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Abstract

We adapt the classical definition of con-
choids as known from the Euclidean plane
to geometries that can be modeled within
quadrics. Based on a construction by means
of cross ratios, a generalized conchoid trans-
formation is obtained. Basic properties of
the generalized conchoid transformation are
worked out. At hand of some prominent ex-
amples - line geometry and sphere geome-
try - the actions of these conchoid transfor-
mations are studied. Linear and also non-
linear transformations are presented and re-
lations to well-known transformations are
disclosed.
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1 Introduction

The well-known construction of conchoids
is usually applied to curves in the Eu-
clidean plane R

2. Several conchoids of
simple and elementary curves in the Eu-
clidean plane are known and have under-
gone intensive investigations, see for exam-
ple [4, 6, 10, 11, 16, 22].

The conchoid construction uses a focus F
and a directrix l (with F /∈ l in case of a
straight line l). Then, a value d ∈ R is
chosen and the conchoid cd of l with respect
to F is defined as

cd :={Xd :XdX=d,Xd∈ [X,F ], ∀X∈ l} (1)

where XdX denotes the Euclidean distance

F

l

X

Xd+

Xd−

Figure 1: Some conchoids of a straight line
l with respect to the focus F .

of the segment XdX and [F,X ] means the
line spanned by F and X . A special exam-
ple is obtained by choosing l as a straight
line which yields the one-parameter family
of Nikomedes’s conchoids. Pascal’s limaçon
is the conchoid of a circle l with F ∈ l,
see [6, 11, 22]. Fig. 1 shows some members
from the Nikomedes family. In Euclidean
geometry it makes a difference whether the
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distance d is equipped with a sign or not.
So, the conchoid cd has either one or two
branches depending on whether d is signed
or not.

In the following, the mappingX 7→ Xd shall
be called the conchoid transformation. It
is clearly seen that the conchoid transfor-
mation defined via (1) can be applied to
arbitrary submanifolds of any metric space.
Thus, the conchoid transformation has been
applied to surfaces in Euclidean three-space
R3 in [13, 14, 15, 17, 18] in order to con-
struct new classes of surfaces admitting ra-
tional parametrizations, and thus, making
them accessible to the algorithms imple-
mented in CAD systems. In [8], a special
affine version of a line geometric conchoid
transformation was presented. Conchoids
on the Euclidean unit sphere were studied
from the algebraic and constructive point of
view in [12].

Figure 2: The conchoid of a plane with re-
spect to a point is a surface of revolution
with Nikomedes’s conchoid for its meridian
curve.

None of the constructions presented in
[13, 14, 15] preserves the type of the geo-
metric object that undergoes the conchoid
transformation. The conchoids of planes
and spheres become some algebraic surfaces
that somehow imitate the features of the

conchoids known from the Euclidean plane,
see Fig. 2. Ruled surfaces transform to
arbitrary surfaces which, in general, carry
maybe only a finite number of straight lines,
cf. [13].

In this paper, we adapt the conchoid con-
struction such that it applies to various
geometries that can be modeled within
quadrics. This is especially the case for
the geometry of lines and spheres in three-
dimensional spaces which can be modeled
within Plücker’s and Lie’s quadric. So,
we are able to find conchoids within cer-
tain classes of geometric objects: Lines or
spheres can be mapped to lines and spheres.
Consequently, ruled surfaces and channel
surfaces are transformed to such surfaces.
As a by product, rational parametrizations
are also preserved.

However, this concept is not restricted to
line and sphere geometry, but these are
taken as examples in order to show how the
generalized conchoid transformation acts.
The group of Euclidean motions can be
treated in Study’s quadric model and also
Möbius geometry can be realized on a
sphere, further, isotropic geometries and
Laguerre geometry also have quadric mod-
els and the generalized conchoid transfor-
mation can be used there. We shall not
discuss these latter four in detail.

Section 2 is dedicated to the generalized
conchoid construction and its basic prop-
erties. The special cases of line and sphere
geometric conchoid transformations are dis-
cussed in Sections 3 and 4. In both sec-
tions, we treat linear conchoid transforma-
tions and special types of quadratic trans-
formations.
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2 The generalized con-

choid transformation

Let F be an arbitrary commutative field
with charF 6= 2. Further, let Fn+1 be the
(n + 1)-dimensional vector space on F and
P
n(F) be the projective space of n dimen-

sions over Fn+1. A quadric Q ⊂ Pn(F) can
be defined by prescribing a symmetric bilin-
ear form Ω : Fn+1 × Fn+1 → F. With x we
denote the homogeneous coordinate vector
of a point X ∈ Pn(F) and the equation of
the quadric Q is then Ω(x,x) = 0. In the
following, lower case bold letters denote the
coordinate vectors while capitals denote the
points, i.e., the point P has the coordinate
vector p.

Assume that we are given three points Pi

(i ∈ {0, 1, 2}) in a quadric Q ∈ Pn(F). The
line [P0, P1] shall not be contained in the
quadric and the plane π = [P0, P1, P2] shall
not be tangent to Q. Further, f := π ∩ Q
shall be a regular conic in Q. Then, there
is always a uniquely defined point Pδ that
forms the cross ratio δ = cr(P0, P1, P2, Pδ)
with P0, P1, and P2. Now, we give

Definition 1. To any triple (P0, P1, P2) of
three different points in a quadric Q ⊂
P
n(F) and to any value δ ∈ F ∪ {∞} there

exists a uniquely defined fourth point Pδ

such that cr(P0, P1, P2, Pδ) = δ provided
that [P0, P1] 6⊂ Q, π = [P0, P1, P2] is not
tangent to Q, and charF 6= 2.

We call Pδ the δ-conchoid transformation of
P2 with respect to the foci P0 and P1.

Later, we will apply the thus generalized
conchoid construction to points in ruled

quadrics. Therefore, we do not exclude
the case of collinear points P0, P1, and P2.
Moreover, four points in a quadric do not
have to be coplanar in order to assign a
cross ratio to them. By means of a stereo-
graphic projection to the Gauss plane, we
obtain four points that can be identified
with four complex numbers and the defi-
nition of a cross ratio of these four points is
straight forward, see [2].

P0

P1

P2

Pδ

Q

f

Figure 3: The generalized conchoid trans-
formation acting on a quadric.

Remark 1. 1. None of the three points
P0, P1, P2 is distinguished. In fact,
any two points Pi and Pj (i 6= j) out
of the three initial points can be con-
sidered the foci of the conchoid trans-
formation. Then, Pδ is the conchoid
transform of Pk (k 6= i, j) with respect
to Pi and Pj.

2. Changing the roles of the given points
does not really change the conchoid
transformation. Only the cross ratio
δ may turn into one of the six values
δ, δ−1, 1 − δ, (1 − δ)−1, δ(δ − 1)−1,
(δ − 1)δ−1.

3. In the case charF = 3, only the cross
ratio δ = 2 yields a conchoid trans-
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form Pδ 6= P0, P1, P2. Since any pro-
jective line, and thus, any projective
conic carries four points in this case,
the conchoid transform Pδ of any three
(collinear or con-conic) points is the
remaining fourth point. Furthermore,
2 is its additive inverse, Pδ makes P0,
P1, P2 a harmonic quadruple. There-
fore, the conchoid transform Pδ of Pi

with respect to Pj and Pk (with i 6= j, k
and j 6= k) is the harmonic conjugate
of Pi with respect to Pj and Pk.

We can give a coordinate representation of
the generalized conchoid transformation in
Pn(F) which is helpful for further investiga-
tions:

Theorem 1. Let Fn+1 be the (n + 1)-
dimensional vector space on the commuta-
tive field F with charF 6= 2. Assume that
Ω : Fn+1 × Fn+1 → Fn+1 is a symmet-
ric non-degenerate bilinear form defining a
quadric Q ⊂ Pn(F) by Q : Ω(x,x) = 0.

Then, the conchoid transformation P2 7→ Pδ

as explained in Def. 1 can be given in terms
of homogeneous point coordinates in Pn(F)
as

pδ = δ(δ − 1)Ω12p0+

+(1− δ)Ω02p1 + δΩ01p2

(2)

where δ ∈ F∪{∞}, pi (i ∈ {0, 1, 2}) are the
homogeneous coordinates of the points Pi,
Ωij := Ω(pi,pj), and neither pair (pi,pj) is
conjugate with regard to Q (i.e., Ωij 6= 0).

Proof. We prove Thm. 1 by constructing
the coordinate representation given in (2).
In the end, we shall arrive at a parametriza-
tion of the conic f = [P0, P1, P2] ∩Q with

cr(P0, P1, P2, Pδ) = δ.

For that, we observe

cr(P0, P1, P2, Pδ) =

= cr(TP0
, [P0, P1], [P0, P2], [P0, Pδ]) = δ

where TP0
is the tangent of f at P0 (see

Fig. 4), i.e., the intersection of the tan-
gent hyperplane TP0

Q of Q at P0 with the
plane [P0, P1, P2]. The lines TP0

, [P0, P1],
[P0, P2], [P0, Pδ] from the pencil about P0

establish the stereographic projection f →
[P1, P2] which preserves cross ratios. If
further T0 := TP0

∩ [P1, P2] and P ′

δ :=
[P0, Pδ] ∩ [P1, P2], then cr(P0, P1, P2, Pδ) =
cr(T0, P1, P2, P

′

δ) = δ. The point T0 is found

f

TP0

T0

P0

P1 P2

Pδ

Pδ
′

Figure 4: The stereographic projection f →
[P1, P2] yields a parametrization of the conic
f by means of the cross ratio δ.

as the common point of TP0
Q : Ω(p0,x) = 0

and the line g12(λ, µ) = λp1 + µp2 (with
(λ, µ) ∈ F2 \ {(0, 0)}). This yields

t0 = −Ω02p1 + Ω01p2.

Obviously, t0 6= pi for Ω0i 6= 0 for i ∈ {1, 2},
by assumption. Now, the pairs (−Ω02,Ω01),
(1, 0), (0, 1) are homogeneous coordinates of
T0, P1, P2 on the line [P1, P2], and thus, we
find P ′

δ with cr(T0, P1, P2, P
′

δ) = δ as

p′

δ = (1− δ)Ω02p1 + δΩ01p2.
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The stereographic projection [P1, P2] → Q,
and thus, also onto f with center P0 sends
P ′

δ to Pδ. Since Pδ = Q∩ [P0, P
′

δ] \ {P0}, we
find pδ = p′

δ + δ(δ − 1)Ω12p0 which com-
pletes the proof.

The coordinate representation

pδ : F ∪ {∞} → Q

of Pδ given in (2) is a parametrization of the
conic f ⊂ Q. Hence, Ω(pδ,pδ) = 0 ∀δ ∈
F ∪ {∞}. We shall call f the fiber (conic)
of the conchoid transformation.

From the definition of the generalized con-
choid transformation and the analytic rep-
resentation (2), we can easily conclude:

Corollary 1. The generalized conchoid
transformation is involutive if, and only if,
the cross ratio equals δ = −1.

Proof. Geometrically speaking: If Pδ is the
conchoid transform of P2 with δ = −1 and,
if transformed with δ = −1 once again, then
we obtain P2 back.

Remark 2. If charF = 3, then the non-
trivial (δ 6= 0, 1,∞) generalized conchoid
transformation is always involutive.

None of the points pi is geometrically dis-
tinguished which is expressed in (2) by the
fact that the coordinate representation of
pδ is a trilinear form: It is linear in each pi.
This gives rise to the following:

Corollary 2. 1. The generalized con-
choid transformation on a quadric Q
can be extended to an automorphic
collineation κ of Q.

2. The collineation κ has the fixed points
P0 and P1 corresponding to the two
eigenvalues δ2Ω01 and Ω01.

3. The polar space F of f := [P0, P1] with
regard to Q is fixed point wise and cor-
responds to the eigenvalue δΩ01.

Proof. 1. Consider p2 in (2) as the vari-
able point x. Then, we observe that
each summand depends only linearly
on x: The first two coefficients in the
linear combination are Ω(p1,x) and
Ω(p0,x) and neither is multiplied with
x. Also the last summand depends
only linearly on x, since Ω01 is indepen-
dent of x. Since p2 = x 7→ pδ is ho-
mogeneous and linear in x and pδ ∈ Q
(∀δ ∈ F ∪ {∞}), it is an automorphic
collineation of Q.

2. By letting either p2 = p0 or p2 = p1

in (2), we see that the conchoid trans-
formation returns either pδ = δ2Ω01p0

or pδ = Ω01p1.

3. The three-dimensional polar space F of
f = [P0, P1] with regard to the quadric
Q : Ω(x,x) = 0 is given by the homo-
geneous linear equations

F : Ω(p0,x) = Ω(p1,x) = 0. (3)

With (2), x 7→ xδ and reads

xδ = δ(δ − 1)Ω1xp0+

+(1− δ)Ω0xp1 + δΩ01x
(4)

with Ωix :=Ω(pi,x) for i=0, 1. Insert-
ing (3) into (4), we infer xδ = δΩ01x

which holds true for all x ∈ Fn+1 \ {o}
subject to (3).
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Remark 3. The cross ratio itself is a ho-
mogeneous coordinate on a projective line
or on a conic section (in fact on any ratio-
nal normal curve). Therefore, we could re-
place the inhomogeneous parameter δ in (2)
by the homogeneous parameter (d0, d1) ∈
F2 \ {(0, 0)} with δ = d1d

−1
0 . We omit this

since d0 = 0 causes δ = ∞, Pδ = P0 which
shall be excluded from our considerations.

3 Line geometric con-

choids

3.1 Linear transformations

In this section, we apply the generalized
conchoid transformation to the manifold
of lines. For that we use the well-known
Klein model for the set of lines in a three-
dimensional space. Details, exact defini-
tions, properties, and how to compute with
Plücker coordinates can found in [9, 19, 20,
23].

We describe lines L in projective three-
space P3(F) by Plücker coordinates

(l; l) = (l1, l2, l3; l4, l5, l6) ∈ F
6 \ {o} (5)

which can be made homogeneous (see [9, 19,
20, 23]). Thus, they can be interpreted as
coordinates of points in a projective space
of five dimensions. From the definition of
Plücker coordinates of lines in three-space
it is clear that these six-tuples satisfy a
quadratic relation:

M4
2 : 1

2
ΩL(L, L) = 〈l, l〉 =

= l1l4 + l2l5 + l3l6 = 0.
(6)

M4
2 is a quadric of four dimensions. It is of

index two, i.e., the maximum dimension of
subspaces contained in M4

2 equals two. All
points on M4

2 correspond to lines in P3(F)
and any line can be described by Plücker
coordinates satisfying (6). (An affine or a
Euclidean specialization is also possible, see
[20, 23].)

The polar form ΩL : F6 × F6 → F of M4
2

can be used to characterize pairs of lines.
Two different lines L and M are coplanar
if, and only if, ΩL(L,M) = 0, i.e., the cor-
responding points in P5 are conjugate with
regard to M4

2 .

SinceM4
2 is a regular hyperquadric in P5(F),

there is a nine-parameter family of conics
in it. We have to distinguish between three
types of regular conics in Plücker’s quadric:
(1) the transversal intersection of a two-
dimensional subspace P2(F) ⊂ P5(F); (2a)
a conic in a plane P2

1(F) ⊂ M4
2 (of the first

kind); (2b) a conic in a plane P
2
2(F) ⊂ M4

2

(of the second kind). In the following, the
conic of type (1) is the most important. The
points on a conic of that type correspond
to one particular one-parameter family of
lines in a ruled quadric, i.e., a regulus. The
points on the conics mentioned in the cases
(2a) and (2b) correspond to the rulings of a
quadratic cone or to the tangents of a (pla-
nar) conic, see Fig. 5. Consequently, the

(1) (2a)

(2b)

Figure 5: The three types of reguli.
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fibers of the line geometric conchoid trans-
formation are reguli and in some cases the
rulings of quadratic cones or the tangents
of conics. Fig. 6 shows the a typical fiber
regulus.

P0 P1

P2

Pδ

Figure 6: A regular fiber regulus of the line
geometric conchoid transformation.

Since the line geometric conchoid transfor-
mation maps points on Plücker’s quadric
to points on Plücker’s quadric, it preserves
lines, and thus, it maps ruled surfaces
to ruled surfaces, and even congruences
and complexes of lines (two- and three-
dimensional submanifolds of M4

2 ) to such.

By assumption, the case of intersecting fo-
cal lines L0 and L1 is excluded and so we
have:

Theorem 2. Let L0 and L1 be two (skew)
lines in P3(F) and let δ ∈ F ∪ {∞} be a
certain fixed value. Then, the line geometric
conchoid transformation induces a (regular)
automorphic collineation κ of M4

2 that has a
fixed line f ⊂ P5(F) and a fixed three-space
F ⊂ P5(F) for its axis. F and f are polar
with regard to M4

2 .

Proof. It is always possible to choose homo-
geneous coordinates in P 3(F) such that the
Plücker coordinates of the focal lines are

L0 = (1, 0, 0; 0, 0, 0), L1 = (0, 0, 0; 1, 0, 0),

(satisfying ΩL(L0, L1) 6= 0) and L2 =
(l1, l2, l3; l4, l5, l6). We insert into (2) and
arrive at

Lδ = (δ2l1, δl2, δl3; l4, δl5, δl6). (7)

Obviously, the mapping κ : L2 7→ Lδ is a
regular collineation with the diagonal ma-
trix D = diag (δ2, δ, δ, 1, δ, δ) for its coor-
dinate representation. The linear mapping
described by D fixes the quadratic form ΩL,
and thus, it is an automorphic collineation
of M4

2 . The eigenvalues are t1 = 1, t2 = δ2,
and t3 = δ with their algebraic multiplic-
ities µ(t1) = µ(t2) = 1 and µ(t3) = 4.
The fixed points corresponding to 1 and δ2

are L0 and L1, while δ determines the κ-
invariant three-space F : x1 = x4 = 0. The
restriction κ|f of κ to the line f := [L0, L1]
is a hyperbolic projective mapping with two
fixed points L0, L1 and the coordinate rep-
resentation diag (δ2, 1). The three-space F
is fixed pointwise under κ and is polar to f
according to Cor. 2.

Remark 4. In the case of intersecting focal
lines L0 and L1, i.e., ΩL(L0, L1) = 0, κ is
a projection (singular collineation) onto a
one-dimensional subspace of P5(F) as can
be seen by choosing

L0 = (1, 0, 0; 0, 0, 0), L1 = (0, 1, 0; 0, 0, 0),

and L2 = (l1, l2, l3; l4, l5, l6). With (2), we
find Lδ = (−δl5, l4, 0; 0, 0, 0) provided that
δ 6= 0, otherwise Lδ is a single point. Now,
L2 7→ Lδ is a projection onto the subspace
x2 = x3 = x5 = x6 = 0. Note that f and F
are polar with regard to M4

2 .
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We take closer look at the induced
collineation of the regular (linear) line ge-
ometric conchoid transformation. The in-
cidence graph in Fig. 7 shall support our
imagination. Through a generic point L ∈

L0

L1
B2

B3

B5

B6

f

FLtLf

LF

L′
M0

M1

Lδ

κ|f

Figure 7: Action of the collineation induced
by the regular (linear) line geometric con-
choid transformation.

P5(F) there exists a unique line t that meets
f and F . We denote the intersections of t
and the fixed spaces f , F by Lf and LF .
The projective mapping κ|f : f → f sends
Lf to a point L′ while κ|F = idF and LF

remains fixed. Thus, κ maps t to the line
t′ = [L′, LF ]. Since κ preserves collineari-
ties, the image Lδ of L has to be on t′. The
projections M0 and M1 of L from L0 and
L1 onto t′ satisfy

cr(L′, LF ,M0, Lδ) = δ−1,

cr(L′, LF ,M1, Lδ) = δ.

We are able to show that the automor-
phic collineations of M4

2 obtained from the
line geometric conchoid transformation are
indeed induced by projective collineations
P3(F) → P3(F):

Theorem 3. Any automorphic collineation
κ of M4

2 induced by the line geometric con-
choid transformation is induced by a projec-
tive collineation α : P3(F) → P3(F).

Proof. It means no restriction to assume
that the focal lines L0 and L1 are those used
in the proof of Thm. 2. (The coordinate
system in P3(F) can always be chosen ap-
propriately.) Then, according to the proof
of Thm. 2, the automorphic collineation κ
of M4

2 induced by the line geometric con-
choid transformation is given by (7) and
is described by the diagonal matrix D :=
diag (δ2, δ, δ, 1, δ, δ). Now, we have to show
that D can be written as the Kronecker
product A?A of a (regular) 4×4 matrix A
with itself being a the transformation ma-
trix of a collineation α : P3(F) → P3(F). It
turns out thatA = diag (δ, δ, 1, 1) fulfills the
equation D = A ? A, and thus, the linear
mapping given byD describing an automor-
phic collineation of M4

2 is really induced by
a projective collineation α : P3(F) → P3(F)
with coordinate matrix A.

The factorization of the 6 × 6 matrix D
given in the proof of Thm. 3 may not be
unique. However, the uniqueness is not nec-
essary in order to show that the collineation
κ : M4

2 → M4
2 described by D is induced

by a collineation α : P3(F) → P3(F) as long
as there exists at least one.

Assume now that F = R and R : I ⊂
R → M4

2 is a curve in M4
2 . Then, it corre-

sponds to a ruled surface in P
3(R). A reg-

ular point R = R(t0) on this curve corre-
sponds to a regular ruling on the ruled sur-
face in P3(R). The regular ruling R is called
torsal if Ṙ = Ṙ(t0) fulfills ΩL(Ṙ, Ṙ) = 0.
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Along a torsal ruling the tangent planes of
the ruled surface do not change, see [9, 19].

A ruled surface that consists of torsal
rulings only is called torsal ruled sur-
face and its parametrization R(t) satisfies
ΩL(Ṙ, Ṙ) = 0 besides ΩL(R,R) = 0, both
for all t ∈ I.

The term torsal ruled surface covers cylin-
ders, cones, and the surfaces swept by the
tangents of a (space) curve (in P3(R)). Tor-
sal ruled surfaces in Euclidean three-space
can be mapped isometrically onto a Eu-
clidean plane, and therefore, these surfaces
are called developable. However, torsality
is a projective differential geometric prop-
erty of a ruled surface (see [9, 19, 20, 23])
and we can say:

Corollary 3. Torsal ruled surfaces are
mapped to torsal ruled surfaces under the
linear line geometric conchoid transforma-
tion.

Proof. Since torsality of rulings and ruled
surfaces is a projective property, it can-
not be harmed by the induced automor-
phic collineation of M4

2 . According to Thm.
3, the latter is induced by a projective
collineation in P3.

We could also prove the corollary by direct
calculation. Assume that R : I ⊂ R →
M4

2 is a curve in M4
2 (i.e., ΩL(R,R) =

0 ∀t ∈ I) all of whose rulings are torsal, i.e.,
ΩL(Ṙ, Ṙ) = 0 for all t ∈ I. Then, we com-
pute Rδ with (2), differentiate once with re-
spect to t, and verify that ΩL(Ṙδ, Ṙδ) = 0
on I ⊂ R.

Some examples shall illustrate the action of

the (linear) line geometric conchoid trans-
formation:

Example 1. The tangents of the curve
(6, 6t, 3t2, 2t3) ⊂ P

3(R) sweep a cubic de-
velopable. If we choose L0 = (1, 0, 0; 0, 0, 0),
L1 = (0, 0, 0; 1, 0, 0) and insert into (2), we
obtain the cubic developable built by the tan-
gents of the cubic (6δ, 6δt, 3t2, 2t3). If we
slice P3(F) along x0 = 0 (as usual), we see
that the two cubics are related by an affine
transformation and so are the cubic devel-
opables. Fig. 8 shows the initial cubic de-
velopable together with three of its line ge-
ometric conchoids. We can see that the

Figure 8: Some cubic developables being
each others line geometric conchoids.

parametrization of the two cubic curves dif-
fer only by a multiplication with the ma-
trix A = diag (δ, δ, 1, 1) given in the proof
of Thm. 3.

Example 2. Assume that the focal lines
are L0 = (0,−1, 2; 0,−2,−1) and L1 =
(1, 1, 3; 3, 0,−1). Further, we choose δ =
2/5 and apply the line geometric conchoid
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transformation (2) to the set of rulings
given by L2(t) = (t2+t, t−t2, 2,−t−t2, t2−
t, t4 + t2) and obtain Ld(t) = (30t4 − 25t2 −
85t−30, 48t4+151t2−79t−42, 54t4+63t2−
57t−206, 90t4+205t2+25t−90, 36t4+2t2+
82t−24,−82t4−79t2+21t+18). A part of
this ruled surface is shown in Fig. 9 together
with the focal lines and one fiber regulus.

L0

L1

L2
Lδ

F

R

Rδ

Figure 9: The conchoid transform of a quar-
tic ruled surface with the two focal lines L0,
L1, and a fiber regulus F .

3.2 Quadratic mappings

The line geometric conchoid transforma-
tions discussed in the previous section
turned out to be linear mappings, i.e.,
collineations. From that it is a small step to
the definition of a quadratic mapping: As-
sume that one focal line, say L1, is image
of L2 under a fixed projective transforma-
tion and leave L0 fixed. Then, (2) yields a
transformation in terms of Plücker coordi-
nates (l1, . . . , l6) that is quadratic in the li.
A special affine version of such a quadratic

line geometric conchoid transformation was
studied in [8].

In the following, we shall consider a spe-
cial Euclidean version of a quadratic line
geometric conchoid transformation. For
that purpose, we assume that L0 =
(1, 0, 0; 0, 0, 0) is the fixed and constant first
focal line. It means no restriction to as-
sume that L0 coincides with the x-axis of
the coordinate system. The second focal
line shall be the absolute polar of the line
L2 = (l1, l2, l3; l4, l5, l6) (that is to be trans-
formed) with respect to the absolute po-
larity of Euclidean geometry, i.e., L1 =
(0, 0, 0; l1, l2, l3). With (2) we find the co-
ordinate representation of this particular
quadratic line geometric conchoid transfor-
mation as

q :

















l1
l2
l3
l4
l5
l6

















7→

















δ(δ−1)(l21+l22+l23)+δl21
δl1l3
δl2l3

(1− δ)l1l6 + δl3l4
(1− δ)l2l6 + δl3l5

l3l6

















. (8)

The mapping q is degenerate on the field
of lines in the ideal plane, i.e., q(L) = o for
all lines L = (0, 0, 0; u, v, w) with (u, v, w) ∈
R3 \ {o}.

Torsality is, in general, not preserved un-
der quadratic line geometric conchoid trans-
formations. Surprisingly, we can show the
following result (for an arbitrarily chosen
first focal line L0) which holds in Euclidean
three-space R3:

Theorem 4. The quadratic line geometric
conchoid transformation (8) maps cylinders
to cylinders.
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Proof. Let L0 = (l, l) be the first focal line
with constant vectors l, l ∈ R3 \ {o} satis-
fying 〈l, l〉=0. Further, let

L2 = (v,v) : I ⊂ R → M4
2

be the Plücker representation of the cylin-
der where the constant vector v ∈ R3 \ {o}
points into the direction of the cylinder’s
rulings and v : I ⊂ R → R3 is not constant.
Naturally, 〈v,v〉 = 0 for all t ∈ I. Then,
the second focal line is given by L1=(o,v)
and is obviously constant. Since we are
dealing with lines in Euclidean three-space,
we may assume that both l and v are unit
vectors, i.e., 〈v,v〉=〈l, l〉=1.

With Ω01 = Ω12 = 1, Ω02 = 〈l,v〉 + 〈l,v〉,
and (2), we find

Lδ=δ(δ−1)

(

l

l

)

+(1−δ)Ω02

(

o

v

)

+δ

(

v

v

)

from which we immediately see that the di-
rection vector

lδ = δ(δ − 1)l+ δv (9)

is constant since l,v ∈ R3 are constant.
Therefore, Lδ : I ⊂ R → M4

2 parametrizes
a cylinder.

Remark 5. Since the argument v is con-
stant, the quadratic line geometric conchoid
transformation turns out to be linear in the
case of the cylinder. According to Cor. 3,
torsal ruled surfaces are mapped to torsal
ruled surfaces.

It is also possible to verify Thm. 4 via direct
computation in terms of coordinates. Then,
it is useful to assume that v = (0, 0, 1) and

P0

P2

Pδ

Figure 10: The quadratic line geometric
conchoid transform of a cylinder.

the cylinder is erected on the cross section
q = (q1, q2, 0) : I ⊂ R → R3 in the plane
〈x,v〉 = 0. Apparently, the cross section of
Lδ can be parametrized by

qδ=
1−δ

δl3





l5
−l4
0



+
1

δ





q1
q2
0



 ,

and thus, the cross section q of L under-
goes an equiform transformation with scal-
ing factor δ−1.

Eq. (9) shows that the direction of the
rulings changes. Fig. 10 shows a cylin-
der of revolution (elliptic cylinder) and its
quadratic conchoidal image. The horizon-
tal cross sections of the cylinder are circles
and are mapped to circles. The direction of
the cylinder’s rulings are changed and the
image cylinder is again an elliptic cylinder,
but with circular horizontal cross sections.

11



4 Conchoids in sphere

geometry

Many of the results from Sec. 3 dealing with
lines can be carried over directly to similar
results on spheres. This is mainly based on
a mapping that goes back to S. Lie and
establishes a one-to-one correspondence be-
tween lines and spheres. The mapping is
called Lie’s line-sphere-mapping which is a
projective collineation P5(C) → P5(C). Un-
fortunately, Lie’s mapping needs the com-
plex extension of the underlying projective
space and mixes up real and complex ob-
jects. Therefore, we go a different way and
use a coordinatization of the manifold of
spheres that was given in [21].

A sphere S in Euclidean three-space R3 can
always be given by its equation in terms of
Cartesian coordinates as

S : (s6−s4)(x
2+y2+z2)−

−2s1x−2s2y−2s3z+(s6+s4)=0.
(10)

For the moment, we assume that s6−s4 6= 0.
By completing to full squares in the sphere’s
equation, we find the center

M =
1

s6 − s4
(s1, s2, s3) (11)

and the radius R

R2 =
s21 + s22 + s23 + s24 − s26

(s6 − s4)2
.

With the definition

R =
s5

s6 − s4
(12)

we find that the six values si satisfy the
homogeneous quadratic equation

L4

2
: ΩS(S, S) := s2

1
+s2

2
+s2

3
+s2

4
−s2

5
−s2

6
= 0. (13)

It is clear that the si are homogeneous and
an interpretation as homogeneous coordi-
nates of points in a projective five-space is
nearby. The coordinates s = (s1, . . . , s6) ∈
R6 \ {o} are called Lie’s sphere coordi-
nates. We shall keep in mind that R can be
equipped with a sign which can be used to
express an orientation of the sphere S. The
quadric L4

2 spans P
5(R), is of index one, and

therefore, it carries straight lines as maxi-
mal subspaces. L4

2 is called Lie’s quadric
(cf. [5, 7, 20, 21]) and serves as a point
model for the set of spheres in Euclidean
three-space.

The polar form ΩS : R6 × R6 → R de-
scribes the polar system of L4

2. Assume
that S and T are two different spheres (non-
proportional Lie coordinates) in oriented
contact, i.e., the radii (normal vectors) have
equal orientation at the point of contact.
Then, S and T are conjugate with regard
to L4

2, or equivalently, ΩS(S, T ) = 0, and
vice versa.

The two quadrics M4
2 and L4

2 are each oth-
ers collinear image under Lie’s line-sphere-
mapping, see [5, 7, 20, 21]. However, the
collinear transformation does not map real
objects to real ones in general and L4

2 car-
ries only straight lines, whileM4

2 carries two
independent families of planes.

Since L4
2 carries at most straight lines,

there exists only one type of regular con-
ics in L4

2. These conics correspond to one-
parameter families of spheres enveloping
Dupin cyclides. Hence, the fibers of the
sphere geometric conchoid transformation
are, loosely speaking, Dupin cyclides (cf.
Fig. 11). (More precise, but rather lengthy:
The fibers of the sphere geometric conchoid

12



Figure 11: The fibers of the sphere geo-
metric conchoid construction are Dupin cy-
clides of any type.

transformation are one-parameter families
of spheres enveloping Dupin cyclides.)

In analogy to Thm. 2, we can state:

Theorem 5. Let S0 and S1 be two spheres
in Euclidean three-space R3 (not in ori-
ented contact, i.e., ΩS(S0, S1) 6=0) and let
δ ∈ R ∪ {∞} be a certain fixed value.
Then, the sphere geometric conchoid trans-
formation induces a (regular) automorphic
collineation λ of L4

2 that has a fixed line f
and a fixed three-space L for its axis. F and
f are polar with regard to L4

2.

Proof. The proof can be kept short. With-
out loss of generality, we may assume that
the focal spheres are given by

S0 = (0, 0, 0,−1, 1, 0),

S1=
(

m, 0, 0, 1
2
(m2−R2−1), R, 1

2
(m2−R2+1)

)

are the two focal spheres which are not in
oriented contact unless

(R− 1 +m)(R− 1−m) = 0.

If now S2 = (s1, . . . , s6) is the sphere to
be transformed, then Sδ can be obtained
with (2) where Ω is the polar form with the
coordinate matrix diag (1, 1, 1, 1,−1,−1).

In the following, we use the abbreviations

ρ1 = R−m− 1, ρ2 = R−m+ 1.

The coordinate matrix of the linear map-
ping S2 7→ Sδ has the three different eigen-
values t1 = 1

2
ρ1ρ2, t2 = δ2t1, and t3 = δt1

with the respective algebraic multiplicities
µ(t1) = µ(t2) = 1 and µ(t3) = 4. Then,
it is easily verified that the λ-invariant sub-
spaces show the same behavior as those be-
longing to κ in the proof of Thm. 2. F and
f are polar with regard to L4

2 according to
Cor. 2.

Remark 6. If the focal spheres S0 and S1

are in oriented contact, i.e., ΩS(S0, S1) = 0,
λ is a projection (singular collineation) onto
a one-dimensional subspace of P5(R), since
then, (R − 1 +m)(R − 1 −m) = ρ1ρ2 = 0
and the coordinate matrix of S2 7→ Sδ is of
rank 2.

The above chosen coordinatization of the
Euclidean spheres covers more than just
Euclidean spheres:

13



1. (Oriented) Euclidean spheres S are
characterized by s6−s4 6= 0 (otherwise
the quadratic term in (10) would van-
ish) and s5 6= 0, and therefore, R 6= 0.
Especially, the Euclidean unit sphere
S2 has Lie coordinates (0, 0, 0, 1, 1, 0).

2. (Oriented) planes are characterized by
s6 − s4 = 0. Naturally, the remaining
non-vanishing coordinates have to ful-
fill s21 + s22 + s23 = s25. Sometimes, s5 is
set to one and (s1, s2, s3) is then a unit
normal vector of the plane

ε : 2s1x+2s2y+2s3z−(s4+s6)=0.

3. The hyperplane s5 = 0 meets L4
2 along

the regular three-dimensional quadric
s21 + s22 + s23 + s24 − s26 = 0 all of whose
points correspond to spheres of radius
0. However, spheres of radius 0 can be
viewed as points P with coordinates

p =

(

s1
s6 − s4

,
s2

s6 − s4
,

s3
s6 − s4

)

,

but should rather be considered as
isotropic cones ΓP of Euclidean geom-
etry with the equation

ΓP : 〈x− p,x− p〉 = 0.

With Γo we denote the isotropic cone
with the equation 〈x,x〉 = 0 emanat-
ing from the origin o = (0, 0, 0) of the
coordinate system.

4. Finally, the Lie coordinate vector
(0, 0, 0, 1, 0, 1) turns (10) into a false
statement, although it describes a
point on L4

2. It is useful to perform
the conformal closure by setting

U = (0, 0, 0, 1, 0, 1).

Thus, there are four principal types of ele-
ments in Lie geometry and any pair out of
these four gives rise to a certain sphere geo-
metric conchoid transformation when used
as pair of focal spheres. Depending on the
nature of the pairs (S0, S1) of focal spheres,
the sphere geometric conchoid transforma-
tions turn out to be well-known transforma-
tions from specific subgroups of the huge
group of contact transformations. We are
able show the following:

Theorem 6. 1. The sphere geometric
conchoid transformation with S0 = U
and S1 = Γo is an equiform trans-
formation, more precisely a similarity
with scaling factor δ.

2. The sphere geometric conchoid trans-
formation with S0 = U and S1 = S2 is
a Laguerre transformation.

3. The sphere geometric conchoid trans-
formation with S0 = Γo and S1 = S2 is
an inversion.

Proof. 1. It means no restriction to as-
sume that the isotropic cone is centered
at the origin of the Cartesian coordi-
nate system. Hence,

U = (0, 0, 0, 1, 0, 1),

Γo = (0, 0, 0, 1, 0,−1).

Inserting S0 = U , S1 = Γo, and S2 =
(s1, . . . , s6) into (2), we find the in-
duced linear mapping

(s1, . . . , s6) 7→ (2δs1, 2δs2, 2δs3,

(1+δ2)s4+(δ2−1)s6, 2δs5,

(δ2−1)s4+(1+δ2)s6).
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Consequently, spheres with center m

and radius ρ are mapped to spheres
with center δm and radius δρ, while
planes are mapped to planes. Further,
points are mapped to points. Fig. 12
shows the action of this mapping.

Figure 12: The action of an equiform trans-
formation on one of the one-parameter fam-
ilies of spheres enveloping a torus.

2. In this case, we have S0 = U (like in
the previous case) and

S1 = S2 = (0, 0, 0, 1, 1, 0).

With S2 = (s1, . . . , s6) and (2), we find
the induced linear mapping

(s1, . . . , s6) 7→ (δs1, δs2, δs3,

δ(δ−1)(s4−s5)+(δ−1)s6+s4,

δs5+(δ−1)(s6−s4),

δ(δ − 1)(s4 − s5) + δs6).

Obviously, a sphere with center m and
radius ρ is mapped to a sphere with
center δm and radius

δs5+(δ−1)(s6−s4)

s6−s4
=δρ+δ−1.

Further, a plane with the equation

Figure 13: A Laguerre transformation is ap-
plied to one of the one-parameter families of
spheres enveloping a torus.

s1x+ s2y+ s3z + s4 = 0 with s21 + s22 +
s23 = s25 = 1 is mapped to the plane
s1x + s2y + s3z + s4 − 1 + δ + δρ = 0
which makes the present sphere geo-
metric conchoid a Laguerre transfor-
mation, cf. [3, 5, 7]. Fig. 13 shows how
the spheres in a torus change under a
Laguerre transformation.

3. Finally, we choose the focal spheres

S0 = Γo = (0, 0, 0, 1, 0,−1),

S1 = S2 = (0, 0, 0, 1, 1, 0).

Thus, (2) yields the linear mapping

(s1, . . . , s6) 7→ (δs1, δs2, δs3,

δ(δ−1)(s4−s5)+(1−δ)s6+s4,

δs5+(1−δ)(s4+s6),

δ(1−δ)(s4−s5)+δs6)

which maps spheres with center m and
radius ρ to spheres with center

δm

δ(2ρδ−2ρ+δ)+(ρ2−〈m,m〉)(δ−1)2
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Figure 14: An inversion maps a one-
parameter family of spheres enveloping a
torus to a one-parameter family of spheres
enveloping a Dupin cyclide.

and radius

(〈m,m〉−ρ2)(δ−1)−ρδ

(〈m,m〉−ρ2)(δ−1)2−δ(2ρδ−2ρ+δ)
.

Obviously, this is an inversion as illus-
trated in Fig. 14.

4.1 Quadratic mappings

Similar to the case of line geometric con-
choid transformations, quadratic sphere ge-
ometric conchoid transformations can be
defined. Therefore, it is only necessary to
let the focal sphere S1 be a linear image of
the sphere S2 to be transformed. A linear
image of S2 means a linear image of the Lie
coordinate vector of the sphere S2.

We shall have a look at two special types:

Theorem 7. 1. The quadratic sphere ge-
ometric conchoid transformation with
the first focal sphere S0 = Γo and
the second focal sphere S1 being the
polar plane of (0, 0, 0) with respect to

S2 = (s1, . . . , s6) is a central similarity
with center (0, 0, 0) and scaling factor
1

2
(1− 2δ)δ−2, provided that δ 6= 0, 1

2

2. The quadratic sphere geometric con-
choid transformation with the first fo-
cal sphere S0 = S2 = (0, 0, 0,−1, 1, 0)
and the second focal sphere S1 being
the radical plane of S0 and S2 =
(s1, . . . , s6) is a cubic transformation,
provided that δ 6= 0, 1.

Proof. 1. The Lie coordinates of the focal
spheres are

S0=(0, 0, 0,−1, 0, 1),

S1=(s1, s2, s3,−
1

2
(s4+s6), s5,−

1

2
(s4+s6))

with s25=s21+s22+s23. Then, (2) yields

Sδ = ((1−2δ)s1, (1−2δ)s2, (1−2δ)s3,

−1

2
(δ2(s4−s6)+s4+s6),

(1−2δ)s5,
1

2
(δ2(s6−s4)−s4−s6))

where s4+s6 6=0 is canceled, since Ω01=
2Ω02 =Ω12(s6−s4)

−1. This can be ex-
pressed by means of the original sphere
data of S2 (center m = (m1, m2, m3)
and radius ρ) via

s1=m1, s2=m2, s3=m3,

s5=ρ,

s4=
1

2
(〈m,m〉−ρ2−1) ,

s6=
1

2
(〈m,m〉−ρ2+1)

(14)

and gives the center mδ and radius ρδ
of the image spheres:

mδ =
1− 2δ

2δ2
m, ρδ =

1− 2δ

2δ2
ρ.
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2. Inserting the Lie coordinates of the two
focal spheres

S0=(0, 0, 0,−1, 1, 0),

S1=(s1, s2, s3,
1

2
(s6−s4), s5,

1

2
(s6−s4)).

into (2) yields

Sδ=(s1((1−2δ)s4−s6),

s2((1−2δ)s4−s6),

s3((1−2δ)s4−s6),

δ((δ−1)s4−s5)(s4−s6)−(s4+s5)s6,

s5((1−2δ)s4−s6),

δ((1−δ)s4+s6)(s4−s6)−(s4−s5)s5,

which can be reshaped with (14), and
finally, (11) and (12) allow us to com-
pute the center and the radius as

mδ=
1

δ2
(

(1−δ)(〈m,m〉−ρ2)+δ
)

m

ρδ=
1

δ2
(

(1−δ)(〈m,m〉−ρ2)+δ
)

ρ.

Obviously, mδ is cubic in the coordi-
nates of m and ρδ is cubic in ρ.

5 Conclusion

The projective models of various geometries
allow us to generalize the well-known con-
choid transformation as long as a quadric
model exists and a cross ratio can be de-
fined. So far we haven’t dealt with sin-
gular quadrics such as Blaschke’s cylinder
model for isotropic geometries. The sub-
spaces contained in singular quadrics may
cause problems for the generalized conchoid
construction.

The sphere model of Möbius geometry
could also be a playground for generalized
conchoid constructions. Nevertheless, cross
ratios of four complex numbers can also be
defined and give rise to a generalized con-
choid construction in the Gauss plane.

Finally, there is one special quadric serving
as a point model for the set of Euclidean
motions: It is Study’s quadric S6

2 ⊂ P6(R).
Conchoid transformations within Study’s
quadric may generate special Euclidean mo-
tions in Euclidean three space.
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ven. G.J. Göschen’sche Verlagshand-
lung, Leipzig, 1908.

[23] K. Zindler: Liniengeometrie mit An-
wendungen I & II. G.J. Göschen’sche
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