(c1, c2) of two conic

sections. Left: Two conics in general position. Right: The equioptic of a

parabola c2 with one of its osculating circles c1 has a further node at the

point of osculation.

Fig. 6 shows the generic case of singular points on an equioptic curve of

two conic sections. Further singularities can occur if the conic sections are in

higher order contact which is also illustrated in Fig. 6 at hand of an osculating

pair.
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e

X

A1

A2

c1

c2

Figure 7: Equioptic circle of two circles passing through the centers of simil-

itude Ai .

3.1 Equioptic of two circles

A circle c with center M = [m, n]T and radius R shall be given in terms of

Cartesian coordinates as

c : (x −m)2 + (y − n)2 −R2 = 0. (17)

The isoptic i(φ) is again a circle, centered at M, with radius R · cosec φ
2
and

thus described by the equation

i(φ) : (1−K)((x −m)2 + (y − n)2)− 22R = 0, (18)

where K := cos φ. It is worth to be noted that Eq. 18 is linear in K. This

will have much influence on the degree of the equioptic curve of two circles.

Now we assume that we are given two circles c1 and c2. Without loss of

generality we can assume that c1 is centered at [0, 0]
T and has radius R ∈

R \ {0}. The circle c2 shall be centered at [d, 0]T with d 6= 0 and its radius
shall be r ∈ R \ {0}.

We are writing down the isoptics i1(φ) and i2(φ) of c1 and c2, respectively, in

terms of homogenous coordinates by letting x = x1x
−1

0
and y = x2x

−1

0
and

eliminate the angle φ. This yields a homogenous equation of the equioptic

curve e(c1, c2) as

e(c1, c2) : x
2

0
((r2 − R2)(x2

1
+ x2

2
) + 2dR2x0x1 − d2R2x20 ) = 0. (19)
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c1

c2

e

e

o

Figure 8: The quasi-equioptic curve e of two circles is passing through the

four intersection points of the common tangents of c1 and c2 but not through

the centers of similitude.

This leads to the following result:

Theorem 3.5.

Let c1 and c2 be two circles with radii R and r and the distance d between

their centers. The equioptic curve e(c1, c2) of c1 and c2 is

1. the union of a circle containing the two centers of similitude of c1 and

c2, respectively, and the ideal line with multiplicity 2, if d 6= 0 and
r 6= R,

2. the union of the bisector of the centers (with multiplicity 1) and the

three-fold ideal line if c1 and c2 are congruent and

3. the union of the two-fold ideal line and a the pair of isotropic lines

through the common center if c1 and c2 are concentric.

Proof. 1. The centers of similitude of c1 and c2 are given by

S1 =

[

dR

R + r
, 0

]T

and S2 =

[

dR

R − r , 0
]T

and they annihilate the second factor of Eq. (19).

2. Insert R = r into (19) and note that d 6= 0.
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3. Insert d = 0 into (19) and note that R 6= r .

Remark:

1. In Fig. 7 we observe that four intersection points of the common tan-

gents of the two circles c1 and c2 are not located on the equioptic circle

e(c1, c2). From these four points one circle is seen under an angle of φ

whereas the other curve is seen under the angle π−φ. So these points
do not belong to the geometrically defined equioptic curve.

There is also a reason why these points are not located on the al-

gebraically determined equioptic curve: Earlier in this paper we have

noticed that the equations of the isoptic curves i1(φ) of ci the value K

shows up only linear. In the case of the isoptic of an ellipse or hyper-

bola K appear only in second powers, i.e., cosφ apears only in squares.

Therefore these equations give the equations for the isoptics to an angle

φ and the angle π − φ. This is not the case for the isoptics of circles.
Fig. 8 shows the locus e of points where c1 is seen under the angle φ and

c2 is seen under the angle π−φ. We call this curve the quasi-equioptic
of c1 and c2, respectively.

2. From points of the ideal line the curves c1 and c2 can be seen at equal

angles φ = 0 since any two tangents from ideal points to any curve are

parallel.

The five collinear points C1, C2 (centers of ci), S1, S2 (respective cen-

ters of similitude), and E (center of the equioptic circle) can be arranged

in quadruples in several ways and define cross ratios which are related

by

cr(E,C1, S1, S2) · cr(E,C2, S1, S2) = cr(C1, C2, S1, S2) = −1.

3.2 Equioptics of conic sections with a circle

This short section is exclusively devoted to the computation of algebraic de-

grees:

Corollary 3.2.

The algebraic degree of the equioptic curve of a conic section and a circle is

at most 6.
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Proof. At first we derive the equioptic curve e(c1, c2) of a conic section c2
with center and a circle c1. Without loss of generality we can assume that c2
is given by an equation of the form (1) and c1 is centered at [m, n]

T and has

radius R and is thus given by Eq. (17). Therefore the isoptics i1(φ) of c1 are

given by (18) and the isoptics of c2 have the equation (2). We eliminate φ

from (18) and (2) by letting K := cos φ and end up with an algebraic equation

of degree 6 in the unknowns x and y .

The proof is almost the same for the equioptic of a parabola and a circle.

Remark: We can use the projective closure of R2 and represent the isoptics

appearing in the proof of Cor. 3.2 by their respective homogeneous equations.

Eliminating K now results in a homogeneous polynomial of degree 8 which

always factors into x2
0
and a sextic form. Thus the ideal line (ofcourse with

multiplicity 2) is always a part of the equioptic of a circle and conic section

with center. This is not the case for the equioptic of a circle and a parabola.

4 Equioptic points

We call a point E(c1, c2, c3) equioptic point of three curves c1, c2, and c3 if

there are two tangents, say Ti , T
′

i of either curve ci passing through E such

that ∠(T1, T
′

1
) = ∠(T2, T

′

2
) = ∠(T3, T

′

3
).

It is obvious that equioptic points appear as the intersections of equioptic

curves. As a consequence of Th. 3.1 we can give an upper bound for the

number of equioptic points of three conic sections:

Theorem 4.1.

Assume that ci with i ∈ {1, 2, 3} are three conic sections. The number
v(c1, c2, c3) of equioptic points of the three conic sections c1, c2, and c3 is

bounded by 36.

Proof. Use Th. 3.1 and apply Bézout’s theorem.

Remark: The value v(c1, c2, c3) drops if parabolae and circles come into

play. The long-winded discussion of the number of equioptic points arbitrary

triplets of conic sections (classified with respect to affine or even Euclidean

properties) could be postponed to a forthcomming paper.
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We can state:

Lemma 4.1.

Three generic conic sections do not have orthoptic points. In other words: In

general there is no point from which three generic conic sections can be see

under the same angle.

Proof. We cannot expect that the three circles appearing as orthoptic curves

of three conic sections have common points (besides the absolute points of

Euclidean geometry).

For circles there is only the following result:

Lemma 4.2.

Three generic circles in arbitrary position with arbitrary radii have no proper

equioptic point. They can only be seen from any ideal point under the angle

of 0◦.

Proof. Three circles in general position with not necessarily equal radii de-

termine three circles as their orthoptic curves. These orthoptic circles are

concentric with the given ones and naturally they are of course also in gen-

eral position. Besides the absolute points of Euclidean geometry these three

circles do not share any point.

5 Conclusion

There are a lot of fine details to be studied. A matter of particular interest

could be the exact number of equioptic points of the three arbitrary algebraic

plane curves. The study of equioptic curves for special configurations of pairs

of conic sections is far from beeing complete. For example one can classify

pairs of conic sections from the viewpoint of Euclidean geometry and discuss

the corresponding equioptic curves. There are only a few of the singularities

detected so far. A huge amount of practical examples showed that in general

there a no more singular points than the four discovered. More singularities

on the equioptic curve appear if the conic sections are in higher order contact

as shown in one example. But this needs a close inspection. What is the

number and what are the types of singularities that can occur?
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There is still much to do for algebraic curves of higher degree, i.e., for example

of cubics, quartics, and so on. Under which circumstances do the degrees of

equioptic curves drop? Are singular points on the given curves points of their

equioptics? However, as long as the power of computers is not sufficient the

algebraic (or computational) approach will shipwreck.
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