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Abstract

For each point P on a conic c, the involu-
tion of right angles at P induces an ellip-
tic involution on c whose center F is called
the Frégier point of P . Replacing the right
angles at P between assigned pairs of lines
with an arbitrary angle φ yields a projec-
tive mapping of lines in the pencil about
P , and thus, on c. The lines joining cor-
responding points on c do no longer pass
through a single point and envelop a conic
f which can be seen as the generalization of
the Frégier point and shall be called a gen-
eralized Frégier conic. By varying the an-
gle, we obtain a pencil of generalized Frégier
conics which is a pencil of the third kind.
We shall study the thus defined conics and
discover, among other objects, general Pon-
celet triangle families.

Keywords: conic, angle, projective map-
ping, Frégier point, Frégier conic, Poncelet
porism, envelope.
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1 Introduction

1.1 Known results, contribu-

tions of the present paper

Frégier’s theorem in its original form says
that the chords of a conic c which are seen
from a point P ∈ c under a right angle pass
through one point F (cf. [1, 6, 7] and see
Fig. 1). The point F is usually called the
Frégier point of P . If P moves along c, then

P

F

c

Figure 1: The Frégier point F is the center
of the involution on c that is induced by the
involution of right angles at P .

F traces a conic f (see Fig. 2) homothetic to
c with similarity factor (a2 − b2)/(a2 + b2)
(in the case of a non-circular ellipse, i.e.,
a 6= b) or (a2 + b2)/(a2 − b2) (in the case
of a non-equilateral hyperbola, i.e., a 6= b),
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where a and b are the semi-major and semi-
minor axes lengths. For a parabola c, the
conic f is even congruent to c. The conic
f is sometimes called Frégier conic (see [7,
14]). However, the Frégier conic f and c are
always of the same affine type.
According to [8, 13], a conic-shaped gen-

eralized offset to a conic c with center (el-
lipse or hyperbola) can only be found by
applying a multiple of the cube root of the
curvature radius ρ at P on c’s normal at P
in order to find the corresponding point P ′

of the generalized offset. In [13] it is shown
that the distance function

k 3

√

ρ(t)

is unique up to a constant k ∈ R. The
case of a parabola differs slightly, i.e., the
distance function is no longer unique. Sur-
prising enough, until now it is obviously not
recognized what is illustrated in Fig. 2:
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Figure 2: The Frégier conic f is a general-
ized offset of the conic c.

Theorem 1.1. Frégier conics are conic-
shaped generalized offsets (in the sense of
[8] and [13]).

Proof. We first recall that the Frégier point
of a point P ∈ c lies on c’s normal at P .

Let ρ denote the radius of curvature of c at
P and let l denote the distance between P
and its Frégier point, then it is elementary
to verify that ρ and l are bound to

8a4b4ρ = (a2 ± b2)3l3,

where the plus stands for the ellipse and the
minus for the hyperbola. Hence, the offset
distance equals a multiple of the cube root
of the curvature radius ρ in both cases. For
the parabola x2 = 2qy (q 6= 0) we find

8q2ρ = l3.

Frégier’s theorem can be considered a re-
sult of Euclidean geometry, for it involves
right angles, or a result of projective geom-
etry, since the Frégier point F of a point P
on a conic c is the center of the involution of
right angles in the pencil about P projected
onto c, see [7].
Variants of Frégier’s theorem in higher

dimensions do exist (see, e.g., [9, 17]). Fur-
ther, connections to linear 2-parameter and
3-parameter families of conics are studied
in [11]. Frégier’s theorem is also studied
in relation to quadratic mappings recently
in [17] and even earlier in [15].
In [16], the authors define a Frégier invo-

lution using right angles in Euclidean and
non-Euclidean sense which gives rise to a
possible generalization of Frégier’s the-
orem also in higher dimensions, but com-
pletely different from the approach made in
[9]. Conics in non-Euclidean planes with
singular Frégier conics are studied in [14].
Many relations of the Frégier point and
Frégier’s theorem in Euclidean geometry
to various construction tasks in connections
with conics were disclosed, see [2, 3, 5, 12],
to name just a few.
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In this article, we replace the right an-
gle which is usually the main ingredient
of Frégier’s theorem by a different Eu-
clidean angle φ 6= 0, π

2
and study the chords

cut out of c by the legs of the rotating rigid
angle (with vertex P on c). Since the map-
ping that assigns to each line g the rotated
copy g′ with the fixed angle φ = <) g, g′ is a
projectivity, we first show that the chords of
c that join pairs (Q,Q′) of assigned points
envelope a conic. This does not depend on
the affine type of c. These envelopes are
then called generalized Frégier conics.
Although, we have this rather general

result, the equations of the generalized
Frégier conics of the three different affine
types of base conics c have to be elaborated
separately. We will find that the general-
ized Frégier conics of a point P ∈ c be-
long to a pencil of conics (of the third kind)
which also contains the initial conic c and
the Frégier point F as a limiting case. Fur-
ther, the algebraic proofs of the results yield
computational artifacts that allow for a ge-
ometric interpretation and give rise to gen-
eral Poncelet porisms as described in [4].
The remainder of this section is dedicated

to the technical details we use in the com-
putational proofs and in the derivation of
the equations of the generalized Frégier con-
ics. Section 2 provides some general results
and it is shown that the generalized Frégier
conics form a pencil of the third kind. The
proofs in Section 2 use synthetic reasoning.
In Section 3, we shall derive the equations of
the generalized Frégier conics. This enables
us to show some more results on the vari-
ety of generalized Frégier conics. Along the
way, we will discover some Poncelet families
of triangles. Although we have to treat the
different affine types of conics separately,

we will lay down the computations in de-
tail only for the case of the ellipse. This
is done in order to make the presentation
of results clear. In all other cases, we just
point out what the differences are.

1.2 General setup and techni-

cal preliminaries

In order to describe points, we use inhomo-
geneous Cartesian coordinates (x, y) in the
Euclidean plane as well homogeneous coor-
dinates x0 : x1 : x2. These are linked by
x = x1x

−1

0 and y = x2x
−1

0 , provided that
x0 6= 0, i.e., the point x0 : x1 : x2 is not
a point at infinity, and thus, it allows for a
representation as (x, y). The points at in-
finity (ideal points) lie on the line with the
homogeneous equation x0 = 0. Sometimes,
we make use of the complex extension of the
Euclidean plane. This leads to the finding
that all Euclidean circles pass through the
absolute points I and J = I of Euclidean
geometry with homogeneous coordinates

I = 0 : 1 : i and J = 0 : 1 : −i.

Conversely, any conic through I and J is
a Euclidean circle. The tangents from any
circle’s center M to the circle are so-called
isotropic lines, i.e., the joins [M, I] and
[M,J ] with the absolute points. Any two
concentric circles touch each other at I and
J , and thus, they span a pencil of conics of
the third kind.
We describe the three affine types of con-

ics by their equations

E ,H :
x2

a2
± y2

b2
=1, P : x2−2qy=0, (1)

with respect to the standard frame assum-
ing a 6= b, a, b ∈ R

+, and q ∈ R \ {0}. The
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computational proofs make use of their ra-
tional parametrizations

e(t)=
(

a1−t2
1+t2

, b 2t
1+t2

)

, t ∈ R,

h(t)=
(

a1+t2

1−t2 , b
2t
1−t2

)

, t ∈ R \ {−1, 1},

p(t)= (2qt, 2qt2) , t ∈ R.

(2)

At this point, we shall recall that for any
conic there exists a huge variety of equiv-
alent rational parametrizations. For ex-
ample, the reparametrization t → a00+a01t

a10+a11t

turns (2) in to an equivalent parametriza-
tions and describe a projective mapping
acting on the conic (provided that a00a11 −
a10a01 6= 0). In the computations, we
should see that some geometric objects will
then be described in a different way.

Later, we also need (Euclidean) rotation
matrices. With the substitution

cos ξ =
1−x2

1+x2
and sin ξ =

2x

1+x2
(3)

the rotation matrices R(φ) can be given
with rational entries as

R(φ)=

(

cosφ− sin φ
sin φ cos φ

)

=

(

1−f2

1+f2

−2f

1+f2

2f

1+f2

1−f2

1+f2

)

. (4)

In the following, we assume that φ 6=
0,±π

2
since we are interested in general-

ized Frégier conics different from the Frégier
point. Further, f 6= 0,±1,±i since these
values correspond to φ 6= 0,±π

2
and ±i are

the poles of the rational equivalents of sine
and cosine, i.e., the poles of the arctangent.
We will not repeatedly and explicitly write
these assumptions any further.

2 Projectivemappings on

a conic

In this section, we shall have a closer look at
projective mappings acting on conics. This
will lead to a general and unifying result. In
[7], we can find some results on projective
mappings on conics and how to treat pro-
jective mappings on conics (especially invo-
lutive ones).

c

X
γ(X)

d

PPPPPPPPPPPPPPPPP

Figure 3: The perspectivity c → d can be
extended to a collineation c → d.

However, we need the following (appar-
ently new) result:

Theorem 2.1. Let c be a conic in a projec-
tive plane and P be some point on c. Fur-
ther, assume that γ : c → c is the non-
involutive projective mapping acting on c
induced by the Euclidean rotation through
a fixed angle φ 6= 0, π

2
, π about P . Then,

the chords s = [X, γ(X)] of c that join a
each point X ∈ c with its γ-image γ(X) ∈ c
envelope a conic f .

Proof. We use a result from [7, p. 247]: The
projective mapping on a line or in a pencil of
lines can be transferred via a perspectivity
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Figure 4: The Frégier conic e of P ∈ d of
the circle d to the angle φ is a concentric
circle.

onto a conic c, and vice versa. For that pur-
pose the center P of the perspectivity has
to lie on the conic c in order to guarantee
for a one-to-one correspondence (between
line/pencil and conic). Thus, a projective
mapping on a conic c can be transferred to
any other conic d, for example, onto a cir-
cle d (of radius rd) that touches c at P (as
illustrated in Fig. 3).

Now, the rotation about P sends each
line g through P to a line g′ through P
with <) g, g′ = φ. Consequently, the pro-
jective mapping on c is transferred to the
projective mapping on d. From P ∈ c, d,
each segment spanned by a point Y and
its image point Y ′ is seen under the con-
stant angle φ, and thus, it is seen from the
center of d under the angle 2φ (see Fig. 4).
Therefore, the chords joining corresponding
points envelop a circle e concentric with d
and of radius rd cosφ.

The perspectivity from c → d can be ex-
tended to a perspective collineation κ with
center P that sends the envelope e to a conic
f , i.e., the generalized Frégier conic that
touches c′ chords of assigned points.

We have excluded the case of involutive
projectivities, because then the envelope of
the chords is the center of the involution
on the conic (cf. [7, p. 251]). With small

P
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Figure 5: Some generalized Frégier conics
of P ∈ E (φ = 10◦, . . . , 80◦): For φ → π

2
the

conics shrink to the Frégier point F of P .

modifications, Thm. 2.1 is valid for any pro-
jective mapping acting on c. The projective
mapping cmentioned in Thm. 2.1 is elliptic.
However, the above result is true for ellip-
tic, parabolic, and hyperbolic projectivities.
There is something more important that we
can deduce from Thm. 2.1:

Theorem 2.2. The generalized Frégier
conics (for variable φ) of a point P on a
conic c form a pencil of conics of the third
kind.

Proof. We recall that the Frégier conics e
of the circle d which is a collinear image of
the initial conic c form a pencil of concen-
tric circles. This pencil consist of all con-
ics that pass through the absolute points
of Euclidean geometry sharing the isotropic
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tangents through the common center, and
therefore, they form a pencil of conics of the
third kind. The (perspective) collineation
κ (defined in the proof of Thm. 2.1) that
sends d back to c maps all circles concen-
tric with d to the conics of a pencil of the
third kind.

It is clear that the initial conic c is also a
member of the pencil of generalized Frégier
conics. Further, the Frégier point F con-
sidered as the real intersection of a pair of
complex conjugate lines is also a (singular)
member of the pencil.
Fig. 5 shows some generalized Frégier

conics of a point P on an ellipse E . The
smaller the angle φ, the shorter the chords
of assigned points are, and therefore, the
generalized Frégier conics come closer to the
ellipse E . If φ → π

2
, then the conics shrink

to the Frégier point F of P .

3 Equations of Frégier

conics

In this section, we compute the equations
of the generalized Frégier conics. Unfortu-
nately, we have to treat the three different
affine types of conics separately. However,
the generalized Frégier conics of all types of
conics have some properties in common and
we can simplify the description by leaving
some things aside. The computational ap-
proach yields some results that could not be
shown in a purely synthetic way.

3.1 Frégier conics of ellipses

Let an ellipse E be given by the equation
(1). It means no restriction to assume that

a > b holds. The generic point P on the
ellipse E can be described by means of a
real parameter T as P = e(T ) in (2).

The lines g in the pencil shall be deter-
mined by choosing a second point Q ∈ E is
given as e(U) with U 6= T in (2). Hence, we
obtain the equation of the chord g := [P,Q]
of E as

g : b(1−TU)x+a(T+U)y=b(1+TU). (5)

If we rotate the normal vector

n = (b(TU − 1),−a(T + U))

through the angle φ ∈ (0, π
2
) either clock-

wise or counter clockwise, we obtain the
normal vectors of those lines g+, g− enclos-
ing the angles ±φ with g. The rotation is
described by the multiplication of n with
either of the matrices R(φ) or R(−φ) from
(4).

Now, the lines g+ and g− have the equa-
tions

g+ : (1+T 2)
(

(

b(1−f 2)UT+2fa(T+U)+

+b(f 2−1)
)

x+
(

2TUbf + a(f 2−1)(T+U)−
−2fb

)

y
)

+ab(1−f 2)(1+T 2)(1+TU)+

+2a2f(T+U)(T 2−1)−4b2f(1+TU)T =0,

and

g− : (1+T 2)
(

(

b(1−f 2)UT−2fa(T+U)+

+bf 2−b
)

x+
(

− 2TUbf+a(f 2−1)(T+U)+

+2fb
)

y
)

+ab(1−f 2)(1+T 2)(1+TU)−
−2a2f(T+U)(1+T 2)+4b2f(TU−1)T =0.

The chords’ endpoints Q+ = g+ ∩ E and
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Q− = g− ∩ E are

Q+ = b2(a2(f 2−1)2+4b2f 2)(1+T 2U2)+

+4abf(f 2−1)(a2−b2)(T + U)(1−TU)+

+a2(b2(f 2−1)2+4a2f 2)(T 2+U2)+

+8f 2(a2−b2)(a2+b2)TU :

:
(

ab(1−U)(1+T 2)(1−f 2)−
(

2b2(1+T 2)+

+2a2(T 2+U)+2(a2−b2)T (1+U)
)

f
)

·
·
(

ab(1+T 2)(1+U)(f 2−1)−
(

2b2(1−T 2)+

+2a2(T 2−U)−2(a2−b2)T (1−U)
)

f
)

:

:
(

abU(1+T 2)(f 2−1)−
(

2a2T 2+

+2(a2−b2)UT+2b2
)

f
)

·
(

ab(1+T 2)·
·(f 2−1)+

(

2b2T 2U+2(a2−b2)T+2a2U
)

f
)

and Q− admits a similar representation.
Now, we can state and prove:

Theorem 3.1. The lines s+ := [Q,Q+] and
s− := [Q,Q−] envelop the same ellipse FE .
The centers of all these ellipses trace an el-
lipse M homothetic to E .
Proof. The parametrizations of Q+ and Q−

enable us to derive the equations of the lines
s+ = [Q,Q+] and s− = [Q,Q−]. The com-
putation of the envelopes is now straight
forward: We eliminate U from the equa-
tions of s− and s+ and we can immediately
see that both families of lines envelop the
same curve with the equation

FE : b2
(

sφ
2cτ

2ǫ2−4a2b2
)

x2+

+ a2
(

(a2+b2)2−sτ
2sφ

2ǫ2
)

y2+

− 2abf 2sτcτ (1+cφ)
2ǫ2xy+

− 2ab(a4−b4)sφ
2
(

bcτx−asτy
)

+

− a2b2
(

cφ(a
2+b2)2−ǫ2)

)

= 0,

(6)

where we changed back to the trigonometric
representation. For the sake of simplicity,

we have set

sφ := sinφ, cφ := cosφ,
sτ := sin τ, cτ := cos τ,

and ǫ2 := a2 − b2 is the square of the linear
excentricity of the ellipse E . In order to
show that the curves FE are ellipses, we find
their centers as

m(T ) =
f 2(a4 − b4)

(a2f 2 + b2)(b2f 2 + a2)
e(−T )

(with e from (2)) which parametrizes the
ellipse M mentioned above. Obviously, M
is homothetic to E and its semi-axes lengths
are

major =
af 2(a4 − b4)

(a2f 2 + b2)(b2f 2 + a2)
,

minor =
bf 2(a4 − b4)

(a2f 2 + b2)(b2f 2 + a2)
,

provided b<a. Their ratio equals a : b and
they never vanish as long as a 6=b.

P

Q

Q+

Q−

FE

r+

E

g−

g

g+

s+

s−

Figure 6: Both chords s+ and s− envelop
the same conic FE .

The fact that the generalized Frégier con-
ics of an ellipse are always ellipses can also
be deduced from the construction used in
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the proof of Thm. 2.1: For real rotation an-
gles φ, the envelopes of the chords are in
the interior of the auxiliary circle d. The
collineation d → c with center P maps these
interior circles to conics in the interior of
the ellipse c (or E , respectively). Hence,
the generalized Frégier conics of an ellipse
can only be ellipses.
Only if we allow the rotation angle φ to

be a pure imaginary number, the radii of
the envelopes of d’s chords can become ar-
bitrarily large:

rd cos(iφ) = rd coshφ ≥ rd,

and thus, there exist outer generalized
Frégier conics of any affine type but not cor-
responding to real angles.
The Frégier ellipses (6) constitute a pen-

cil of conics of the third kind (cf. Thm. 2.2).
All conics in this pencil touch each other in
a pair of complex conjugate points

B1=

(

a
(a2+b2)(1−T 2)+4abiT

(1+T 2)(a2−b2)
,

2b
abi(1−T 2)−(a2+b2)T

(1+T 2)(a2−b2))

)

,

and B2 = B1. These points are the collinear
images of the absolute points of Euclidean
geometry common to all circles concentric
with the auxiliary circle d used in the proof
of Thms. 2.1 and 2.2. Since, the points B1

and B2 are each others complex conjugates
they span a real line

p : ǫ2(b(1− T 2)x− 2aTy) =

= ab(a2 + b2)(1 + T 2)
(7)

which is the polar line of the Frégier point

F =
a2 − b2

a2 + b2

(

a(1− T 2)

1 + T 2
,
−2bT

1 + T 2

)

. (8)

with pivot point P ∈ c. The line p given by
(7) is sometimes called the Frégier line of P
with respect to c (cf. [15]). The Frégier line
(with multiplicity two) is a singular conic in
the pencil of generalized Frégier conics.
The following can also be shown:

Theorem 3.2. For variable point P ∈ E ,
the Frégier ellipses FE envelop two ellipses
Ei, Ee which are homothetic to E .

Proof. The elimination of the parameter T
from the equation (6) of FE and its deriva-
tive with respect to T yields

Eo :
x2

a2
+

y2

b2
=

(b2f 2 − a2)2

(b2f 2 + a2)2
,

Ei :
x2

a2
+

y2

b2
=

(a2f 2 − b2)2

(a2f 2 + b2)2
.

Obviously, Eo and Ei are concentric with E ,
there axes are parallel to those of E , and
since the semi-axes lengths of the latter el-
lipses are

ai = a
a2 − b2f 2

b2f 2 + a2
, bi = b

a2 − b2f 2

b2f 2 + a2

and

ao = a
a2f 2 − b2

a2f 2 + b2
, bo = b

a2f 2 − b2

a2f 2 + b2
.

The ratio of both pairs of semi-axes lengths
equals a/b.

The outer and inner envelope Eo and Ei
coincide if f = ±1 and become the ordi-
nary Frégier conic being the trace (8) of the
Frégier points of E .
Fig. 7 shows the two ellipses Eo and Ei

comprising the envelope of the Frégier el-
lipses of E .
The sketch of the computational proof of

Thm. 3.1 hides a detail: The resultant of
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Figure 7: The envelope of the generalized
Frégier conics of the ellipse E consists of an
outer ellipse Eo and an inner ellipse Ei.

the equation of s+ and its derivative with
respect to U turns out to be the product of a
polynomial of degree one (equation of a line
r+) and a polynomial of degree two (equa-
tion of FE). This is also the case with s−

(yielding the equation of a line r− 6= r+ and
the equation of FE). However, the two re-
sultants share the quadratic factor describ-
ing FE and differ in the linear parts. The
lines r+ and r− belong to the pencil about
(−a, 0) (the left principal vertex of E which
corresponds to the parameter value T = ∞)
and their equations are

r+, r− : b
(

ǫ2sτ sinφ± 2abcφ
)

x+

+a sinφ
(

ǫ2cτ+a2+b2
)

y+

+ab
(

ǫ2sτ sinφ± 2abcφ) = 0

From the computational point of view, the
lines r+ and r− do not have any further
meaning. It is quite the opposite from the
geometric point of view as we shall see soon.
The vertex of the pencil depends on the

parametrization (2) and can be replaced
with any other point on E (simply by sub-
stituting any linear rational function for T ).
It is by no means surprising that the lines

E
FE

F±
E

P

Q

Q+

Q−

r+
r− r±

Figure 8: The triangle built by r+, r−, r±

already indicates the existence of a poristic
family of triangles interscribed between E
and the Frégier ellipses FE and F±

E .

s± := [Q−, Q+] also envelop a conic F±
E

since <) g−g = <) gg+ = 1

2
<) g−g+. Fur-

ther, a computational proof of the latter
fact (comparable to that of Thm. 3.1) would
also produce the equation of a line r± which
is tangent to the Frégier ellipse F±

E .
At this point, we emphasize that the re-

spective coefficient matrices of the conics
satisfy

F±
E = FEE−1FE ,

which identifies F±
E as the conjugate conic

of E with respect to FE in the sense of [10].
Also in that sense, the conics E and FE span
an exponential pencil of conics which also
contains F±

E . Because of the nestedness of
E , FE , and F±

E , the exponential pencil has a
point shaped limit which equals the Frégier
point F given by (8). This holds in the like
manner for the generalized Frégier conics of
hyperbolae and parabolae.
There exists a triple (r+, r−, r±) of lines

which are the sides of a triangle interscribed
between E , FE , and F±

E independent of the
choice of P ∈ E . This gives rise to the fol-
lowing:
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Theorem 3.3. The triangles bounded by
the lines r+, r−, r± form a one-parameter
family of triangles interscribed between the
conic E and the Frégier ellipses FE and F±

E .
The triangles form a Poncelet family.

Proof. We only have to show that the con-
ics E , FE , and F±

E belong to a linear pencil
(cf. [7, p. 259]) in order to meet the require-
ments of a general Poncelet porism (cf. [4]).

This can either be done by referring to
Thm. 2.2 according to which the two Frégier
conics to angles φ and 2φ belong to a pencil
of conics (of the third kind) or by means of
computation:

For that purpose, we homogenize the
equations of E , FE , and F±

E , extract the
coefficient matrices, and find that they are
linearly dependent since

(

4(1−f 2)2FE−F±
E

)

(1+f 2)−1 =

= a4b4(3f 2−1)(f 2−3)2(1+T 2)2 E ,
(9)

provided that f 6= ±1. In the cases f =
±
√
3,±1/

√
3, i.e., φ 6= ±π

6
, the Frégier el-

lipses FE and F±
E coincide.

We have shown that FE , F±
E , E belong

to one pencil of conics. This is a pencil of
the third kind that contains the two singu-
lar conics. The first of which is a line with
multiplicity two:

ǫ2
(

b(T 2−1)x+2aTy)=ab(a2+b2)(1+T 2).

The second one is a pair of complex con-
jugate lines concurring in the (real) Frégier
point (8) with directions

x

y
= ± ib

2a

(a2 + b2)(1− T 2) + 4abiT

ab(T 2 − 1)− i(a2 + b2)T
.

This pair of complex conjugate lines is the
image of the isotropic lines through the cen-
ter of d under the perspective collineation
d → c used in the proof of Thm. 2.1.

3.2 Frégier conics of hyperbo-
lae

In analogy to the previous section, we as-
sume that a hyperbola H is given by the
middle equation of (1) with real semi-axes
a, b. The vertex of the rotating angle(s)
is now P = h(T ) with h from (2) where
T ∈ R \ {−1, 1}.

Again, the point Q is obtained by assum-
ing Q = h(U) with T 6= U and the chords
g := [P,Q] of H have an equation similar to
that of E in (5). Now, the chords’ normal
vectors are proportional to

n = (b(1 + TU),−a(T + U)).

The normal vectors of the legs g+ and g− of
the moving angles attached to g are found
by applying the linear mappings induced by
the matrices R(φ) and R(−φ) from (4).

This allows us to write down the equa-
tions of g+ and g−, compute the points
Q+, Q−, and furthermore, to determine
the envelopes of the lines s+ := [Q,Q+],
s− := [Q,Q−], and s± := [Q−, Q+], and we

10



find F+

H = F−
H = FH with the equation

FH :
(

(a2−b2f 2)(a2f 2−b2)
(

1+T 4
)

+

+2
(

a2b2(1+f 2)2+ε2f 2
)

T 2

)

x2+

+
(

a2b2(1+f 2)2
(

1+T 4
)

+

+2
(

2ε2f 2−a2b2(1+f 2)2
)

T 2

)

y2+

+4a2bε2f 2T (1 + T 2)xy+
−2ab2(a2−b2)εf 2(1−T 4)x+

−4a2b(a2−b2)εf 2T (1−T 2)y+

+a2b2(a2f 2+b2) ·
· (b2f 2+a2)(1−T 2)2=0,

(10)

where ε2 = a2+b2 is the square of the linear
excentricity of the hyperbola H.
Analogously to Thm. 3.1, we can formu-

late

Theorem 3.4. The lines s+ and s− envelop
the same conic FH, the generalized Frégier
conic of the hyperbola H.
The generalized Frégier conics FH of a hy-
perbola H can be conics of any affine type.

Proof. Since the determinant of the quadra-
tic term of (10) equals

D12 := 4a4b4(1 + f 2)2(a2 − b2f 2)3·
·(a2f 2 − b2)3(1− T 2)4

and vanishes exactly if f = ±a
b
,± b

a
, the

generalized Frégier conics in these particu-
lar four cases coincide and the equation of
FH simplifies to

(a2 + b2)2
(

2bTx+ a(1 + T 2)y
)2
+

−2ab(1−T 2)
(

b(a4−b4)
(

1+T 2)x+

2aT (a4−b4)y−ab(a4+b4)(1−T 2)
)

= 0.

The latter equation describes a parabola
with ideal point

0 : −a(1 + T 2) : 2bT

(for all four values of f). For proper choices
of f , D12 can be positive as well as negative,
and therefore, the generalized Frégier conics
FH of H can also be ellipses and hyperbo-
lae. Using the collineation applied in the
proof of Thm. 2.1, we can also argue that
all affine types of conics can show up here
as generalized Frégier conics.
The Frégier conics of hyperbolae are reg-

ular since the determinant of the homoge-
neous equation equals

D012 := −8a10b10(1−f 2)2(1+f 2)4(1−T 2)6

which vanishes only if f =±1 (right angle,
Frégier point) or if T = ±1 (which can be
avoided by reparametrizing H).

H
H

FH

FH

F±
H

F±
HP

Q

Q+

Q−

r+ r−

r±

Figure 9: Two triangles from the Poncelet
family interscribed between H, FH, and
F±

H.

The one-parameter family of generalized
Frégier conics of a hyperbola shows a be-
haviour similar to that of an ellipse. Com-
parable to Thm. 3.2, we can show:

Theorem 3.5. For variable point P ∈ H,
the generalized Frégier conics FH envelop
two hyperbolaeHi, Ho which are homothetic
to H.

11



Proof. We eliminate the parameter T from
the equation (10) of the generalized Frégier
conics FH and of the derivatives of (10)
with respect to T . This elimination yields
besides the equations ay ∓ bx = 0 of H’s
asymptotes, the hyperbola H, and a fur-
ther hyperbola H′ that does not contribute
to the envelope.
The two components of the envelope are

two hyperbolae

Hi :
x2

a2
− y2

b2
=

(b2f 2 + a2)2

(b2f 2 − a2)2
,

Ho :
x2

a2
− y2

b2
=

(a2f 2 + b2)2

(a2f 2 − b2)2
.

It is obvious that Hi andHo are homothetic
to H. Their semi-axes are

ao = a
b2f 2 + a2

a2 − b2f 2
, bo = b

b2f 2 + a2

a2 − b2f 2

and

ai = a
a2f 2 + b2

a2f 2 − b2
, bi = b

a2f 2 + b2

a2f 2 − b2

(provided that f 6= ±a
b
,± b

a
) and the axes

ratio equals a/b.

It is a rather simple task to show that
the centers of the generalized Frégier conics
move on a hyperbola M homothetic to H
with semi-axes

principal =
af 2(a4+b4)

(a2−b2f 2)(a2f 2−b2)
,

auxiliary =
bf 2(a4+b4)

(a2−b2f 2)(a2f 2−b2)
,

provided that f 6= ±a
b
,± b

a
.

In the previous section, we have seen that
the computation of the generalized Frégier
conics as the envelopes of chords of a conic
produced straight lines as some by-product.

HHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHH

MMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMM

HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHi

HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHi

HeHeHeHeHeHeHeHeHeHeHeHeHeHeHeHeHe

HeHeHeHeHeHeHeHeHeHeHeHeHeHeHeHeHe

Figure 10: Frégier conics of a hyperbola can
be ellipses. In any case, the Frégier conics of
a hyperbola H envelop two hyperbolae Hi

and He (homothetic to H) and with their
centers on a further homothetic hyperbola
M.

These lines depend on the parametrization
of the initial conic, but nevertheless, they
allow us to conclude that there exist general
Poncelet families of triangles interscribed
between H and the generalized Frégier con-
ics FH and F±

H .
Therefore, and without repeating the

similar computations, and in analogy to
Thm. 3.3, we can state:

Theorem 3.6. The hyperbola H and the
pair of generalized Frégier conics FH and
F±

H admit an interscribed one-parameter
family of triangles, i.e., a one-parameter
family of billiards with two caustics.

According to Thm. 2.2 and because of

F±
H − 4(1− f 2)3FH =

= (3f 2−1)(f 2−3)(1+f 2)2(1−T 2)2a4b4H

the conicsH, FH, and F±
H belong to a pencil

of conics.
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3.3 Frégier conics of parabo-
lae

Finally, we assume that the parabola P is
given by the third equation in (1). Now, we
let P = p(T ) and Q = p(U) with T, U ∈ R

and T 6= U be two points on P spanning the
line g=[P,Q] rotating about P through φ.
With (4) applied to the normal vector

n = (T + U,−1),

we find the line g+ with the equation

g+ :
(

(T+U)(1−f 2)+2f
)

x+

+
(

2(T+U)f+f 2−1
)

y =

= 2pT
(

U(1−f 2)−2fT (T+U)+2f)

(11)

and the line g− admits a similar represen-
tation. The lines g+ and g− intersect P in
the points Q+, Q− 6= P where

Q+=2p

(

U(f 2−1)−2f(T+U)T−2f

2f(T+U)+f 2−1
,

(2f(T+U)T+U(1−f 2)+2f)2

(2f(T+U)+f 2−1)2

)

.

(12)

The point Q− admits a similar coordinate
representation. This yields the equations of
the chords s− := [Q,Q−], s+ := [Q,Q−],
and s± := [Q−, Q+], where

s+ : 2(f(T 2−U2)+U(1−f 2)+f)x+

+(2f(T+U)+f 2−1)y

= 2pU(2f(T+U)T+U(1−f 2)+2f),
(13)

and the equations of the other chords s−

and s± can be given in a similar form.
We compute their envelopes and find

again that the Frégier conics F−
P =F+

P =:FP

are identic. An equation of the parabola’s
generalized Frégier conics can be given as

FP : (4T 2f 2+(1+f 2)2)x2+

+4f 2Txy+f 2y2+

+8qf 2T (1+T 2)x−
−2q(f 4−2T 2f 2+1)y+

+4q2f 2(1+T 2)2 = 0.

(14)

Now, we can state (comparable to Thm. 3.1
and Thm. 3.4):

Theorem 3.7. The chords s+ and s− cut
out of a parabola P by congruent angles cen-
tered at a point P ∈ P envelope the same
conic FP with the equation (14).
The generalized Frégier conics FP of a
parabola P are ellipses if φ ∈ R.

Proof. The chords’ envelope is already
given in (14). Since the determinant of the
homogeneous equation of FP equals

D012 = −8q2(1− f 2)2(1 + f 2)4,

it never vanishes (for, by assumption q 6=
0, f 6= 0,±1,±i). Hence, the generalized
Frégier conics of the parabola are always
regular. The determinant of the quadratic
term in the inhomogeneous equation (14) of
FP equals

D12 = 4f 2(1 + f 2)2

and is always positive (provided f 6= 0,±i,
which is excluded from the very beginning).
Hence, (14) describes ellipses independent
of the choice of f and T (since p 6= 0, f 6=
±1,±i). In order to verify the second part
of the theorem, just discuss the quadratic
part of (14).
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The centers of the ellipses (14) showing
up as generalized Frégier conics are located
on a parabola with the parametrization

(−2qT, f−2q(2T 2f 2 + f 4 + 1))

and the equation

Pc : x2 − 2qy = −2f−2q2(1 + f 4).

Obviously, this parabola is congruent to P.
This parabola is also shown in Fig. 11
Like in the case with the ellipse E , the

elimination process delivers two lines r+

and r−, which are parallel and tangent to
F and have the equations

r+, r− : 2fpT ∓ p(1−f 2)+fx = 0. (15)

The parallelity of r+ and r− depends on the
parametrization (2) of P since t = ∞ in
the third equation of (2) yields the point
0 : 0 : 1 = r+∩r−. A suitable linear rational
reparametrization of the parabola (2) can
move the point r+ ∩ r− to any other point
on P.
The double angle Frégier conic F±

P has
the equation

F±
P :
(

16f 2(1−f 2)2T 2+(1+f 2)4
)

x2+

+16f 2(1−f 2)2Txy+4f 2(1−f 2)2y2+

+32pf 2(1−f 2)2T (1+T 2)x+

+
(

16pf 2(1−f 2)2T 2−2p(f 8−4f 6+

+22f 4−4f 2+1)
)

y+

+16p2f 2(1−f 2)2(1+T 2)2 = 0.

(16)

which is regular as long as f 6= ±1 ±
√
2

and consists of the given parabola P and
the line

2pT 2 + 2Tx+ y = 0

if f = ±1. The additional line that comes
along with the equation (16) of F±

P has the
equation

r± : 2f 2(2Tx+ y) =

= p((1−f 2)2−4f 2T 2).
(17)

The three conics P, FP , and F±
P belong

to the same pencil since the respective equa-
tions (1), (14), and (16) satisfy

(3f 2−1)(3−f 2)(1+f 2)2P =

= 4(1−f 2)2FP + F±
P .

(18)

The comparison of (9) and (18) shows that
the latter does neither contain the parame-
ter q nor the curve parameter T , while (9)
depends on the semi-axes of E and on the
point P .

P
PiPiPiPiPiPiPiPiPiPiPiPiPiPiPiPiPi

PoPoPoPoPoPoPoPoPoPoPoPoPoPoPoPoPo

PcPcPcPcPcPcPcPcPcPcPcPcPcPcPcPcPc

Figure 11: The generalized Frégier conics of
a parabola P envelop two parabolae Pi and
Po which are congruent to P.

Comparable to Thms. 3.2 and 3.5, we can
show what is illustrated in Fig. 11:

Theorem 3.8. For variable point P ∈
P, the generalized Frégier conics FP of a

14



parabola (1) envelop a pair of congruent
parabolas with the equations

Po : x2 + 4f−2q2 = 2qy,
Pi : x2 + 4f 2q2 = 2qy

which are also congruent to P.

Proof. The computation of these two en-
velopes is straight forward. Since their
quadratic part is a multiple of x2 − 2qy (as
is the case with P), they are congruent to
each other and P as well.

Because of the existence of one inter-
scribed triangle bounded by the lines (15)
and (17) between the conics P, FP , and F±

P
(which belong to a pencil according to Thm.
2.2 and because of (18)), we have (cf. Thm.
3.3 and Thm. 3.6):

Theorem 3.9. The conics P, FP , and F±
P

allow for a one-parameter family of inter-
scribed triangles.

P

FP

F±
P

P
Q

Q+

Q−

r+

r−

r±

Figure 12: Frégier conics FP and F±
P re-

lated to a parabola P.

Fig. 12 illustrates that among the tri-
angles in the Poncelet family described in
Thm. 3.9 there are degenerate triangles
with one vertex at infinity. It is more than
one degenerate triangle since each vertex of
the triangle can reach one of the positions
of r+ ∩ P or r− ∩ P.

4 Concluding remarks

The generalized Frégier conics can be seen
as a blow-up of the ordinary Frégier point
just by replacing the right angle between as-
signed pairs of lines in the projective map-
ping at some point P on a conic c. This
blow-up “enlarges” or blows up the ordi-
nary Frégier conic (the trace of the Frégier
point if its pivot P ∈ c is moving along c)
to the two envelopes Eo, Ei (Ho, Ho or Po,
Pi). Of course, there are other ways to gen-
eralize or adapt Frégier’s theorem. We shall
postpone this to a future article.

The Poncelet families (one-parameter
families of triangles interscribed in between
some conics from a pencil) were found just
occasionally since the lines bounding these
triangles are by-products in the compu-
tation. The initial parametrizations (2)
lead to just one initial triangle in the fam-
ily. Any other (projectively equivalent)
parametrization of the conics would have
resulted in another triangle. However, one
is enough since it was possible to show that
the involved triple of conics (E ,FE,F±

E )
(and also those related to the hyperbola and
the parabola) belong to the same pencil.
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et appliquèes, tome 6 (1815-1816),
229–241.

[7] G. Glaeser, H. Stachel, B.

Odehnal: The Universe of Con-
ics. From the ancient Greeks to
21st century developments. Springer-
Spektrum, Springer-Verlag, Heidel-
berg, 2016.

[8] F. Granero Rodŕıguez, F. Ji-
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[13] H.-P. Schröcker: A Family of Con-
ics an Three Special Ruled Surfaces.
Beitr. Algebra Geom. 42/2 (2001),
531–545.
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par rapport au point de Frégier. Chr.
Huygens 9 (1931), 201–205.

[16] G. Weiss: Frégier points revisited.
In: Proceedings of the Czeck-Slovak
Conference on Geometry and Graphics
2018, 277–286.

[17] G. Weiss, P. Pech: A quadratic
mapping related to Frégier’s theorem
and some generalisations. J. Geom.
Graphics 25/1 (2021), 127–137.

16


