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Abstract

The locus of points where two non-concentric circles c1 and c2 are seen under equal

angles is the equioptic circle e. The equioptic circles of the excircles of a triangle ∆

have a common radical axis r. Therefore the excircles of a triangle share up to two real

points, i.e., the equioptic points of ∆ from which the circles can be seen under equal

angles. The line r carries a lot of known triangle centers. Further we find that any

triplet of circles tangent to the sides of ∆ has up to two real equioptic points. The three

radical axis of triplets of circles containing the incircle are concurrent in a new triangle

center.
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1. Introduction

Let there be given a triangle ∆ with vertices A, B, and C. The incenter shall be denoted
by I, the incircle by Γ. The excenters are labeled with I1, I2, and I3. We assume that I1 is
opposite to A, i.e., it is the center of the excircle Γ1 touching the line [B,C] from the outside
of ∆, cf. Fig. 1. Sometimes it is convenient to number vertices as well as sides of ∆: The side
(lines) [B,C], [C,A], [A,B] shall be the first, second, third side (line) and A, B, C shall be
the first, second, third vertex, respectively. According to [1, 2] we denote the centers of ∆
with Xi. For example the incenter I is labeled with X1.

The set of points where two curves can be seen under equal angles is called equioptic curve,
see [3]. It is shown that any pair (c1, c2) of non-concentric circles has a circle e for its equioptic
curve [3]. The circle e is the Thales circle of the segment bounded by the internal and external
centers of similarity of either given circle, i.e., the center of e is the midpoint of the two centers
of similarity, see Fig. 1. In case of two congruent circles e becomes the bisector of the centers
of c1 and c2, provided that c1 and c2 are not concentric.

The four circles Γ, Γi (with i ∈ {1, 2, 3}) tangent to the sides of a triangle ∆ can be arranged
in six pairs and, thus, they define six equioptic circles. Among them we find four triplets of
equioptic circles which have a common radical axis instead of a radical center, i.e., the three
circles of such a triplet form a pencil of circles. These shall be the contents of Sec. 2 and Sec.
3.

We use homogeneous trilinear coordinates of points and lines, respectively. The homogeneous
triplet of real (complex) numbers (x0 : x1 : x2) are said to be the homogeneous trilinear
coordinates of a point X if xi are the oriented distances of X with respect to the sides [B,C],
[C,A], and [A,B] up to a common non vanishing factor, see. [1]. When we deal with trilinear
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Figure 1: Left: Notations in and around the triangle ∆. Right: Equioptic circle of two circles.

coordinates of points expressed in terms of homogeneous polynomials in ∆’s side lengths
a = BC , b = CA, and c = AB we use a function ζ with the property ζ(f(a, b, c)) = f(b, c, a)
and further a function σ with σ(X0 : x1 : x2) = (x2 : x0 : x1).

In this paper mappings will be written as superscripts, e.g., σ ◦ζ(X) = Xσ◦ζ = Xζσ if applied
to points. Note that ζ ◦ σ = σ ◦ ζ , provided that xi are homogeneous functions in a, b, c.

2. Equioptic circles of the excircles

In order to construct the equioptic circles of a pair of excircles we determine the respective
centers of similarity. First we observe that the internal centers of similarity of Γi and Γj is
the k-th vertex of ∆, where (i, j, k) ∈ I

3 := {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Second we have to
find the external centers of similarity. For any pair (Γi,Γj) the k-th side of ∆ is an exterior
common tangent of both Γi and Γj, respectively, and thus [Ii, Ij] and the k-th side of ∆ meet
in the external center of similarity Sij of Γi and Γj . Now we are able to show a first result:

Corollary 2.1.

The external centers of similarity Sij of the excircles Γi and Γj of a triangle ∆ are collinear.
The line carrying these points is the polar of X1 with respect to ∆ and the polar line with
respect to the excentral triangle of ∆ at the same time.

Proof. We construct the polar line of the incenter X1 with respect to ∆. For that purpose
we project I from C to the line [A,B]. This gives S3 := [A,B] ∩ [I, C]. Then we determine
a fourth point C ′ on [A,B] such that (A,B, S3, C

′) is a harmonic quadrupel. The four lines
[C,A], [C,B], [C, I], and [I1, I2] obviously form a harmonic quadrupel and thus any line (which
is not passing through C) meets these four lines in four points of a harmonic quadrupel. So
we have C ′ = [I1, I2] ∩ [A,B] and obviously C ′ = S12. Cyclically reordering labels of points
and numbers we find S23 and S31 which are collinear with S12 and gather on the polar of X1.
On the other hand we have the harmonic quadruples (I1, I2, C, S12) (cyclic) which shows that
[S12, S23] is the polar of X1 with respect to the excentral triangle.

The centers Tij of the equioptic circles eij are the midpoints of the line segments bounded by
Sij and the k-th vertex of ∆ with (i, j, k) ∈ I

3. In terms of homogeneous trilinear coordinates
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we have

S12 = (−1 : 1 : 0), Si+1j+1 = Sσ
ij.

The centers Tij are thus

T12 = (c : −c : a− b), Ti+1,j+1 = T σζ
ij (1)

and we can easily prove:

Corollary 2.2.

The centers Tij of the equioptic circles eij of any pair (Γi,Γj) of excircles of ∆ are collinear.
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Figure 2: Centers of similarity Sij , the centers of the equioptic circles Tij , and harmonic
quadruples.

Proof. The coordinate vectors of Tij given in (1) are linearly dependent.

Remark 1. The line t connecting any Tij with any Tjk (with (i, j, k) ∈ I
3) has trilinear

coordinates [λ0 : λ1 : λ2], where λ0 = a(−a + b + c) and λi = ζ i(λ0) with i ∈ {0, 1, 2}.
Obviously t is the polar of X55 with respect to ∆. The center X55 is the center of homothety
of the tangential triangle, the intangent triangle, and the extangent triangle, see [1]. Further
it is the internal center of similarity of the incircle and the circumcircle of ∆.

We use the formula for the distance of two points given by their actual trilinear coordinates
given in [1, p. 31] and compute the radii ρijof the equioptic circles cij and find

ρ12 = dist(C, T12) = dist(S12, T12) =
ab

a− b
sin

C

2
,

ρi+1j+1 = ζ(ρij).
(2)
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By means of the distance formula from [1, p. 31] or equivalently by means of the more
complicated equation for a circle given by center and radius from [1, p. 223] we write down
the equations of the equioptic circles

e12 : − cA x2
0 + cB x2

1 + (1− cC)x2(x1 − x0) + (cB − cA)x0x1 = 0,
ei+1j+1 = ζ(eij),

(3)

where cA, cB, and cC are shorthand for cosA, cosB, and cosC, respectively. Now it is easy
to verify that the following holds true:
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Figure 3: The equioptic circles and equioptic points of a triangle.

Theorem 2.1.
1. The three equioptic circles of the excircles of a generic triangle ∆ have a common radical

axis r and thus they have up to two common real points, i.e., the equioptic points of the
excircles from which the excircles can be seen under equal angles.

2. The radical axis r contains X4 (ortho center), X9 (Mittenpunkt), X10 (Spieker center),
and further Xi with

i ∈ {19, 40, 71, 169, 242, 281, 516, 573, 966, 1276, 1277, 1512,
1542, 1544, 1753, 1766, 1826, 1839, 1842, 1855, 1861, 1869,
1890, 2183, 2270, 2333, 2345, 2354, 2550, 2551, 3496, 3501}.

(4)

Proof. 1. Let P1 := µe12+ νe23, P2 := µe23+ νe31, and P3 := µ e31+ νe12 be the equations
of the conic sections in the pencils spanned by any pair of equioptic circles eij. We
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Figure 4: The line [X4, X9] and a bunch of triangle centers on it. Some of the centers
mentioned in Th. 2.1 are not depicted for they are far out and especially X516 is the ideal
point of the line [X4, X9]. The base triangle is acute.

compute the singular conic sections in the pencils and find that for all pencils the real
singular conic sections consist of the ideal line ω : ax0 + bx1 + cx2 and the line

(b− c) cA x0 + (c− a) cB x1 + (a− b) cC x2 = 0, (5)

which is the radical axis of these three equioptic circles.

2. In [1, pp. 64 ff.] we find X4 = [cosecA : cosecB : cosecC] and X9 = [b + c − a, c +
a− b, a+ b− c] and obviously these coordinate vectors annihilate Eq. (5). By inserting
the trilinears of the other points mentioned in the theorem we proof the incidence. The
trilinears of points Xi with i ≤ 360 can be found in [1] whereas the trilinears for i > 360
can be found in [2].

In Fig. 3 the equioptic circles as well as the equioptic points of an acute triangle are depicted.
Fig. 4 shows some of the centers mentioned in Th. 2.1 located on r. Here, the base triangle
is acute. Fig. 5 shows the centers on the line r = [X4, X9] for an obtuse base triangle.

Remark 2. The circles in the pencil of circles spanned by the equioptic circles can share two
real points, one real point with multiplicity two, or no real points. Thus a triangle has either
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Figure 5: The line [X4, X9] and a bunch of triangle centers on it. Some of the centers
mentioned in Th. 2.1 are not depicted for they are far out and especially X516 is the ideal
point of the line [X4, X9]. The base triangle is obtuse.

two real equioptic points (cf. Fig. 4 or Fig. 8), or a single equioptic point (cf. Fig. 7), or no
real equioptic point as is the case in Fig. 5.

In case of an equilateral triangle ∆ there is only one equioptic point E that coincides with the
center of ∆. The three equioptic circles become straight lines: eij is the k-th interior angle
bisector and the k-th altitude of ∆. Fig. 6 illustrates this case. From E any excircle ij can be
seen under the angle arccos

(
−1

8

)
≈ 97.180756◦.

The case of a single equioptic point is illustrated in Fig. 7 at hand of an isosceles triangle. It
is easily shown that in this case one has to choose ∠ACB = 2 arcsin(

√
3− 1) ≈ 94.11719432◦

in order to have a unique equioptic point. Thus the triangle is obtuse. The unique (real)

equioptic angle now equals 2 arcsin
(

3−
√
3

2

)
≈ 78.68794716◦.

Here and in the following we use the abbreviations â = b + c, b̂ = c + a, and ĉ = a + b. We
can show:

Theorem 2.2. A generic triangle ∆ has a unique equioptic point if and only if

∑

cyclic

(
a6 + 2âa5 − a4(â2 + 4bc) + 4a3b(câ− b2)− 2a2b2c2

)
= 0. (6)

Proof. We have already shown that the three equioptic circles have a common radical axis r.
Furthermore, if one of these three circles touches the common radical axis at a point E, then
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Figure 6: The only equioptic point of an equilateral triangle.
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Figure 7: An iscosceles triangle with a unique equioptic point.

any other circle touches precisely at E. This is caused by the fact that E has zero power
with respect to the circle touching r and, as a point of the common radical axis r, it has to
have the same power with respect to the other circles. Thus it is sufficient to derive a contact
condition of r and one of the equioptic circles. Therefore, we compute the resultant of the
equation of one circle as given in Eq. (3) and the radical axis from Eq. (5) with respect to
one variable, say x2. This yields a quadractic form q(x0, x1). Now the condition on a, b, c in
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order to make r a tangent of any equioptic circle is that the quadractic form q factors which
is equivalent to det(Hq) = 0 where Hq is the Hessian of q. We find that Hq is the sextic form
given in Eq. (6).

Remark 3. The case of an equilateral triangle is not covered by Eq. (6). In the case of
an equilateral triangle the points Tij are ideal points and thus there are no points Sij. The
equioptic circles of the excircles of an equilateral triangle degenerate and become the altitudes
of the triangle and the one and only equioptic point is the one and only center of the equilateral
triangle as can seen in Fig. 6.

3. Equioptic circles of the incircle and an excircle

We recall that the equioptic circles of a pair (Γ,Γi) is the Thales circle of the line segment
bounded by the internal and external center of similarity of the incircle Γ and the i-th excircle
Γi. We observe that the i-th vertex of ∆ is the external center of similarity of the above given
pair of circles. The internal center is the intersection of a common internal tangent, i.e, ∆’s i-
th side and the line [I, Ii] connecting the respective centers. Consequently the internal centers
of similarity are the points Si (i ∈ {1, 2, 3}). We have

S1 = (0 : 1 : 1), Si+1 = Sσ
i .

As a consequence of Cor. 2.1 we have:

Corollary 3.1.

The two internal centers Si, Sj of similarity of Γ and Γi, Γj are collinear with the external
center Sij of similarity of Γi and Γj for (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.

Proof. The collinearity is easily checked by showing the linear dependency of the respective
coordinate vectors.

The centers Ti of equioptic circles ei of Γ and Γi are the midpoints of ∆’s i-th vertex and Si.
Thus we have

T1 = (b+ c : a : a), Ti+1 = T σζ
i .

Now we observe the following phenomenon:

Corollary 3.2.

The two centers Ti and Tj of equioptic circles of Γ and the i-th and j-th excircle are collinear
with the center Tij of the equioptic circle eij of Γi and Γj.

Proof. This is easily veryfied using the trilinear representation of all the involved points.

Again we use the formulae given in [1, p. 223] in order to compute the equations of the
equioptic circles ei of the incircle Γ and the i-th excircle Γi and arrive at

e1 : x
T ·




2a2s(a− s) 2abs(a− s) 2acs(a− s)
2abs(a− s) (⋆⋆) (⋆)
2acs(a− s) (⋆) (⋆ ⋆ ⋆)


 · x = 0,

ei+1 = ζ(ei),

(7)



9

where
(⋆) = 2b2c2 + 3b3c+ 3bc3 − 3a2bc+ 2b4 + 2c4 − 2a2b2 − 2a2c2,
(⋆⋆) = b(â2(4c− b) + a2b− 8b2c),

(⋆ ⋆ ⋆) = c(2bc2 + 7b2c− c3 + a2c+ 4b3).

Here s = (a + b+ c)/2 is the semiperimeter of ∆.
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Figure 8: Equioptic circles and points of Γ, Γ1, and Γ2 of the incircle and the three excircles.

Now we can show:

Theorem 3.1.

The equioptic circles ei, ej, and eij defined by the incircle Γ and the excircles Γi, Γj have a
common radical axis rk (with (i, j, k) ∈ I

3) and thus Γ, Γi, and Γj have up to two real equioptic
points.

Proof. With Eq. (3) and (7) we compute the radical axis rk of Γ, Γi, and Γj (where (i, j, k) ∈
I
3) as the singular conic sections in the pencil of conics spanned by either two circles, cf. the
proof of Th. 2.1. The radical axis r3 is given by

r3 = [−ba5 − (â2 + 2bc)a4 + (â2b+ c(2â2 − bc))a3 + â2(â2 + 6c2)a2 + c2â2(b+ 4c) :

: ab5 + 2(̂b2 + 2ac)b4 − (ab̂2 + c(2b̂2 − ac))b3 − b̂2(̂b2 + 6c2)b2 − c2b̂2(a+ 4c)̂b :
: (b− a)c5 + 4(a− b)ĉc4 + (a− b)(7ĉ3 − 3ab)c3 + 4(a− b)ĉ(ĉ2 + ab)c2

+7ab(a− b)ĉ2c+ 4a2b2(a− b)ĉ)].

(8)
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Figure 9: The six equioptic circles of the incircle and the excircle, the three concurrent radical
axes, and the center G from Th. 3.2.

Finally we have r1 = rσζ3 and r2 = rσζ1 .

A certain triplet of equioptic circles is shown in Fig. 8. Now we are able to state and prove:

Theorem 3.2.

The three radical axes rk (cf. Th. 3.1) are concurrent in a triangle center.

Proof. The homogeneous coordinate vectors of the lines ri given in (8) are linearly dependent.
This proves the concurrency.

We compute the intersection G = (g0 : g1 : g2) of any pair (ri, rj) of radical axes and find

g0 = bcâ5(b− c)2 + 2bcâ2(2â4 − 10â2bc + 5b2c2)a

+â3(â4 − 8â2bc+ 4b2c2)a2 − 2(â6 + 3bcâ4 − 10b2c2â2 + b3c3)a

−â(8â4 − 23bcâ2 + 4b2c2)a4 − 2(â4 − 8bcâ2 + 5b2c2)a5 + â(7â2 − 4bc)a6 + 2(2â2 − bc)a7.

(9)

Since g1=ζ(g0) and g2=ζ(g1) we find that G is a center of ∆ which is not mentioned in [2].
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