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Abstract. The locus k. of all points where two different tangents of a
planar curve k£ meet at a constant angle « is called the isoptic curve of k.
We shall look for curves k that coincide with their isoptic curves ko, and
call them autoisoptic curves. Describing a planar curve k by its support
function d allows us to derive a system of two linear ordinary delay
differential equations that have to be fulfilled by d in order to make k an
autoisoptic curve. Examples of autoisoptic curves different from the only
known examples, namely logarithmic spirals, shall be given. We do not
provide the most general autoisoptic curves, since these involve ordinary
delay differential equations with time dependent delays. We only treat
the case of constant delays.
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1 Introduction

From any planar curve various other curves can be deduced or constructed:
Among them, we find the evolute, the family of involutes, offset curves (parallel
curves), isoptic curves (see [7,11]), equioptic curves (cf. [6, 8]), and many others.
Allmost all of these curves somehow have practical applications in geometry,
kinematics, and appear in different areas of physics, see e.g. [12].

Curves deduced from a curve k can even coincide with the original curve k, as is
the case with autoevolutes (see [13]) which are their own evolutes. An autoevo-
lute is also an autoisoptic curve, for there is a rigid right angle consisting of the
curve’s tangent 7' and normal N at any point P moving along k£ while N touches
k in a further point P* # P € k (see Fig. 3). Among the autoisoptic curves, we
find logarithmic spirals. However, deduced curves can be just congruent to the
initial curves as is the case with (straight) cycloids. Further, there exist curves
which are similar or congruent to their evolutes of a specific order, see [1,2].

Recently, it was noted in [9] that logarithmic spirals are autoisoptic curves. In
this note, we shall show that there are much more curves sharing this property
with the logarithmic spirals. Section 2 describes how planar curves can be repre-
sented via support functions. We shall derive conditions on the support function
of a planar curve in order to make it an autoisoptic curve in Section 3. This
will lead to a system of linear ordinary delay differential equations (henceforth



ODDES). Section 4 deals with exact solutions of a single equation out of the sys-
tem of ODDESs. The curves obtained that way will be called autoevolutoides and
could be seen as a generalization of the autoevolutes by WUNDERLICH (see [13]).
In Section 5, we attack the main problem, i.e., the solutions of both ODDEs.
Unfortunately, there exist only approximate solutions. If d: I C R — R solves
one of the equations, it will in general, not be an exact solution of the second
equation. We will also present some examples in Section 5.

2 Curve representation via support function

We aim at a compact notation, and therefore, we define
¢y :=cosxr and 8, :=sinz.

We deal with planar curves k and assume that their tangents T' can be given by
their equations in terms of Cartesian coordinates (z,y) as

T: —d(t)+xzc +yst =0 (1)

where d(t) : I C R — R is called the support function defined on some interval
and gives the oriented distance from 7' to the origin of the coordinate system,
see Fig. 1.
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Fig. 1. The support function d of a curve k and its tangent 1" at to.

The vector function ky = (c;, s¢) : I C R — S! is a unit normal vector of T
and, at the same time, the unit normal vector field of the curve k at the point
of contact with 7. If the support function d is at least r times differentiable,
then the envelope k of all lines T described by (1) is at least an r — 1 times
differentiable curve. It is well-known that the points k() of the envelope k can
be found by intersecting T'(to) with its first derivative $7T(t) = T(to) there.
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Consequently, k(t) := T'(t) N T(t) yields a parametrization k(t) : I — R of the
envelope k which can be written in terms of the support function as

k(t) = (dct —ds;,ds, —i—dct) (2)

where d is the (first) derivative of d with respect to the parameter ¢.

From the equation of k’s tangents (1) we can read off the unit normal vector
field ko of k as well as the unit tangent vector field ki (t) = (s, — ¢, ). Here, the
orientation of k; is chosen such that a positive quarter turn of k; yields ks.

The representation of k by means of its tangents (1) allows us to describe tan-
gents T, that enclose a certain prescribed angle « € ]0, [ with any given tangent
T by simply replacing ¢t with ¢ 4+ «, and thus,

To: —da+TCra +YStra =0, (3)
provided that ¢t € I and t + « € I hold and
do = d(t + ).

The representation of planar curves via support functions has some advantages:
Tangents and normals are known from the very beginning. Further, the curvature
radius p(to) of k at k(to) equals p(to) = d(to) + d(to). Evolutes of any order can
easily be given using (2), see [7,11].

3 Delay differential equations for autoisoptic curves

Fig. 2. The tangents of an autoisoptic curve and the enclosed angles.

Now, we shall find the conditions on the support function d in order to make k
an autoisoptic curve. If k£ is an autoisoptic curve, then there are two different
tangents Ty, T3 (with o # ) touching k at k(to + ), k(¢o + ) passing through



the point k(to) as indicated in Fig. 2. Necessarily, the instances to + « and to + 8
have to lie in I. Thus, the parametrization k from (2) annihilates the equations
of both tangents T, and T3 where the latter is obtained from (3) by replacing o
with . This gives two independent linear ordinary delay differential equations
that read

do —dcy —ds, =0,

: (4)
dﬁ —ng —d85 =0.

The tangents T, and T enclose the angle w = |a — ] (o # ) and, if (4) is
fulfilled, k is its own isoptic curve to the optical angle w. We can state:

Theorem 1. A curve k C R? with support function d : I C R — R is an
autoisoptic curve if, and only if, d solves (4).

Proof. We have to show that the conditions on d given in (4) are necessary and
sufficient.

From the computation of (4), it is clear that these are necessary conditions.
In order to show that (4) are also sufficient in order to make k (parametrized by

(2)) an autoisoptic curve, we prove that the intersection k(t) of T, (t) and T(t)
is identical with k(t) (for all t € I). We find k(t) = T, (t) N Ts(t) as

E(t) = ﬁ (da St+8 — dﬁ St4a s dﬁ Ct4a — da Ct+ﬁ) .
The points k(to) and k(o) are identical if, and only if, |k(to) —k(to)|| = 0 which
results in

(d2 + d2) s%_ﬁ—i—di + d% +dda(copg—a—Cq) +ddg(con—g—cp)— 5)
—2 Sa—p3 d(da Cp —dlg Cq ) =0.

Indeed, (5) is satisfied if both equations from (4) hold for any to € I. [

We shall point out that the necessary, but by no means sufficient criterion
det (k(to),k(to)) = 0, i.e., the linear dependency of k(to) and k(to) which reads

d(daCB —dﬂca)—d(dgsa —daSB)ZO

also holds true, provided that (4) is true, since then the left-hand-side of latter
equation also vanishes.

Remark 1. The most general case is covered if we assume that o : I — R and
B : I — R arereal-valued functions on the desired interval I. Then, (4) are linear
ODDESs with time-dependent delays which makes a solution more involved. We
shall not discuss this case here.
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4 Exact solutions

At first, we have to emphasize that if d: T C R — R is a solution of (4), then
all scalar multiples A -d : I — R (A € R) are also solutions of (4). Moreover,
if dje : I — R are two different solutions of (4), then any linear combination
0-d+e-e: I — R (with §,¢ € R) also solves (4). Thus, it is sufficient to find
a collection of basic functions that solve (4) and use them as a basis in order to
generate more general solutions as linear combinations.

4.1 One equation

Let us consider only one of the equations given in (4). Usually, such an equation
is solved for the derivative of the undetermined function d which gives

. 1 o
d= —do — 224. (6)

Sa Sa

According to [4, 5], the exact solution of (6) is the infinite sum

M) = 3 g (7

j=—o00

with a; = i and W(j, a1) denoting the j-th branch of the Lambert W function.

While the principal branch W(0, z) of the Lambert W function is a real value as
long as & > —e~ !, the values W(j,7) and W(—j,x) are complex conjugate for
any x > —e~! and any j € Z*. If the argument of the W function turns out to
be less than —e™!, we have to be aware of the fact that W(—j,z) = W(j — 1, 2)
holds for all j € Z. We will keep this in mind, when we derive general solutions
in Section 4.3.

Therefore, the coefficients ¢; in (7) should be determined properly in order to
obtain a real function d(t).

Considering just one equation means that either § = « or § = 0 which is
equivalent to Tg = T,, or Tg = T'. These curves are characterized by sending
only one further tangent 7T, from each point to the curve itself, and therefore,
they can be viewed as autoevolutoides.

4.2 Autoevolutes: 8 =a = 3

Assuming f=a=7F causes T, =Tp =T and (4) reduces to a single equation:

dz —d=0 (8)

which can also be achieved by a =0, 8 = 3, i.e., T = T and T, = T. Still, this
equation characterizes the support function of autoisoptic curves. However, in



this case two different tangents of the curve k meet at a right angle in the point
P = k(tp) on k and one of the tangents is k’s normal at P which happens to be
tangent to k precisely at P*, the center of curvature of k at P, see Fig. 3. Thus,
k is its own evolute, and therefore, k is called an autoevolute. These curves are
intensively studied in [13] and a kinematic generation is also given there. The

Fig. 3. Left: Logarithmic spirals are autoevolutes and autoisoptic curves as well. Right:
An autoevolute composed of four elementary solutions. The inner part is of hypospi-
raloid type which turns to a curve that looks like a logarithmic spiral.

equation (8) can also be found in [13]. Starting from basic solutions which are
logarithmic spirals, Wunderlich created the general solutions of (8) by means
of linear combinations of elementary solutions. Naturally, the general forms of
autoevolutes are spiraloid curves (see [11]) and sometimes a transition from a
hypospiraloid to an epispiraloid can be observed with autoevolutes. This fact is
illustrated in Fig. 3 and will also occur at general forms of autoisoptic curves.

The logarithmic spiral is by no means a trivial example of an autoisoptic curve.
Due to its invariance under certain one-parameter subgroups of the group of
equiform motions, it is an autoisoptic curve to infinitely many optical angles at
the same time (see Fig. 4). This corresponds to the infinitely many branches
of the Lambert W function returning either infinitely many spiral parameters
p when we insert d(t) = ePt with p € R*, or returning infinitely many optical
angles o € R, when fixing p € R*.

4.3 Autoevolutoides a = 3 # 3

Now, the angle o enclosed by the second curve tangent T, and 7' that passes
through P = T'N T shall differ from /2. Evolutoides in general, may also be
generated by moving a straight line along a given curve k such that it encloses
the fixed angle o with the tangents of the curve. If there exists an envelope of
all these lines, it could be called the a-evolutoid. However, a generic evolutoid
will not be an autoevolutoid. We have:
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Fig. 4. Left: The equiform motion that generates the logarithmic spiral moves the fixed
and rigid angle along the curve. Right: The logarithmic spiral is by no means a trivial
example of an autoisoptic curve: It is an autoisoptic to infinitely many optical angles
at the same time.

Theorem 2. The support function d of autoevolutoides, i.e., curves k that send
from each point P =T NT € k a further tangent T, # T, T with LT, Ty) = «
to k, solve the first equation of (4), and, vice versa.

We do not have to show that these conditions are sufficient and necessary, since
we have done so in the proof of Thm. 1.

The support function of a logarithmic spiral equals d(t) = eP! (with spiral param-
eter p € R* and ¢t € R) and leads to a huge variety of examples of autoevolutes
and autoevolutoides which are also autoisoptic curves.

We can try the ansatz d(t) = eP* with p € R* and with (4) we find
ePY — ¢y —psa =0 9)

which relates the optical angle o and the spiral parameter p. Moreover, (9) is
the characteristic equation of the ODDE (6). The solutions of (9) are called the
eigenvalues of the ODDE and the spectral analysis becomes more involved, since
(9) is transcendental and has infinitely many zeros for arbitrary a # jm (with
JjEZ).

Explicit solutions of (9) for p can be given in terms of the Lambert W function:

p=—ctga— IW (j, — = exp(—a- ctga)) (10)

where W(j, z) denotes the j-th branch of the Lambert W function. The principal
branch corresponds to j=0 and is usually simply denoted by W(z).

Any complex solution for p of (9) has a conjugate solution. As described earlier,
linear combinations of any solutions of the ODDE are also solutions to the same
ODDE, the real sum of any pair of complex conjugate solutions results in a
real solution. However, the difference of a complex conjugate pair is a purely
imaginary number and - by dividing it by 2i - it gives also rise to a real number.



Replacing the principal branch of W in (10) by the j-th branch, we find a complex
spiral parameter for a logarithmic spiral as

P = —Ctga - éw (.77 _% eXp(_Oé : Ctga)) =4 + T‘jl

1

Assuming that — - exp(—a - ctga) < —e™ ", we have p_; = p; = ¢; — ir;.

The elementary solutions of (4) are 0; = exp(p;t) = exp(gjt)(cp,;¢ +is, ¢ ). Since
linear combinations of elementary solutions produce further solutions of (4), we
can build the sum as well as the difference - the latter is to be divided by i - in
order to get real solutions of (4). Thus, we obtain the real elementary solutions

2(1]‘ =0j+0_; and ij = —i(Uj — U_j>
which read
a; = exp(pjt) cos(g;t) and b; = exp(p;t)sin(g;t). (11)

It would not be necessary to divide the sums and differences of elementary
solutions by 2, since this causes only a scaling of the basis functions. The real
solutions of (4) in the most general form depend on two one-parameter families
(A\j)jer and (u;)jer of real coefficients (with I € N being some index set):

N
d(t) =Y Njaj + psb; (12)
j=1

where N := #1 shall be called the order of the autoisoptic curve.

Fig. 5. Autoisoptic curves that are also autoevolutoides: At some points k(¢;) on the
curve, the tangents there and the tangents to the points k(t; + «) are drawn a=—37

3
and t € [-3m,97] (left), o=—Im and t€[—8m,4n] (right).

Fig. 5 (left) shows an example of an autoisoptic curve k of order three with a =
— 3. The tangents at points k(t;) enclose the angle = —87= 17 (mod 2) with
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the tangents drawn to the point k(¢; + «). The spiraloid behavior of the curve
which is clear from its mathematical representation is clearly seen. Fig. 5 (right)
T 2

shows an example of an autoisoptic curve of order three with a = —g7m = 57

mod 27). Since this curve is also an autoevolutoid, it carries its cusps.

5 Two equations and approximations

According to Theorem 1, the support function d of an autoisoptic curve k has to
fulfill both linear ODDESs given in (4). Since the eigenvalues of one equation, say
the first, will differ from those of the second as long as « # 3, the elementary
solutions of the second equation will be different from the first collection of
elementary solutions.

Therefore, we claim that there exist only numerically defined approximative
solutions of the system (4), at least for the case of constant delays «, 8. Numerical
solutions can, for example, be generated with MAPLET™ (version 2016 and newer)
or with MATLAB™™ . We will not use the algorithms implemented in any software.
It seems more appropriate to use standard techniques from approximation theory
and functional analysis that can be found in [10]. Some of the algorithms can be
found therein and shall not be explained in detail here.

5.1 Approximation in the space of elementary solutions

With (11) and (12) we can solve both ODDEs given in (4). This yields two
different functions, since the elementary solutions of the two ODDEs will in
general not agree. The coefficients \; and p; in (12) are still unknown and
may be determined such that we obtain a function d* : I € R — R within
the space of basic functions that is close to solve both ODDEs. Approximation
techniques yield these coefficients and a finite linear combination of elementary
functions that is close to solve both ODDEs (4). We shall give a few images of
such numerically defined approximations in order to show the variability of these
curves.

Fig. 8 shows that the support function d* (approximating a bunch of elementary
solutions of both ODDEs (4)) of the curve shown in Fig. 7 (left) is close to
annihilate both ODDEs (4). The absolute values of d* evaluated at both ODDEs
are close to zero in both cases compared to the absolute values of the support
function d*. Fig. 9 shows two more approximative solutions of (4), one showing
hypospiraloid behavior (left), one showing epispiraloid behavior (right).

5.2 Approximation with power series

Assuming that there exist an analytic function d : I C R — R that solves both
equations in (4), we can expand it in power series of the form

N

d(t) =Y vt (13)

=0
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Fig. 6. Hypospiraloid (left) and epispiraloid (right) as autoisoptic curves.

Fig. 7. Two approximations in the space of basic elementary solutions.

Fig. 8. The support function d* of the curve in Fig. 7 (left) is a very good approximation
of the solutions of both ODDEs.



Autoisoptic curves 11

0.5

e

Fig. 9. Two further approximations in the space of basic elementary solutions.

Inserting this into (4), we can derive a system of linear equations in the yet
unknown coefficients v;. As a matter of fact, it is mere technique to solve this
system of equations. Numerical instability caused by exaggerated accuracy, i.e.,
the choice of a too large IV, also produces strange results. In the solutions can
be trusted in a vicinity of ¢ = 0 (provided the series are developed there).

Fig. 10. The polynomial approximations imitate the shape of the curves found by
interpolation in the space of elementary exponential solutions up to a certain extent
depending on the degree of the power series.
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Conclusion

The case of time dependent delays is not treated here, since ODDEs with time
dependent delays will in general have no closed solutions, i.e., solutions defined
by elementary analytic functions. Exact solutions may exist only in very rare
cases, if at all.
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