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Abstract

The present paper is devoted to the study of flags in Euclidean three-

space. Coordinates of flags are defined and a point model in a pro-

jective space is discussed. We study special subsets of the manifold of

flags and show the close relations to Euclidean kinematics and Non-

Euclidean geometries.
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1 Introduction

A flag F in a three-dimensional space is a triplet (P, G, E), where P is a
point, G is a line, and E is a plane with P ∈ G ⊂ E. A possible way to
introduce coordinates in the set of flags is the following: Consider the three-
dimensional space to be a projective one. Then points in P3 can be identified
with the one-dimensional subspaces of a vector space K4, where K is any
commutative field (if the space is assumed to be Pappian). The planes of
P3 can be identified with the linear forms of K4 or equivalently with the
one-dimensional subspaces of the dual vector space K4?

. The lines G ⊂ P3,
represented by homogeneous Plücker coordinates correspond to certain one-
dimensional subspaces of K4 ∧ K4.

In this setting exactly those one-dimensional subspaces of the tensor prod-
uct V := K4⊗ (K4 ∧K4)⊗K4?

correspond to flags in P3 = P3(K4) that rep-
resent triplets comprising points P , lines G, planes E, such that P ∈ G ⊂ E.

In [9] this model was used in order to study the flag variety of a projective
three-space. There the flag variety appears as the intersection of the Segre
variety S3,5,3 ⊂ P95 (see [7] for the exact definition) with a 63-dimensional
subspace of P95. Automorphisms of the flag variety and automorphisms of
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P3 turn out to determine each other mutually. Unfortunately, V has a very
high dimension which is not useful in practical computations.

The flag variety associated with n-dimensional projective spaces is treated
in [3, 4]. The close relation to representations of the group PGL(n + 1, C) is
discussed in [5, 6].

The contributions of the present paper are the following: We consider
the above mentioned three-dimensional space to be a Euclidean one and
introduce coordinates in the set of flags in Sec. 2. Afterwards we present a
point model of the set of flags in Sec. 3. The equiform transformations of
Euclidean R3 induce linear automorphisms (collineations) of a certain six-
dimensional cone in the model space. Sec. 3 also deals with pencils of flags
and other submanifolds of the flag manifold. As an application of coordinates
of flags as defined in Sec. 2 we show how to characterize pairs of flags in Sec.
4. In this section we distinguish between flags only with respect to incidence
relations of components. Sec. 5 is given in order to show that the manifold of
flags in Euclidean space R

3 admits an embedding as hyperquadric in a seven-
dimensional projective space. Finally we conclude and discuss the results in
Sec. 6.

2 Coordinates of Flags

2.1 Points, Lines, and Planes

Consider Euclidean three-space R3. A point P can be represented by Carte-
sian coordinates p = (p1, p2, p3)

T . Oriented planes E are given by plane
coordinates (e0, e1, e2, e3)

T = (e0, e
T ) with ‖e‖ = 1. An equation of E is

then given by e0 + 〈e, x〉 = 0, where 〈·, ·〉 is the standard scalar product and
x = (x1, x2, x3)

T .
A line G in Euclidean three-space can be described by normalized Plücker

coordinates (g, g), where g is a unit vector parallel to G. The vector g is
called momentum vector and is defined by g := x×g, if X is any point on G.
The momentum vector is independent of the choice of X on G. Obviously,
the thus defined Plücker coordinates of G satisfy

〈g, g〉 = 0. (1)

A line G in Euclidean space carries two oriented ones. The coordinate vec-
tors (g, g) and (−g,−g) represent the different oriented lines in the same
geometric object, i.e. the line G without orientations.

The coordinates (g, g) of a non-oriented line G are homogeneous: the
vector (λg, λg) with λ ∈ R \ {0} is a coordinate vector of the same line G.
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Thus the six coordinates of G can be considered as coordinates of a point in
a five-dimensional projective space P5.

The mapping γ : G 7→ (g, g)R ∈ P5 is not onto. Only the points whose
coordinates satisfy Eq. (1) appear as images of lines. The quadratic hyper-
surface im γ = M 4

2
is called Klein quadric or Plücker quadric.

Remark:

Here and in the following, the superscript and the subscript denote the di-
mension and the algebraic degree, respectively. ♦

Remark:

We dropped the norming condition ‖g‖ = 1 and thus we allowed g = 0.
Without saying it we performed the projective closure of Euclidean three-
space. The mapping γ is thus defined for lines at infinity as well. They are
characterized by g = 0 and their γ-images constitute a plane in M 4

2
. ♦

M4

2
is a point model for the set of lines in projective three-space. The point

model for the set of lines in Euclidean three-space is M 4

2
without the plane

g = 0, see [18, 19, 20]. In order to describe the set of lines in an elliptic three-
space one has to add appropriate norming conditions for Plücker coordinates
to (1), see [1, 13, 15, 17].

2.2 Line Elements

A flag F in Euclidean three-space R3 consists of a line element (P, G) and a
plane E containing (P, G). In order to define coordinates for flags in R3 we
use coordinates for line elements in R3 as defined in [14].

Let (g, g) be normalized Plücker coordinates of the line G. Let further
P be the point on G. Then the normalized Plücker coordinates of the line
element (P, G) is the vector (g, g, γ) ∈ R7, where γ := 〈g, p〉.

The real value γ has a geometric meaning (see Fig. 1): It is the signed
distance of P ∈ G to the pedal point of G taking into account the orientation
of G.

A line element in Euclidean space R
3 carries two oriented ones. The

vectors (g, g, γ) and (−g,−g,−γ) coordinatize the two oriented line elements
on G pointing in opposite directions, but both are coordinates of the non-
oriented line element (P, G).
Remark:

The concept of Plücker coordinates of lines can be extended to lines at in-
finity. This is not the case for coordinates of line elements. Though line
elements (G∞, G) with proper lines G and their ideal point G∞ can be de-
scribed by (g, g,∞), we cannot assign coordinates to line elements located in
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Figure 1: Coordinates for line elements.

the ideal plane in this way. ♦

Again we can drop the norming condition. It is obvious that (λg, λg, λγ)
decribes the same line element in Euclidean space R3, if λ ∈ R\{0} and g 6= 0.
Obviously the thus defined coordinates of line elements are homogeneous.
They allow an interpretation as coordinates of points in a six-dimensional
projective space P6.

Eq. (1) represents a quadratic cone M 5

2
in P6 which at least includes the

set of points representing the coordinate vectors of line elements in Euclidean
R3.

Remark:

The point model for the set of line elements in Euclidean three-space is a
subset of the quadratic cone M 5

2
. The three-dimensional projective subspace

spanned by V = (0, 0, 0; 0, 0, 0; 1)R and g1 = g2 = g3 = 0 does not belong to
the point model. V is the vertex of M 5

2
. ♦

In [14] this point model for the set of line elements was introduced in
order to point out the close relation between equiform kinematics and the
geometry of line elements. The geometry of line elements turned out to be
useful for the recognition and reconstruction of surfaces that are invariant
under one-parameter subgroups of the group of equiform motions, see [10].
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2.3 Flags

In order to describe a flag F ⊂ P
3 we recall that a flag consists of a line

element (P, G) and a plane E containing (P, G). The plane E is fixed by a
unit normal vector ĝ (see Fig. 2). We define:

Definition 2.1

The vector (g, g, ĝ, γ) ∈ R10 with g 6= 0, ĝ 6= 0 is the coordinate vector of a
flag F = (P, G, E) in Euclidean space R3, where (g, g, γ) are the normalized
Plücker coordinates of the line element (P, G) in R3 and ĝ is a unit vector
with 〈g, ĝ〉 = 0.

PSfrag replacements
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Figure 2: Coordinates of flags.

Remark:

We exclude g = 0, as this does not define a line in Euclidean space. Lines
with Plücker coordinates (0, g) are lines in the ideal plane of the projective
closure of R3. The plane component would not be defined if ĝ = 0. Therefore
there is the four-dimensional subspace W : g1 = g2 = g3 = g7 = g8 = g9 = 0
of R10 whose points do not correspond to flags in R3. ♦

We observe the following phenomena concerning orientations: Both the
line element (P, G) ⊂ F and the plane E ∈ F can be oriented in two different
ways. The orientations of G and E do not depend on each other. Thus the
flag F = (P, G, E) carries four different oriented flags all of them being in
the same orbit with respect to SO3.

So the coordinate vectors (g, g, ĝ, γ), (g, g,−ĝ, γ), (−g,−g, ĝ,−γ), and
(−g,−g,−ĝ,−γ) describe the four different oriented flags belonging to only
one geometric object: the flag F without any orientation.
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The coordinates (g, g, ĝ, γ) of a flag F as defined in Def. 2.1 determine F
uniquely. The point, the line, and the plane can be extracted from (g, g, ĝ, γ):

Lemma 2.1

Each vector (g, g, ĝ, γ) ∈ R10 with ‖g‖ = ‖ĝ‖ = 1 and 〈g, g〉 = 〈g, ĝ〉 = 0 is
the coordinate vector of a flag F = (P, G, E) in Euclidean three-space R

3.
The point P , the line G, and the plane E can be found according to

P = g × g + γg, (2)

G = (g, g), (3)

E = (− det(g, g, ĝ), ĝ). (4)

Proof: Given the vector (g, g, ĝ, γ) ∈ R10 with the required properties it is
obvious that the line component of F has coordinates (g, g). By the defi-
nition of line element coordinates, especially by the definition of γ, we find
the coordinates of the point component P ∈ F as p = g × g + γg. The unit
normal vector ĝ together with the point P ∈ E and G ⊂ E leads to the
equation − det(g, g, ĝ) + 〈ĝ, x〉 = 0 of E. By assumption 〈g, ĝ〉 = 0 and so
the line G is contained in the plane E. �

Remark:

Note that the four differently oriented flags attached to F mentioned in
Lemma 2.1 can be obtained by choosing appropriate orientations of g, g, ĝ,
and the appropriate sign of γ. ♦

3 A Point Model for the Set of Flags

The coordinates (g, g, ĝ, γ) of a flag F are homogeneous, which means that
the vector (λg, λg, λĝ, λγ) with λ ∈ R \ {0} also is a coordinate vector of the
flag F . This can easily be seen using Eqs. (2), (3), and (4) from Lemma 2.1.
They lead to the same point, line, and plane that define the flag.

In the previous section we required that the vectors g and ĝ are unit
vectors. In the following when we deal with homogeneous flag coordinates
we always assume that g and ĝ are of equal length, i.e. 〈g, g〉 = 〈ĝ, ĝ〉.

Now we can interpret the homogeneous coordinates (g, g, ĝ, γ) = (g1, . . . , g10)
of a flag F as coordinates of points in a nine-dimensional projective space
P9 with base points B1, . . . , B10. In the analytical model R10, Bi are the
one-dimensional subspaces spanned by the canonical basis vectors.
Remark:

We observe a strange kind of homogeneity of coordinates of a flag. If F =
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(P, G, E) is represented by (g, g, ĝ, γ) then the line element (P, G) with co-
ordinates (g, g, γ) remains unchainged, if we multiply its coordinate vector
by λ ∈ R \ {0}. The normal vector ĝ defines the plane E even it is not a
unit vector. So the vector (λg, λg, µĝ, λγ) with µ ∈ R \ {0} is the coordinate
vector of the same flag F . ♦

Now we can state:

Theorem 3.1

The point model of the set of flags in Euclidean three-space is contained in
the six-dimensional algebraic variety M 6 ⊂ P

9 given by the equations

〈g, g〉 − 〈ĝ, ĝ〉 = 0 = g2

1
+ g2

2
+ g2

3
− g2

7
− g2

8
− g2

9
, (5)

〈g, g〉 = 0 = g1g4 + g2g5 + g3g6, (6)

〈g, ĝ〉 = 0 = g1g7 + g2g8 + g3g9. (7)

Remark:

Before starting the proof we note that the points in the subspace V : g =
ĝ = 0 do not correspond to flags in R3. V is a four-dimensional subspace of
R10 and defines a three-dimensional projective subspace of the model space
P9. Points in this subspace do not correspond to flags in R3. ♦

Proof: Given a vector (g, g, ĝ, γ) = (g1, . . . , g10) ∈ R10 whose entries satisfy
(5), (6), (7) we can apply Lemma 2.1 in order to find the point, the line, and
the plane defining the flag F .

According to Def. 2.1 we can assign coordinates to a flag such that they
satisfy (5),(6), and (7). �

We are able to give even a rational parametrization of the manifold M 6.
This enables us to give a very low upper bound for the algebraic degree of
M6 considered as an algebraic variety:

Theorem 3.2

The manifold M 6 defined by Eqs. (5), (6), and (7) admits a rational pa-
rametrization and is at most of algebraic degree 5. M 6 is a cone with 0-
dimensional vertex B10.

Proof: In order to give a parametrization we let P = (u4, u5, u6)
T be the point

of a flag. We let further G be parallel to g = (2u1, 2u2, 1 − u2

1
− u2

2
)T /M ,

where M = 1 + u2

1
+ u2

2
. Obviously ‖g‖ = 1 and g = p × g.
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Since g is an isotherm parametrization of the Euclidean unit sphere S2, we
have ‖g,1‖ = ‖g,2‖ and {g, g,1, g,2} form an orthogonal frame. Here ,j denotes
the partial derivative with respect to uj.

The normal vector ĝ of the plane component E has to satisfy 〈g, ĝ〉 =
〈g, g〉 − 〈ĝ, ĝ〉 = 0. So we let ĝ = cos φ g,1‖g,1‖

−1 + sin φ g,2‖g,2‖
−1. Substi-

tuting cos φ = (1 − u2

3
)/N , sin φ = 2u3/N , where N = 1 + u2

3
, and using the

abbreviation Z = 1 − u2

1
− u2

2
, we obtain the rational parametrization

MNF(u1, u2, u3, u4, u5, u6) =

[2u1N, 2u2N, NZ; N(u5Z − 2u2u6), N(2u1u6 − u4Z), 2N(u2u4 − u1u5);

(1 − u2

3
)(M − 2u2

1
) − 4u1u2u3, 2u3(M − 2u2

2
) − 2(1 − u2

3
)u1u2,

−2u1(1 − u2

3
) − 4u2u3; N(2u1u4 + 2u2u5 + u6Z)]T .

(8)

Since M , N , and Z are quadratic polynomials in the parameters ui, the
degree of the denominator MN of all coordinate functions equals four. The
numerators of the fourth, fifth, and tenth coordinate function in (8) are
polynomials of degree five.

Since x10 does show up in any of the equations defining M 6 it can be
chosen independently and so M 6 is a cone with generators passing through
B10. �

Remark:

The manifold M6 is the intersection of three quadratic hypersurfaces in P6.
According to the theorem by Bézout one could expect that the algebraic
degree of M6 equals eight.
On the other hand, there are four different vectors (g, g, ĝ, γ), (−g,−g, ĝ,−γ),
(−g,−g,−ĝ,−γ), and (g, g,−ĝ, γ) corresponding to the four different orien-
tations of a flag F . So we could expect that the degree of M 6 is four. ♦

Remark:

Eqs. (6) and (7) are the equations of two quadratic cones Γ1 and Γ2, respec-
tively. The vertices of Γ1 and Γ2 are the three-dimensional projective sub-
spaces V1 = [B7, B8, B9, B10] and V2 = [B4, B5, B6, B10], respectively. Here
and in the following [X1, . . . , Xn] denotes the projective subspace spanned
by points X1, . . . , Xn. With (6) and (7) we see that V1 ⊂ Γ2 and V2 ⊂ Γ1.

The five-dimensional projective subspaces W1 : x̂ = 0, x10 = 0 (x7 =
x8 = x9 − x10 = 0) and W2 : x = 0, x10 = 0 (x1 = x2 = x2 = x10 = 0)
contain four-dimensional base-quadrics Q1 := Γ1 ∩ W1 and Q2 := Γ2 ∩ W2

both being projectively equivalent to the Klein quadric.
Since the Klein quadric carries two three-parameter families of planes,

the cones Γi carry two three-parameter families of six-dimensional projective
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subspaces comprising the set of generators.
The intersection of Γ1 and Γ2 splits into three-space I = [B1, B2, B3, B10]

of multiplicity two and a remaining quadratic surface. This can easily be
veryfied by intersecting Γ1∩Γ2 with an arbitrary line, which neither is a part
of Γ1 nor of Γ2.

Eq. (5) is the equation of quadratic cone ∆ that is projectively equivalent
to both Γ1 and Γ2. It shares the vertex V2 with Γ2. A base quadric of ∆ is
given by (5) together with equations x4 = x5 = x6 = x10 = 0. ♦

3.1 The Group of Equiform Motions in R
3

In the following we want to describe the automorphism of the variety M 6

induced by the equiform motions in R3.
An equiform motion µ : R3 → R3 transforms points x in Euclidean space

according to

x′ = αAx + a, (9)

where α ∈ R \ {0}, A ∈ SO3 and a ∈ R3.

Lemma 3.1

The seven parameter group of linear automorphisms (automorphic collinea-
tions) of M6 induced by an equiform motion µ : R3 → R3 given by (9)
transforms homogeneous flag coordinates (g, g, ĝ, γ) according to




g′

g′

ĝ′

γ′


 = α




A 0 0 0
A×A A 0 0

0 0 A 0
aT A 0T 0T α







g
g
ĝ
γ


 , (10)

where A× is the skew-symmetric matrix of the linear mapping x 7→ a × x.

Remark:

Eq. (10) is nothing but a different representation of the group of equiform
motions in Euclidean space R3. ♦

Proof: Applying an equiform motion to a flag F = (P, G, E), the coordi-
nates (g, g, ĝ, γ) change according to g′ = αAg, ĝ′ = αAĝ, γ′ = 〈p′, g′〉 =
〈αA(g × g + γg) + a, αAg〉 = αaT Ag + α2γ, and g′ = αAg + αA×Ag. Using
block matrix notation we find (10). �



10 Flags in Euclidean Three-space

Remark:

The group of Euclidean motions is a subgroup of the group of equiform mo-
tions. Inserting α = 1 into (10) we obtain the subgroup of automorphic
collineations of M 6 induced by Euclidean motions. ♦

3.2 Flags sharing two components: pencils of flags

Now we are going to study certain submanifolds of the set of flags in R
3 and

ask for the corresponding point sets in the manifold M 6. According to [9] we
define:

Definition 3.1

A pencil of flags is the set of flags sharing exactly two components.

Obviously there are three different types of pencils: the flags of a pencil
differ in the point, line, or plane component. The respective pencils of flags
will be denoted by FG,E, FP,E, or FP,G, where the subscripts point to the
fixed elements (see Fig. 3).

Figure 3: Pencils of flags: FG,E, FP,E, FP,G.

From Th. 3.2 we know that M 6 is a cone and thus it contains at least
one-dimensional subspaces (lines) of P9. The following result is elementary
to verify:

Theorem 3.3

The pencils of flags correspond to lines in M 6.

Proof: It means no restriction to show Th. 3.3 for special pencils of flags. A
Euclidean motion can be used to map the special pencil to any pencil of the
same type.

We can assume that FG,E is given by G = (1, 0, 0; 0, 0, 0) and ĝ = (0, 0, 1).
Since P ∈ G we have P = (t1/t0, 0, 0) and FG,E = (t0, 0, 0; 0, 0, 0; 0, 0, t0; t1)R,
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which is a parametrization of a line in M 6 depending on the homogeneous
parameter t1 : t0 6= 0 : 0. Note that it is an affine line, i.e. the point
FG,E(0 : 1) = B10 is missing, since it does not correspond to a flag in R

3.
Let now FP,E be given by P = (0, 0, 0) and E = (0, 0, 0, 1). Then g =

(t0/t1, 1, 0) and we find FP,E = (t0, t1, 0; 0, 0, 0; 0, 0, t0; t1)R, which is a line
parametrized by a the homogeneous parameter t0 : t1 6= 0 : 0. Like in the
previous case a point is missing. F(0 : 1) = (0, 1, 0; 0, 0, 0; 0, 0, 0; 1)R does
not define a flag in R3.

Finally we let FP,G contain P = (0, 0, 0) and G = (1, 0, 0; 0, 0, 0). With
ĝ = (0, t0/t1, 1) we arrive at FP,G = (t0, 0, 0; 0, 0, 0; 0, t1, t0; 0)R. As in the
two above mentioned cases, this is an affine line in M 6. Like in the previously
mentioned cases the point FP,G(0 : 1) = B8 does not correspond to a flag in
R3. �

3.3 Flags sharing one component: bundles of flags

Fixing exactly one component of a flag F we find three different sets of flags,
not all of them corresponding to projective subspaces in M 6. With FP , FG,
and FE we denote the set of flags sharing the point P , the line G, and the
plane E, respectively (see Fig. 4). As in the previous cases the subscripts
indicate the shared component.

Figure 4: Flags sharing only one component: FP , FE, FG.

3.3.1 Flags through a fixed point

Without loss of generality we can assume that the fixed point P coincides
with the origin of the coordinate system. Thus we can parametrize FP by
(g, 0, ĝ, 0). Obviously this manifold of flags is three-dimensional and we have
the following result:
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Theorem 3.4

There is a one-to-one correspondence between the set of oriented flags in
Euclidean three-space sharing a fixed point and the group SO3. The set of
oriented flags through a fixed point forms a three-dimensional elliptic space.

Proof: It means no restriction to assume that the fixed point is the origin
P = (0, 0, 0)T of the underlying Cartesian coordinate system. Assume that
g = (−casb,−sasb, cb)

T and ĝ = (−cacbsc − sacc,−sacbsc + cacc,−sbsc)
T ,

respectively, where sx = sin x and cx = cos x. Note that this orients the flag.
We attach a Cartesian coordinate system with each flag FP through P : We
let g and ĝ be the third and second basis vector, respectively. In order to
form a right handed basis the first vector equals ĝ × g.

Therfore the matrix A = [(ĝ × g)T , ĝT , gT ] ∈ SO3 decribes the uniquely
determined rotation about the origin that moves the oriented flag F 0

P =
(0, 0, 1; 0, 0, 0; 0, 1, 0; 0) to the oriented flag FP . The values a, b, c thus can
be interpreted as the Euler angles of this rotation, see [2, 11, 12].

It is well known (see e.g. [1, 8, 13]) that the set of Euclidean rotations
about a fixed point forms a three-dimensional elliptic space. �

As outlined earlier in this paper a flag in Euclidean space carries four
differently oriented ones. Thus there are four different rotations about P
transforming a certain oriented proto-flag F 0

P to a non-oriented flag FP .
These rotations differ in 180◦-rotations of the flags about their line component
or the plane’s normal. Therefore the geometric object flag, i.e. the non-
oriented flag, belongs to four different points in elliptic three-space. We can
say the set of non-oriented flags in Euclidean three space with fixed point
covers elliptic three-space four times.
Remark:

The set FP of flags through a fixed point P is invariant under the three-
parametric group of rotations leaving P fixed. ♦

Remark:

As a consequence of Th. 3.4 the set FP can be parametrized by unit quater-
nions. Obviously one can define a multiplication in the set of flags sharing
P and FP becomes a group. ♦

3.3.2 Flags with a common plane

The dual counter part (at least from the projective geometric point of view)
of the set of flags FP through a given point P is the set of flags FE with a
fixed plane E. It is easily shown that the following theorem holds:
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Theorem 3.5

There is a one-to-one correspondence between the set of oriented flags with
a fixed plane E and the set of Euclidean motions in the plane E. The set of
oriented flags with fixed plane component is a three-dimensional quasi-elliptic
space.

Proof: Without loss of generality we can assume E to be the plane x3 = 0 ⊂
R3. The flags with common plane E only differ in their line elements and can
thus be identified with them. So there exists a one-to-one correspondence
between oriented line elements in E and oriented flags sharing E.

Let FO = (O, X, E) with O being the origin and X being the first axis of
the Cartesian coordinate system. Let FP = (P, G, E) be the flag with line
element (P, G). Then there exists a unique Euclidean motion µ : E → E
with FO 7→ FP . It is well known, see [8], that the set of Euclidean motions
of E forms a three-dimensional quasi-elliptic space. �

The set of non-oriented flags with a common plane covers the quasi-elliptic
three-space twice, since both the line elements and the plane allow two dif-
ferent orientations without changing the geometric objects.
Remark:

The set of flags with common plane is invariant under the three-parametric
group of Euclidean motions in E. ♦

3.3.3 Flags with a common line

Finally we pay attention to the self-dual configuration (at least from the
projective geometric point of view) of flags FG sharing a line G. Obviously
FG is a two-dimensional manifold of flags and we have:

Theorem 3.6

The set FG of flags in Euclidean three-space sharing a line G corresponds to
a plane in M 6.

Proof: Without loss of generality we can assume G = (1, 0, 0; 0, 0, 0). We let
P = (1, t1/t0, 0, 0) and E = (0, 0, 1, t2/t0). So the homogeneous coordinate
vector of all flags in FG is given by P2 = (t0, 0, 0; 0, 0, 0; 0, t0, t1; t2)R, which
obviously is a plane in M 6.

We can not allow t0 = 0 otherwise we loose the line component in FG.
Thus a line P1 in the image plane P2 of FG is missing. Since the vector ĝ is
prohibited to vanish, the point t0 : t1 = 0 : 0 on P1 is also not part of the
image of FG. Consequently the image FG is a plane minus a line element. �
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4 Charactrization of Pairs of Flags

In this section we show how to characterize pairs (F1,F2) of flags F1 =
(P, G, E) and F2 = (Q, H, F ) can be characterized by means of their co-
ordinates. The coordinatization of flags presented in [9] does not benefit
this.

We discuss pairs of flags with respect to the incidence of points, lines,
and plane components. We do not deal with orthogonality and parallelity of
components in order to avoid lengthy discussions.

Again we use normalized coordinate vectors, i.e. ‖g‖ = ‖ĝ‖ = ‖h‖ =

‖ĥ‖ = 1.
We do not allow point components to coincide with the origin of the

coordinate system, and we also do not allow lines and planes to pass through
the origin. Otherwise the number of subcases would grow rapidly while the
number of different pairs of flags would not. This can be avoided by choosing
apropriate coordinate systems.

PSfrag replacements

P

Q
E

F
G

H

P = Q

G = H
E = F

PSfrag replacements

P

Q
E

F
G

H

P = Q

G = H
E = F

PSfrag replacements

P

Q

E

F
G

H

P = Q

G = H
E = F

PSfrag replacements

P Q

E F

G

H

P = Q

G = H
E = F

Figure 5: Cases 1 - 4: 1. F1 6= F2, 2. P ∈ F , 3. P ∈ F , Q ∈ E, 4. G∩H 6= ∅

Case 1. The flags F1 and F2 differ in each component and there is no
remarkable incidence relation except the trivial ones P ∈ G ⊂ E and Q ∈
H ⊂ F . There is nothing to characterize.
Case 2. P ∈ F is obviously characterized by − det(h, h, ĥ) + 〈p, ĥ〉 = 0.
Since p = g × g + γg, we have

〈g × g − h × h + γg, ĥ〉 = 0. (11)

Case 3. In case of P ∈ F and Q ∈ E Eq. (11) is fulfilled. According to
Case 2 we have the additional relation

〈h × h − g × g + ηh, ĝ〉 = 0. (12)

Case 4. The pair of flags with G ∩ H 6= ∅ is easily characterized by char-
actrizing intersecting lines G and H, respectively. This is done with the
well-known formula (see [15, 17])

〈g, h〉 + 〈g, h〉 = 0. (13)
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Figure 6: Cases 5 - 8: 5. P ∈ H, 6. P = Q, 7. P ∈ F , G ∩ H 6= ∅, 8.
E ∩ F = G, P ∈ H

Case 5. Consider the case where G and H intersect in P . From the previ-
ous case we have the first condition (13) for the coordinates of F1 and F2,
respectively. Since P ∈ H we have p = g × g + γg = g × h/〈h, g〉. Here we
used a formula for the intersection point of intersecting lines G and H. This
formula can be found in [15]. (It is only valid in those cases where G does
not pass through the origin of the coordinate system.) Multiplying the latter
equation by g we find the remaining charactrization as

γ〈h, g〉 = det(g, g, h). (14)

Case 6. Now we consider the case G ∩ H = P = Q. Obviously (13) is valid
since the intersection point of G and H exists. With Case 5 we have (14)
and

η〈h, g〉 = det(h, h, g). (15)

Case 7. Let now E ∩ F = G. Consequently G ∩ H 6= ∅ and thus (13) is
fulfilled. Since G is contained in F we have

〈g, ĥ〉 = 0 and det(h, h, ĥ)g + h × g = 0, (16)

because there is no unique intersection point of F and G.
Case 8. Now we consider E ∩ F = G and G ∩ H = P . Since G ∩ H 6= ∅
(13) is valid. As indicated in Case 5 we additionally have (14). Since G is
contained in F , the point P is too. So (11) is valid.

The condition for G ⊂ F is given by (16) and the condition for H ⊂ E
reads

〈h, ĝ〉 = 0 and det(g, g, ĝ) + ĝ × h = 0. (17)

The Plücker coordinate vector of E ∩ F and the coordinate vector (g, g)
of G are a multiple of each other. This can easily be verified with the above
relations.
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Figure 7: Cases 9 - 12: 9. Q ∈ G = E ∩ F , 10. E ∩ F = G, P = Q, 11.
G = H, 12. G = H, P = Q

Case 9. Now we consider E ∩ F = G and G ∩ H = Q. Obviously (13) and
(15) are valid. For G ⊂ F and H ⊂ E the respective conditions (16) and
(17) are fulfilled.
Case 10. Now we let E ∩ F = G and P = Q. This case is characterized by
(13), (16), (14), and (15) since P = Q.
Case 11. The case G = H is easily characterized by (g, g) = (h, h).
Case 12. If G = H and P = Q we have

(g, g, γ) = (h, h, η). (18)
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Figure 8: Cases 13 - 17: 13. E = F , 14. G∩H = P , 15. P = Q, 16. G = H,
17. F1 = F2.

Case 13. The case E = F of coinciding planes appears if and only if

(− det(g, g, ĥ), ĝ) = (− det(h, h, ĥ), ĥ). (19)

In this case the lines G and H have a common point or are at least parallel.
So (13) is also valid.
Case 14. If now G ∩ H = P we have (14) besides the equations of the
previous case, i.e. (13) and (19).
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Case 15. If E = F and P = Q we have (19). As outlined in Case 13 the
planes E and F have a common point or they are at least parallel, equation
(13) is valid. According to Case 5 we have (14) and (15) charactrizing this
case.

Case 16. In case of E = F and G = H we have (18). The coordinate
vectors of F1 and F2 differ only in the last entries.

Case 17. The simple case of F1 = F2 is detected immedeatly, because we
have

(g, g, ĝ, γ) = (h, h, ĥ, η).

Figures 5, 6, 7, and 8 are given in order to help the reader. These are only
incidence tables.

Remark:

The above discussion could easily be extended. Pairs of flags can not only be
characterized with respect to incidence relations. They could also be char-
acterized by with respect to orthogonality and parallelity of components. ♦

Remark:

In a similar manner to the definitions in [9] we can call two flags F1, and F2

related, if they differ in exactly two components. We call two flags adjacent,
if they differ in exactly one component.

With the discussions above we can give analytic charactrizations of related
and adjacent flags. The related ones appear in the cases 6, 10, 11, 13, 14.
Adjacent pairs of flags are described in the cases 12, 15, 16. ♦

5 Flags and the Group of Euclidean Motions

Consider a flag F = (P, G, E) in Euclidean three-space R3. The coordinates
(g, g, ĝ, γ) of F may be taken with respect to the coordinate system Σ0 :=
{(0, 0, 0)T ; e1, e2, e3} with ei being the canonical basis of R3. In the following
the vectors g and ĝ may be unit vectors.

Now we attach a Cartesian coordinate system Σ with F . We let P be
the origin of Σ, the first axis points in the direction of G, and the second
axis shall coincide with the plane’s normal. Thus the third axis is uniquely
determined if we want Σ to be right handed and F becomes oriented.

Obviously F can be uniquely represented by the position of Σ relatively
to Σ0. It is well known (see e.g. [2, 11, 12]) that there exists a uniquely
determined Euclidean motion µ : R3 → R3 that transforms Σ0 to Σ. Thus
we can say:
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Theorem 5.1

There is a one-to-one correspondence between the set of oriented flags in
Euclidean three-space R

3 and the set of Euclidean motions in R
3. The group

of Euclidean motions considered as a differentiable manifold is a point model
for the set of flags in R3.

Again we recall that the geometric object flag carries four orientations
which only differ by certain rotations. So there are four Euclidean motions
moving a certain proto-flag to a given non-oriented flag.
Remark:

The matrix A, the vector a, and α from (9) determining the equiform (indeed
Euclidean) motion moving Σ0 to Σ can be expressed in terms of the coordi-
nates (g, g, ĝ, γ) of the flag F associated with Σ: α = 1, A = [(ĝ×g)T , ĝT , gT ]
and a = g × g + γg. ♦

Furthermore it is well known that Euclidean motions can be reprsented by
normed biquaternions (see e.g. [2, 11, 12]). The identification of Euclidean
motions with normed biquaternions performs a mapping of Euclidean mo-
tions to points of the well known Study quadric S6

2
[16, 17], which is a point

model of the set of Euclidean motions. With Th. 5.1 we have:

Theorem 5.2

There is a one-to-one correspondence between the set of oriented flags in
Euclidean three-space and the points of the Study quadric. The Study quadric
S6

2
can serve as a point model of the set of flags in Euclidean R

3.

The four different orientations of a flag lead to four different Euclidean
motions and thus to four different points in the study quadric all of them
belonging to the same geometric object: the naked flag without orientations.
Remark:

By identification of flags with Euclidean motions we solve the embedding
problem of the set of flags in Euclidean three-space R3. Obviously we find
a hypersurface (quadric) S6

2
⊂ P

7 being a point model for the set of flags in
R3. ♦

Remark:

The coordinatization of the set of flags by means of biquaternions is not
very useful in practical applications and computations. Th. 5.2 only answers
the question whether it is possible to embed the flag manifold of Euclidean
R3 into a low dimensional space or not, and how low can this dimension be. ♦
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6 Conclusion and future Research

We defined coordinates of flags in Euclidean space R3 by means of Plücker
coordinates of lines and line elements. These coordinates can be used to
characterize pairs of flags and decide whether these are related or adjacent.
The charactrization can be extended to parallel and even orthogonal ele-
ments. This extension seems to be not very complicated but long winded
and uninteresting to the author.

The homogeneity of coordinates of flags leads to the interpretation of
coordinates for points in a projective space. The manifold M 6 is defined by
the obvious constraints to the coordinates of a flag. This model has some
advantages. One is the very low dimension of the embedding space compared
to the model used in [9]. The other advantage is the possibilty to characterize
flags which (from the incidence geometric point of view) seems to be useful.
Even the group of equiform transformation admits a simple description in
the presented model (cf. Lemma 3.1).

We will not keep in secret that the presented model has disadvantages.
The coordinates of flags defined in Def. 2.1 can not be extended to flags
containing points, lines, or planes at infinity. Thus the projective closure as
performed for the Klein model of line space and the resulting closure of the
Klein quadric by adding a plane to it, does nor work for M 6. The subspaces
which are missing here can not be added to M 6 such that the points therin
represent flags in projectively extended Euclidean three-space.
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