
Examples of isoptic ruled surfaces

Boris Odehnal

University of Applied Arts Vienna, Vienna, Austria
boris.odehnal@uni-ak.ac.at

Abstract. The isoptic curve cα of a planar curve c is defined as the locus
of points where pairs of tangents of c intersect at an angle of α ∈ (0, π) .
The definition of isoptic curves (in the plane) cannot be carried over to
three-dimensional spaces. We present a generalization of isoptic curves
to a special class of ruled surfaces. For that purpose, we assume that a
developable (torsal) ruled surface R is given. Since R is enveloped by its
one-parameter family of tangent planes, we can ask for pairs of tangent
planes that enclose a fixed angle α ∈ (0, π) . The lines of intersection of
all such pairs of tangent planes will then be defined as the isoptic ruled

surface Jα of R. Especially, if α = π

2
, we shall call Jπ

2
the orthoptic

ruled surface. We shall give some general results on isoptic ruled surfaces
together with some examples.
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1 Introduction

In planar geometry, the locus cα of points from which a given curve c is seen
under a constant angle α is called the α-isoptic of c. These curves have gained
a lot of attention and were intensively studied at least in the case of conics,
see [8, 12] for the Euclidean plane. In [7], a tool for the treatment of isoptics in
the hyperbolic plane was developed. Considering the level sets of isoptic curves
(for varying optical angle α) of pairs of conics enables us to compute equioptic
curves, i.e., sets of points from which two different curves can be seen at the
same angle. For conics and other algebraic curves this was done in [10]. Curves
with a simple kinematic generation also allow for an exact computation of isoptic
curves. This is especially the case for trochoidal curves, see the results in [13,
14]. The determination of isotptic curves with a special predefined shape is a
much more complicated task (see [16, 17]). Curves which are there own isoptics
can only be determined approximately (cf. [11]) and contain the special case of
autoevolutes (as described in [15]).

The notion of an isoptic curve to a planar curve cannot be carried over to three-
dimensional Euclidean space R

3 in the same way. For a generic space curve
c, two arbitrary tangents will, in general, be skew. In computer graphics isoptic
surfaces have been defined by means of integral measures (see, e.g., [1]). Thus, the
isoptic surfaces become the loci of all vertices of cones that are tangent to a given
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surface and define a certain spatial angle measure. This leads to a well-defined
surface which can only be found numerically and point-wise. Therefore, we miss
an analytic description, i.e., an equation or a parametrization. The absence of
an explicit description of these isoptic surfaces does not support further study
of the surfaces.

We shall go another way: We restrict ourselves to the class of developable sur-
faces. Any developable surface is either a cylinder, a cone, or the envelope of the
one-parameter family of osculating planes of a non-planar space curve. This has
the advantage that we are able to define an optical angle as the angle between
two tangent planes of the underlying surface. Moreover, since a developable sur-
face is the envelope of a one-parameter family of planes, we only have to look
for the locus of intersection lines of pairs of tangent planes that enclose a fixed
angle. In [4], a spatial analogue to the Theorem of the Angle of Circumference is
presented. The ruled quadrics and quartics appearing as the locus of intersection
lines of planes from two pencils forming a fixed angle can be seen as the equioptic
surfaces of two straight lines (the axes of the pencils). The isoptic surfaces of
developable ruled surfaces are ruled surfaces and an analytical representation
can easily be computed, at least from the theoretical point of view.

The paper is organized as follows: In Section 2, we provide some general results
on isoptic ruled surfaces of cones and cylinders. Section 3 is devoted to the
study of isoptic ruled surfaces which are invariant with respect to special groups
of transformations such as the group of Euclidean motions and the group of
equiform motions. The huge variety of algebraic developables and their isoptic
ruled surfaces will only briefly be discussed in Section 4. Finally, in Section 5,
we shall provide some ideas for future research.

2 General results, elementary surfaces

Throughout this paper, we assume that a developable ruled surface R is given. R
is the envelope of the one-parameter family of osculating planes of a non-planar
space curve g, and at the same time, it is swept by the tangents of g, since any
two infinitely close osculating planes of g intersect in a tangent of g. The curve g
is called the curve of regression of R and the osculating planes of g are tangent
planes of R, see [6].

The following definition shall be the starting point of our investigations:

Definition 1. Let R be a developable ruled surface and let α ∈ (0, π2 ) be the
optical angle. Then, the α-isoptic Jα of R is the locus of intersection lines of all
pairs of tangent planes of R that enclose the angle α.

From the above definition it is clear that the α-isoptic of R is a ruled surface.

The most simple examples of developable ruled surfaces are cylinders and cones.
We can give the first nearly trivial results on isoptic ruled surfaces:

Theorem 1. (1) The isoptic ruled surfaces of cylinders are cylinders.
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(2) The isoptic ruled surfaces of cones are cones.

Proof. (1) Let us assume that Λ is a cylinder with generators parallel to the
z-axis. (The underlying Cartesian coordinate system, can always be chosen that
way.) Then, the tangent planes of Λ (that contain the generators of contact) are
also parallel to the z-axis. The [x, y]-plane meets Λ along a cross section l that
can be used as a directrix of Λ. Further, the traces of the tangent planes of Λ
in the [x, y]-plane are the tangents of l. The α-isoptic lα of l is the locus of all
points in the [x, y]-plane where tangents of l meet at the angle α and the lines
parallel to the z-axis through the points of lα form the isoptic ruled surface Λα

of Λ. Obviously, Λα is a cylinder (parallel to Λ).

(2) Assume that Γ is a cone centered at some point, say O. The tangent planes
of Γ pass through the cone’s vertex O. Therefore, the intersection lines of any
pair of tangent planes of Γ pass through O. This holds particularly true for those
tangent planes that enclose the fixed angle α. Thus, the isoptic ruled surface Γα

of Γ is also a cone centered at O. �

Remark 1. 1. According to Theorem 1, the isoptic ruled surface of a cylinder
Λ of revolution is the cylinder Λα of revolution erected above the isoptic lα
of an orthogonal cross section l of Λ: Since any orthogonal cross section l

of Λ is a circle, its planar isoptic lα is a circle, too. Therefore, Λα is also a
cylinder of revolution. If r > 0 is the radius of Λ, and thus, of l, then it is
elementary to verify that

rα = r cosec
α

2

is the radius of the isoptic circle lα of l, and consequently, it is the radius of
the isoptic cylinder Λα.

2. The isoptic ruled surface Γα of a cone of revolution Γ with an angle of
aperture 0 < 2ω < π is also a cone of revolution. The angle 2ωα of aperture
of the isoptic cone Γα is related to ω by

cosωα =

√

cos 2ω + cosα

1 + cosα
. (1)

This is can be verified as follows: Assume that Γ is given by the equation

Γ : x2+y2− z2

k2 = 0, where k = ctgω. Now, the tangent planes of Γ have the
equations τ(v) : k(cos vx+sin vy)− z = 0 with v ∈ (0, 2π). The rulings e of
the isoptic cone are the intersection lines of two different tangent planes. It
means no restriction to assume that e = τ(v)∩τ(−v) for a yet undetermined
v. Thus, e is parallel to e = (1, 0, k cos v). The condition <) (τ(v), τ(−v)) = α

yields

cosα =
1 + k2 cos 2v

1 + k2
=

1− k2 + 2 cos2 v

1 + k2
.

We arrive at (1), since

cosωα = cos<) (e, (0, 0, 1)) =
k cos v√

1 + k2 cos2 v
.
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We shall point out that the isoptic ruled surface of a cone is in a close relation
to isoptic curves in elliptic geometry: The cone Γ mentioned in the proof of
Theorem 1 defines a spherical curve γ by intersecting all rulings of Γ with the
Euclidean unit sphere S2 centered at O. (Conversely, any curve γ ∈ S2 defines
a unique cone.) The tangent planes of Γ meet S2 along great circles, i.e., the
straight lines in spherical geometry. Any pair of tangent planes of Γ that encloses
the angle α meets S2 along two great circles of S2 that intersect at the angle α.
Hence, the rulings of Γα intersect S2 in the points of the spherical isoptic γα (cf.
[2]) of the spherical image γ of Γ , see Figure 1.

Γ

γ

S2

Γα

γα

t1

t2

Fig. 1. The spherical isoptic curve γα of the spherical curve γ is the intersection of
the isoptic cone Γα of Γ . Note that the spherical tangents (great circles) t1 and t2 of
γ meet at a point of the spherical isoptic γα.

3 Helical and spiral developables

While helices are paths of points under one-parameter subgroups of the group
of Euclidean motions, helical surfaces are generated by applying such a one-
parameter subgroup to a curve. Thus, a helical surface is invariant under the
generating subgroup. This will simplify the computation of the isoptic ruled
surfaces in this case. This holds similarly true for curves and surfaces which are
invariant under one-parameter subgroups of the equiform motion group. Here,
the path curves are called cylindro-conical spirals and the invariant surfaces are
called spiral surfaces, cf. [5, 9].

The fact that helical and spiral developables are invariant with respect to the
generating subgroups has an important consequence for the respective isoptic
ruled surfaces:
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Theorem 2. The isoptic ruled surfaces of helical and spiral developables are
helical and spiral ruled surfaces, respectively.

Proof. The isoptic ruled surface of a helical developable R is the locus of intersec-
tion lines of pairs of tangent planes of R that enclose the fixed angle α ∈ (0, π

2 ).
Assume that τ1 and τ2 are two such planes that intersect along the line j (and
clearly, <) (τ1, τ2) = α). Applying the generating helical motion to τ1, τ2, and
j, leaves the angle between τ1 and τ2 unchanged and j sweeps a helical ruled
surface. Similar arguments hold for spiral developables and their isoptics. �

At this point, we shall emphasize that the isoptic ruled surface to a helical or
a spiral developable may consist of infinitely many branches. Once we fix the
tangent plane τ1, we will find infinitely many tangent planes τ2 of the given
helical (spiral) developable which are orthogonal to τ1. Therefore, the isoptic
ruled surfaces of helical and spiral developables can never be algebraic. During
the computation of the isoptic ruled surfaces, we will have to solve transcendental
equations in order to find the parameter values corresponding to τ2.

J

H
J

S

Fig. 2. Isoptic ruled surfaces J : to a helical developableH (left) and a spiral developable
S (right). In both cases, a portion of J between two horizontal planes is displayed.

3.1 Helical developables

We can define a helical developable R by prescribing its curve g of regression. For
that purpose, we assume g(t) = (r cos t, r sin t, pt) with t ∈ R is a parametrization
of the curve of regression and r, p ∈ R

+ are the radius and the pitch, respectively.
Obviously, this curve is generated by the helical motion with the z-axis for its
axis and the pitch p.

The one-parameter family of tangent planes ofR equals the one-parameter family
of g’s osculating planes. The binormals g3 of g are the normals of the osculating
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planes, and thus, they are parallel to ġ× g̈, where dots indicates differentiation
with respect to the parameter t and × is the canonical exterior product of two
vectors in R

3. Hence, the binormal vector field along g reads

g3 =
1

√

p2 + r2





p sin t
−p cos t

r



 .

For each t ∈ R, we can give the equations of the osculating planes σ as

σ(t) : p sin t x− p cos t y + rz = prt.

Now, we are looking for pairs of osculating planes of the helical developable R

that enclose the angle α and assume that u ∈ R \ {0}, and thus, u and −u are
two different parameters. Then, σ(−u) = τ1 and σ(u) = τ2 are two different
tangent planes of R and intersect along the straight line

e =
( ru

sinu
,w,

pw cosu

r

)

, with w ∈ R. (2)

The angle criterion <) (τ1, τ2) = α equals 〈g3(u),g3(−u)〉 = cosα (with 〈·, ·〉 de-
noting the canonical scalar product of two vectors in R

3) and yields the following
condition on the parameter u

cosα =
p2 cos 2u+ r2

p2 + r2
(3)

and with (2) we have the parametrization of exactly one line that is the inter-
section of a pair of tangent planes of R that enclose the angle α. Especially,

the orthoptic ruled surfaces are defined by cos 2u = − r2

p2 . Applying the underly-

ing (generating) helical motion with the pitch p yields a parametrization of the
isoptic helical ruled surface Jα.

Developable isoptic helical ruled surfaces

Among the isoptic helical ruled surfaces Jα, we may find developable ones. For
that purpose, we use the following fact: Let g = (d, w, kw) with fixed d, k ∈ R

(and w ∈ R) be the parametrization of a straight line g. We apply the helical
motion with pitch p to g and the helical ruled surface S swept by g is developable
if, and only, if

p = dk. (4)

From (2) we can read off d = ru
sinu

and k = p cosu
r

. The product of these values
has be equal to the parameter p of the helical motion. This yields

u cosu− sinu = 0 ⇐⇒ u = tanu, (5)

which is obviously independent of the parameter p. Since (5) has infinitely many
real solutions (cf. Figure 3, left), we can state:

Theorem 3. To each helical developable R there exist infinitely many torsal
(developable) helical ruled surfaces which are isoptic ruled surfaces of R. The
optical angles can be obtained by inserting the solutions of (5) into (3).
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3.2 Spiral developables

Again, we can start with the curve of regression g: Let g = exp(pt)(cos t, sin t, 1)
with spiral parameter p 6= 0 and t ∈ R be a parametrization of g. In the same
way as we have done in the case of helical developables, we compute the binormal
vector field as

g3 =
1

√

(1 + p2)(1 + 2p2)





−p(p cos t− sin t)
−p(p sin t+ cos t)

1 + p2



 ,

which yields the equations of g’s osculating planes

p(sin t− p cos t)x− p(cos t+ p sin t)y + (1 + p2)z = exp(pt).

Now, we let u ∈ R be some parameter. Then, τ1 = σ(−u) and τ2 = σ(u) are two
tangent planes of the spiral developable. These planes intersect along the lines

e(w) =







sinh pu

p sinu

0
p sinh pu cosu+cosh pu sin u

(1+p2) sinu






+ w





p

1
p cosu



 with w ∈ R. (6)

The analogue to the angle criterion given by (3) now reads

cosα =
p2 cos 2u+ p2 + 1

2p2 + 1
. (7)

Orthoptic ruled surfaces to spiral developables show up if cos 2u = −1− 1
p2 .

Developable isoptic spiral developables

In the case of spiral developables, we cannot apply such a simple criterion as the
one available for the helical surfaces. In order to find the developable surfaces
among the isoptic ruled surfaces of spiral developables, we apply the underlying
generating spiral motion (uniform equiform motion) to the lines (6). This yields
a rather complicated parametrization of a ruled spiral surface Jα. The developa-
bility of Jα is equivalent to the vanishing of the Gaussian curvature and results
in the condition

p tg u− tgh pu = 0, (8)

which relates the parameter(s) u chosen on the initial spiral developable with
the spiral parameter (see Figure 3, right).

We can summarize:

Theorem 4. Independent of the spiral parameter p, there exist infinitely many
developable spiral isoptic ruled surfaces Jα to a given spiral developable R. The
respective optical angles can be obtained from (8) and (7).
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u
u
−

tg
u

up
tg

u
−

tg
h
p
u

Fig. 3. Left: The zeros of (5) correspond to isoptic helical developables. Right: The
zeros of (8) correspond to isoptic spiral developables. The curves for some spiral pa-
rameters p are displayed.

4 Algebraic isoptic ruled surfaces

In this section, we shall compute the isoptic ruled surfaces of algebraic devel-
opables that allow a rational or even polynomial parametrization. Even with this
restriction, we will see the limits of the symbolic computational approach.

Assume that g = (g1, g2, g3) : R → R
3 is a polynomial vector function (and thus,

the parametrization of a space curve g in Euclidean three-space) which is at least
two times differentiable. Let d be the algebraic degree of g, i.e., d = max

i
(deg gi).

Following the computations we have done in the previous sections, the dual
curve g⋆ (or equivalently, the developable swept by g’s tangents) can then be
parametrized by

g⋆ = (det(g, ġ, g̈),−ġ× g̈).

Actually, g⋆ : R → R
4 is a parametrization of a curve in the projectively

extended dual space of the Euclidean three-space. Counting the degrees of the
derivatives, we can infer that deg g⋆ ≤ 3d − 3. In many cases, this is an upper
bound of the degree of g⋆.

The isoptic ruled surface Jα of the developable ruled surface R = g⋆ is the
locus of intersection lines of planes in g⋆. Therefore, it can be expected that
deg Jα ≤ 6d− 6.

Let u and v be two different parameter values. The corresponding planes of
g⋆ are the tangent planes τ1 = g⋆(u) and τ2 = g⋆(v). In order to shorten the
notation, we shall write gu := g(u) and gv := g(v). Hence, the rulings e of the
isoptic ruled surface have the Plücker coordinates

J=((ġu×g̈u)×(ġv×g̈v), (ġu×g̈u) det(gv, ġv, g̈v)−(ġv×g̈v) det(gu, ġu, g̈u)) . (9)

Formally, the polynomials gu and gv are the same polynomials. Thus, each
coordinate function of J is divisible by the factor u − v 6= 0 (which expresses
that τ1 6= τ2), and therefore, degJ ≤ 5d− 6− 1 = 5d− 7.

From J = (j, j) we can change to a parametrization of the ruled surfaces de-
scribed by J. To be more precise, J : R × R → R

6 is the Plücker coordinate
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representation, of a congruence of chords of the curve g. Within this congruence,
we find the isoptic ruled surfaces Jα of R by imposing the angle condition on
the pairs (τ1, τ2) of tangent planes of R. Since, by definition, α = <) (τ1, τ2), we
have

cosα =
〈ġu × g̈u, ġv × g̈v〉

‖ġu × g̈u‖ · ‖ġv × g̈v‖
.

Squaring the latter equation in order to make it a purely polynomial condition,
we find that the degrees of the numerator and the denominator of the right-
hand side are 8d − 12 at most. Further reductions of the degree will appear in
the case of so-called higher degree parabolae, i.e., curves of degree d which have
a (d− 1)-fold intersection with the plane at infinity.

An explicit computation of a parametrization jα of the isoptic ruled surface Jα
consist of several steps of elimination, either by means of the Groebner basis
algorithm or by means of resultants.

4.1 Some special polynomial curves

Cubic curves. The cubic space curves and their tangent developables serve as
illustrative examples. From the projective point of view, there exists only one
type of (non-planar) cubic space curve, cf. [3]. However, here the affine point
of view is of more importance. Thus, we distinguish between the following four
types of curves:
(i) cubic ellipses with one real ideal point (and a complex conjugate pair),
(ii) cubic hyperbolae with three different real ideal points,
(iii) cubic parabolic hyperbolae with two different real ideal points

(one of multiplicity two), and
(iv) cubic parabolae osculating the plane at infinity.

In any of the four cases, the developable R is cubic as a one-parameter family
of planes, quartic as a set of points. Thus, the intersection with any plane, and
especially with the ideal plane ω is a quartic curve rω of degree four and class
three. According to the above classification of cubic space curves, the shapes of
the curves rω are
(i) a double line plus a pair of lines (eventually one line from the pair coincides

with the double line making it a triple line,
(ii) a quartic with three cusps,
(iii) a cusped cubic with its inflection tangent, and
(iv) a conic with a double tangent.

In the cases (i) – (iii), the angle criterion

cosα = 〈g3(u),g3(v)〉 (10)

results in an algebraic equation of degree 12 relating the parameters u and v on
the cubic curve. The thus described algebraic curves in the parameter domain
are of genus 19 in any case. Things become simpler for the cubic parabola. Then,
the angle criterion defines an octic curve of genus five in the [u, v]-plane.
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The degrees of the isoptic ruled surface to arbitrary angles α 6= 0, π2 become
relatively high. Nevertheless, parametrizations can be derived from (9) and (10)
by eliminating either u or v.

It is not at all surprising that the orthoptic ruled surfaces are of less degree. For
the orthoptics of cubic developables, only the numerator of (10) matters. This
polynomial is a full square of a sextic polynomial in the cases (i) – (iii) and a
quartic polynomial in the case (iv) of cubic parabolae.

Explicit and useful parametrizations of orthoptic ruled surfaces can be given in
the case of the three-parameter family of cubic parabolae given by

p(t) =

(

At,Bt2,
1

3AC
(B4 + C2)t3

)

, (11)

t ∈ R and A,B,C ∈ R \ {0} are shape parameters. In this particular case, the
angle criterion (10) factors and yields

((B4 + C2)uv +A2B2)(B2(B4 + C2)uv +A2C2) = 0 (12)

which are the equations of two hyperbolae in the [u, v]-plane. This means that
the mapping u 7→ v that assigns each parameter value u on p precisely that
parameter value v that corresponds to the orthogonal osculating plane is a pro-
jective mapping. So we are bale to state

Theorem 5. The orthoptic ruled surfaces of the tangent developables R of all
cubic parabolae (11) consists of a pair of hyperbolic paraboloids.

Proof. The fact that the orthoptic surface splits into two parts is caused by the
splitting of the ortogonality condition (12). Each factor of (12) describes a linear
rational mapping u 7→ v, and thus, a projective automorphism on p and on the
ideal curve on R (cf. [3]).

The fact that Jπ

2
consists of a pair of hyperbolic paraboloids is best shown by

computation. Following beaten tracks, we find the equations of the orthoptics:

J1,π
2
: 9C(B4 + C2)(B2x+ Cz)z + 3A2B3(B4 + C2)y + A4B6 = 0,

J2,π
2
: 9B4(B4 + C2)(B2x+ Cz)z + 3A2BC2(B4 + C2)y + A4C4 = 0.

It is left to the reader to verify that J1,π
2
and J2,π

2
are hyperbolic paraboloids.

Hint: Look at the already factored quadratic terms. �

Note that the two hyperbolic paraboloids in Theorem 5 coincide, if two factors
of (12) are proportional. This is the case if, and only if, C2 = B4. A case with
two different orthoptics is shown in Figure 4 (left).

A singular quartic curve. Isoptic ruled surfaces and especially orthoptic
ruled surfaces can be computed to tangent developables R even if their curves g
of regression carry singularities. We shall have a look a the following example:
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2
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Fig. 4. Isoptic ruled surfaces: Left: two orthoptic hyperbolic paraboloids mentioned in
Theorem 5. Right: cubic isoptic with multiplicity two to the quartic developable from
Theorem 6.

The parametrization of a quartic space curve of the 2nd kind (cf. [3]) with a cusp
seems to be artificial at first glance:

p(t) =

(

1

2
At2,

1

3
Bt3,

B2(1 + C2)

8A(1 − C2)
t4
)

, t ∈ R, (13)

A,B ∈ R \ {0} and C ∈ R are shape parameters. However, it allows us to show
that the orthoptic surface has a very special shape:

Theorem 6. The orthoptic surfaces of the quartics in the three-parameter fam-
ily of tangent developables of the singular quartics of the 2nd kind given by (13)
split into a pair of cubic surfaces.

Proof. In this case, the angle criterion (10) splits into two quadratic factors:

((B2(1 + C2)uv + 2A2(1 + C)2)((B2(1 + C2)uv + 2A2(1− C)2) = 0

Again, there arise two projective mappings u 7→ v which together with (9) yield
parametrizations of the orthoptics. A subsequent implicitization confirms the
theorem. �

Figure 4 (right) shows the tangent developable of precisely that curve q in (13)
where the two cubic orthoptics coincide. This occurs if, and only if, C = 0.

5 Conclusion, future work

The class of isoptic ruled surfaces of developables invariant under certain groups
of motions is not very rich. However, this is not the case with algebraic de-
velopables. There is a huge variety of algebraic space curves and corresponding
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tangent developables that allow for a computation of orthoptics and general isop-
tics. Clearly, we are restricted to low degree examples, but this could be a minor
flaw. For example: The computation of isoptics to the developables of cubic
parabolas is sufficient if we want to study the behaviour of isoptic ruled surfaces
in the vicinity of a generic regular generator of a developable, since the local
cubic approximant of a space curve in the vicinity of a regular, non-inflection
and non-handle point is a cubic parabola.

The isoptic ruled surfaces of the tangent developables of quartic and quintic
space curves are as useful as the ones related to cubics. In the vicinity of a
handle point, a generic curve can be approximated by (t, t2, t4), while the two
types of spatial inflection points allow approximations in the form (t, t3, t4) and
(t, t3, t5), respectively. The computation of isoptics and orthoptics in these cases
is comparably simple.
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