Generalized Gergonne and Nagel Points

B. Odehnal

June 16, 2009

Abstract

In this paper we show that the GERGONNE point G of a triangle Δ in the Euclidean plane can in fact be seen from the more general point of view, i.e., from the viewpoint of projective geometry. So it turns out that there are up to four GERGONNE points associated with Δ . The GERGONNE and NAGEL point are isotomic conjugates of each other and thus we find up to four NAGEL points associated with a generic triangle. We reformulate the problems in a more general setting and illustrate the different appearances of GERGONNE points in different affine geometries. DARBOUX's cubic can also be found in the more general setting and finally a projective version of FEUERBACH's circle appears.

Mathematics Subject Classification (2000): 51M04, 51M05, 51B20

Key Words: triangle, incenter, excenters, GERGONNE point, BRIANCHON's theorem, NAGEL point, isotomic conjugate, DARBOUX'S cubic, FEUERBACH's nine point circle.

1 Introduction

Assume $\Delta = \{A, B, C\}$ is a triangle with vertices A, B, and C and the incircle *i*. GERGONNE's point is the locus of concurrency of the three cevians connecting the contact points of *i* and Δ with the opposite vertices. The GERGONNE point, which can also be labelled with X_7 according to [10, 11] has frequently attracted mathematician's interest. Some generalizations have been given. So, for example, one can replace the incircle with a concentric

circle and replace the contact points of the incircle and the sides of Δ with their reflections with regard to the incenter as done in [2]. Replacing the contact points of *i* and Δ 's sides with other points on the diameter of contact also results in cocurrent cevians, see [9].

GERGONNE points of tetrahedra are investigated in [7, 8]. There it turned out that a tetrahedron has to fulfill some conditions in order to have a GERONNE point and so the classical definition of this particular point cannot be carried over to the tetrahedron and therefore its definition has to be modified. The GERONNE and NAGEL points for *n*-simplices are also studied in [12].

In this paper we shall not treat *n*-dimensional analogues of phenomena which came from triangle geometry. We shall study the planar case in a more general setting, i.e., we formulate everything in terms of projective geometry. This allows to state theorems in some CAYLEY-KLEIN geometries, e.g., Euclidean or Minkowskian geometry. There is, to the best of the author's knowledge, only one paper dealing with GERGONNE's point and NAGEL's point (together with some other phenomena of triangle geometry) in a Minkowskian plane. In [1] the authors translated things in an elementary way without leaving affine geometry.

This paper discloses the relation of GERGONNE's point and BRIANCHON's theorem which directly leads to three more GERGONNE points, see Sec. 2. Thereby further NAGEL points appear in a natural way as the isotomic conjugates of GERGONNE points. Furthermore, it is possible to reformulate a lot of results in a projectively invariant way which is the content of Sec. 3. Then we pay our attention to DARBOUX's cubic in Sec. 4. Finally, we give the trilinear coordinates of the three additional GERGONNE and NAGEL points in Sec. 5.

2 GERGONNE points and BRIANCHON's theorem

Assume we are given a triangle $\Delta := \{A, B, C\}$ in the Euclidean plane \mathbb{R}^2 . The incircle is labelled with *i* and its center shall be denoted by *I*. This circle is one of those touching the sides of Δ . There are three further circles sharing this property with the incircle. These are called excircles and will be denoted by i_1 , i_2 , and i_3 and their respective centers by I_1 , I_2 , and I_3 .

While the incircle touches Δ 's sides from the inside and is thus entirely

contained in Δ , the excircles touch from the outside. In order to ovoid confusions we denote the excircle touching the side BC in between B and C, by i_1 . So i_1 lies opposite to A, i_2 is opposite to B, and i_3 is opposite to C, cf. Fig. 1.

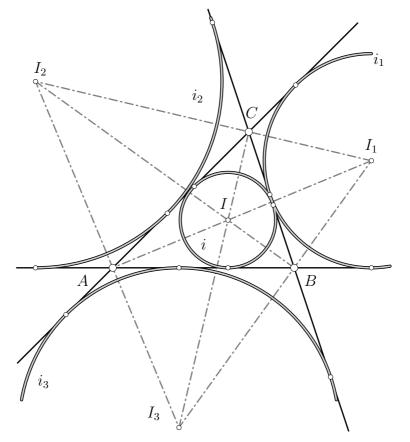


Figure 1: A triangle $\Delta = \{A, B, C\}$ with its incircle *i* and excircles i_1, i_2, i_3 .

The incircle is tangent to Δ 's sides at the points I_{AB} , I_{BC} , and I_{CA} . Now the following statement is well known:

Theorem 2.1 The three lines $[A, I_{BC}]$, $[B, I_{CA}]$, and $[C, I_{AB}]$ are concurrent.

The common point G of $[A, I_{BC}]$, $[B, I_{CA}]$, and $[C, I_{AB}]$ is usually referred to as GERGONNE's point. Fig. 2 shows a triangle with its GERGONNE point G.

One can easily give a proof of Th. 2.1, using BRIANCHON's theorem.

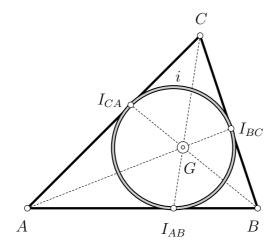


Figure 2: GERGONNE's point as the intersection of three lines.

Let k be a conic section in a projective plane (which is henceforth assumed to be Pappian) and let further t_1, \ldots, t_6 be tangents of k. If their points of intersection are denoted by $T_{ij} := [t_i, t_j]$ then we can build the three lines $[T_{12}, T_{34}], [T_{23}, T_{56}], \text{ and } [T_{34}, T_{61}]$. BRIANCHON's theorem says:

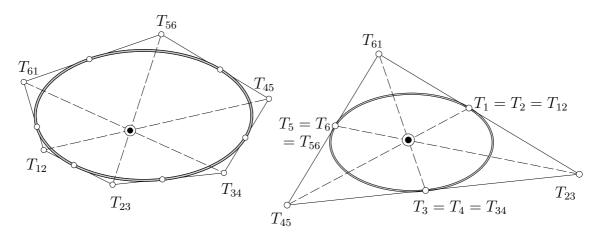


Figure 3: Brianchon figures of different kinds: six tangents of a conic section (left), three line elements of a conic section (right).

Theorem 2.2

The three lines $[T_{12}, T_{34}]$, $[T_{23}, T_{56}]$, and $[T_{34}, T_{61}]$ are concurrent.

Th. 2.2 is valid, even if two consecutive lines, for instance the lines t_1 and t_2 , coincide. (It is always possible to number five lines with integers $1, \ldots, 6$ such

that one line is labelled twice, and with a pair of consecutive numbers.) In case of $t_1 = t_2$ the point T_{12} is replaced by the contact point $T_1 = T_2$ of $t_1 = t_2$ with the conic section k. Even if two pairs of consecutive tangents coincide, e.g., $t_1 = t_2$ and $t_3 = t_4$, Th. 2.2 holds true. Surprisingly, BRIANCHON's theorem is also valid in the case of $t_1 = t_2$, $t_3 = t_4$, and $t_5 = t_6$. This is illustrated in Fig. 3. Consequently, one can check, if three line elements are line elements of one conic section.

Now it is obvious that the lines mentioned in Th. 2.1 are concurrent and that the point G exists:

Proof: (Proof of Th. 2.1) Apply BRIANCHON's theorem 2.2 to the three line elements $([B, C], I_{BC}), ([C, A], I_{CA}), \text{ and } ([A, B], I_{AB}).$

The contact points of the excircles with the sides of Δ shall be labelled in the following way: The *i*-th excircle i_i touches the lines [A, B], [B, C], and [C, A] at $I_{i,AB}$, $I_{i,BC}$, and $I_{i,CA}$, respectively. Now it is easily seen that each excircle determines its own GERGONNE point with respect to Δ :

Theorem 2.3

Any triangle Δ has four GERGONNE points.

The three lines $[A, I_{BC}]$, $[B, I_{CA}]$, and $[C, I_{AB}]$ are concurrent.

The three lines $[A, I_{i,BC}]$, $[B, I_{i,CA}]$, and $[C, I_{i,AB}]$ are concurrent. This holds true for all $i \in \{1, 2, 3\}$.

Proof: We immediately recognize three BRIANCHON figures consisting of the tangents [A, B], [B, C], [C, A] and the respective contact points $I_{i,AB}$, $I_{i,BC}$, $I_{i,CA}$ of the excircles. The fourth BRIANCHON figure is formed by the lines [A, B], [B, C], [C, A] and the contact points I_{AB} , I_{BC} , and I_{CA} of the incircle. \Box

The GERGONNE point associated with the *i*-th excircle shall be denoted by G_i , according to Fig. 4.

Note that NAGEL's point N - or X_8 according to [10, 11] - is not a generalized GERGONNE point since it is found as the intersection of lines connecting Δ 's vertices with contact points of different conic section, namely the three different excircles. Nevertheless, NAGEL's point is closely related to GER-GONNE's point since X_7 and X_8 are isotomic conjugates of each other, cf. [11]. Moreover we observe:

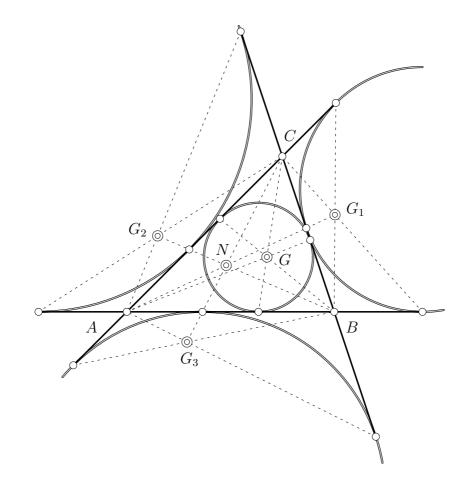


Figure 4: A triangle $\Delta = \{A, B, C\}$ and its four GERGONNE points G, G_1, G_2, G_3 and its NAGEL point N.

Lemma 2.1

The three lines $[G_1, A]$, $[G_2, B]$, and $[G_3, C]$ are concurrent at NAGEL's point.

Proof: It is well known that NAGEL's point is the common point of the cevians $[I_{1,BC}, A]$, $[I_{2,CA}, B]$, and $[I_{3,AB}, C]$. Since $G_1 \in [I_{1,BC}, A]$, $G_2 \in [I_{2,CA}, B]$, and $G_3 \in [I_{3,AB}, C]$ we are done. \Box

Since GERGONNE's point and NAGEL's point are isotomic conujate we find further NAGEL points:

Theorem 2.4 Any triangle $\Delta = \{A, B, C\}$ has four NAGEL points.

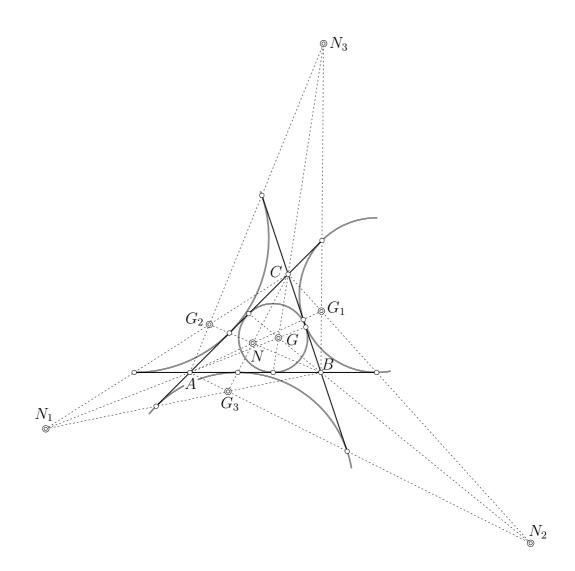


Figure 5: A triangle $\Delta = \{A, B, C\}$ with its four GERGONNE points G, G_1, G_2, G_3 and its four NAGEL points N, N_1, N_2, N_3 .

The lines [A, G], $[B, G_3]$, $[C, G_2]$ share the point N_1 . The lines [B, G], $[C, G_1]$, $[A, G_3]$ share the point N_2 . The lines [C, G], $[A, G_2]$, $[B, G_1]$ share the point N_3 . The points N_i are the isotomic conjugates of G_i for all $i \in \{1, 2, 3\}$.

Proof: We construct the isotomic conjugate of G_1 in order to show the ex-

istence of the point N_1 : The cevians through G_1 meet AB, BC, and CA at $I_{1,AB}$, $I_{1,BC}$, and $I_{1,CA}$. The latter points are reflected at the midpoints of AB, BC, and CA and map thus to $I_{2,AB}$, I_{BC} , and $I_{3,CA}$. Since the isotomic mapping is well defined off the triangle, the cevians through $I_{2,AB}$, I_{BC} , and $I_{3,CA}$ are concurrent in the isotomic conjugate N_1 of G_1 . Furthermore we have $G_2 \in [C, I_{2,AB}], G_3 \in [B, I_{3,CA}]$, and $G \in [A, I_{BC}]$.

Analogously we can show that the remaining triplets of lines belong to pencils of lines and that the points N_2 and N_3 are the isotomic conjugates of G_2 and G_3 , respectively. \Box

Fig. 5 shows the four NAGEL points of a given triangle together with the four GERGONNE points.

So far we discovered that there is not a single GERGONNE point. To each GERGONNE point G_i there exist exactly one isotomic conjugate point N_i . We call the points N_i also NAGEL points since they can be found in a similar way compared to the point X_8 .

The construction of the three GERGONNE points G_1 , G_2 , G_3 , uses a theorem from projective geometry. This motivates the question: Is it possible to generalize the notion of GERGONNE points in a way that it becomes a matter of projective geometry? A positive answer to this question would imply that GERGONNE points also exist in other geometries, for example in pseudo-Euclidean (Minkowskian) geometry.

3 Generalized GERGONNE points

In order to find GERGONNE points in a more general setting we perform the projective closure of Δ 's plane. We add the ideal line ω as the set of all ideal points. When ever necessary we extend the concept of real geometry by adding complex elements. Note that a pair of conjugate complex points is connected by a real line. So in the complex extension of the projectively closed Euclidean plane each circle has a pair of conjugate complex ideal points (I, \overline{I}) and any conic section through these points is a circle.

The points I, \overline{I} are frequently called *absolute points* of the Euclidean plane, see [6]. They are the fixed points of the absolute polarity ι on ω . Any pair of points $(G, H) \subset \omega$ with $\iota(G) = H$ are the ideal points of orthogonal lines and the quadrupel (I, \overline{I}, G, H) is harmonic.

The lines of the two pencils of lines through I and \overline{I} are called isotropic. When considering Euclidean geometry as a CAYLEY-KLEIN geometry, the line ω together with the quadric $(I,\overline{I}) \subset \omega$ is the absolute figure of this geometry, see [6].

Now we replace the above absolute figure $(\omega, (I, \overline{I}))$ by another one $(\omega, (U, \overline{U}))$ and obtain different geometries, with their own notion of circles and their own notion of GERGONNE points. Independent of the choice of the absolute points, we define a circle as a conic section passing through U and \overline{U} .

Since any (real) conic section (in the projectively closed and complex extended plane) that contains U and \overline{U} is a circle (and since any circle goes through U and \overline{U}), it makes no difference, if we assign the GERGONNE points to Δ and its in- and excircles or to Δ and the pair (U, \overline{U}) of points. Therefore one possible generalization of the GERGONNE points reads:

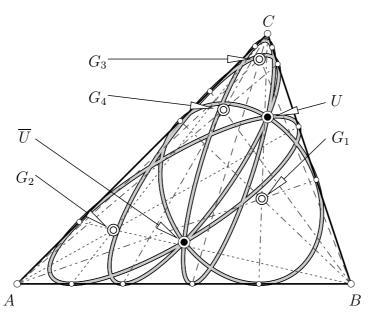


Figure 6: Four conic sections sharing three tangents and two points determine four GERGONNE points.

Theorem 3.1

Any triangle $\Delta = \{A, B, C\}$ and any pair of distinct points (U, \overline{U}) (neither U nor \overline{U} is located on the sides of Δ) determine a quadrupel of GERGONNE points.

Proof: In general there are four conic sections on three given tangents and two given points.

A conic section tangent to the lines [A, B], [B, C], and [C, A] and passing through U and \overline{U} touches the given lines at I_{AB} , I_{BC} , and I_{CA} . By completing the BRIANCHON figure, we find the associated GERGONNE point. \Box

Remark: Note that degenerate cases, i.e., situations may occur where two or more GERGONNE points coincide. This depends on the choice of (U, \overline{U}) and neads a separate treatment. In the following we exclude special cases. We do neither allow $[U, \overline{U}]$ to pass through a vertex of Δ nor U or \overline{U} to be contained in any side of Δ . We shall not discuss special cases since this leads to far.

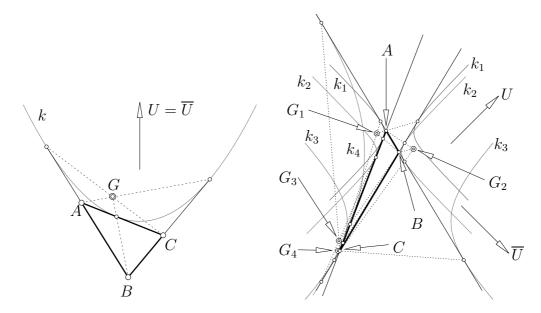


Figure 7: The unique GERGONNE point in an isotropic plane (left), the four GERGONNE points in a Minkowskian plane (right).

Since any three line elements of a conic section determine a BRIANCHON figure and a unique BRIANCHON point, we can say:

Theorem 3.2

Any conic tangent to three lines determines a unique GERGONNE point. The two parameter-family of conic sections tangent to three lines determines a two-parameter family of GERGONNE points.

The set of GERGONNE points of the two-parameter family of conic section mentioned in Th. 3.2 lies dense in the plane of the triangle, when we remove the three given lines. This holds true as long as the lines are not concurrent and as long as the conic section does not degenerate.

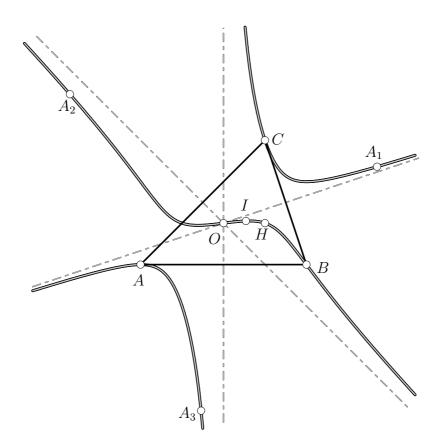


Figure 8: DARBOUX's cubic associated with Δ .

The two apparently different cases of a pair of real points (U, \overline{U}) and a pair of conjuagte complex cases allow a unifying generalization. The points Uand \overline{U} can be seen as the fixed points of a hyperbolic or an elliptic involutive projective mapping $\iota : \omega \to \omega$. The mapping ι is induced by the polarity with regard to k on $\omega = [U, \overline{U}]$. We call a line g and an involutive projective mapping $\iota : g \to g$ admissable, if g does not pass through any vertex of Δ and no fixed point of ι is contained in any side of Δ . Thus the notion of GERGONNE points allows a further generalization:

Theorem 3.3

Any triangle $\Delta = \{A, B, C\}$ and any admissable involutive projective mapping $\iota : g \to g$ on a line g in admissable position determine four GERGONNE points.

Proof: The involutive mapping $\iota : g \to g$ together with the lines [A, B], [B, C], and [C, A] defines four conics such that they touch the given lines and

their respective polar systems induce ι on g. The four GERGONNE points are the BRIANCHON points of the four resulting BRIANCHON figures. \Box

Remark: If we choose $\omega = [U, \overline{U}]$ as the ideal line and the points U and \overline{U} is the absolute quadric in the sense of a CAYLEY-KLEIN geometry, we can find two different (affine) versions of GERGONNE points:

In case of a pair of conjugate complex points we rediscover the well known Euclidean version. It is illustrated in Fig. 4 and Fig. 6.

If we choose a pair of real points (U, \overline{U}) , we obtain the GERGONNE points to a triangle in a pseudo-Euclidean or Minkowskian plane. An example is illustrated in Fig. 7.

Remark: An isotropic plane has a double point $U = \overline{U} \in \omega$ at infinity for its absolute quadric. There appears to be only one isotropic circle tangent to three lines, since three tangents and one line element (ω, U) determine exactly one conic section, assumed that the four lines form a quadrilateral and the given point is located at exactly one of the lines.

From the view point of affine geometry the isotropic circle is a parabola. The isotropic normals of the parabola are parallel and concurrent in U. Since there is only one isotropic circle tangent to three lines, there is also only one GERGONNE point. Fig. 7 gives an idea how the isotropic situation looks like.

4 DARBOUX's cubic

Now we return to Euclidean plane. Assume a triangle $\Delta = \{A, B, C\}$ is given. We have seen that the incenter I and the excenters I_i have the following property: The cevians through the orthogonal projections to Δ 's sides are concurrent. The orthogonal projections of I and I_i are the contact points of the incircle and the excircles with Δ 's sides, respectively.

The incenter and excenters share this property with the orthocenter H and the circumcenter O.

Consider now a point X in Δ 's plane. Denote the orthogonal projections of X to the sides [A, B], [B, C], and [C, A] of Δ by X_3 , X_1 , and X_2 , respectivley. The set of all points X in Δ 's plane with the property that the three lines $[A, X_1]$, $[B, X_2]$, and $[C, X_3]$ are concurrent is an elliptic cubic curve c provided that Δ is neither isosceles, nor equilateral, nor right angled. The curve c is called DARBOUX's cubic (cf. [5]). It is symmetric with respect to the circumcenter O. The bisectors of Δ 's edges are c's asymptotes, which are concurrent in O. The latter one is an inflection point of c, see Fig. 8.

So far it seems that DARBOUX's cubic is a term of Euclidean geometry. In the following we will show that this cubic can be found in arbitrary projective planes. For that purpose we return to the assumption we have made earlier. Let (U, \overline{U}) be a pair of different points such that $\omega := [U, \overline{U}]$ is a real line, i.e., U and \overline{U} can be real points or a pair of conjugate complex points.

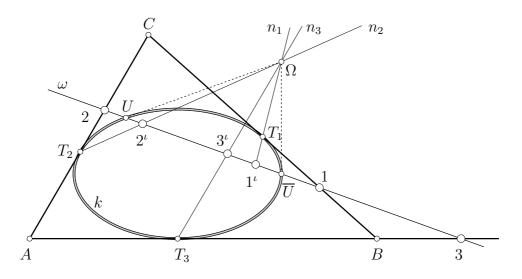


Figure 9: Projective normals of a conic.

Now we have to clarify, what are the projective orthogonal projections of a point X to the sides of Δ .

The involutive mapping $\iota: \omega \to \omega$ assignes a unique point X^{ι} to any point X. We say X is the ideal point of a pencil of lines and so X^{ι} is the ideal point of all lines ι -orthogonal to the lines of the pencil. In this way the ι -normals can be assigned to all points of k. Note that the points $k \cap \omega = (U, \overline{U})$ (whether they are real or not) are self-adjoint and thus the lines through U and \overline{U} are ι -self-orthogonal. Obviously, the ι -normals of k are concurrent in ω 's pole Ω with regard to k, i.e., Ω can be seen as a kind of center of k.

This allows the projective generalization of the construction of DARBOUX's cubic. We ask for all points X in Δ 's plane with the property that for their ι -orthogonal-projections X_i to the sides of Δ the lines

$$[A, X_1], [B, X_2], [C, X_3]$$

are concurrent. The locus of all points X with this property will from now on be called *generalized* DARBOUX *cubic*. An example is displayed in Fig. 10.

We can summarize:

Theorem 4.1

Given a triangle Δ and two points U and \overline{U} in admissabble position (cf. Th. 3.3). U and \overline{U} can be considered as the fixed points of an involutive projective mapping $\iota: \omega \to \omega$, with $\omega := [U, \overline{U}]$.

There is a cubic curve c as locus of points X in Δ 's plane with the property that for the cevians through the ι -orthogonal projections X_i of X to Δ 's sides are concurrent.

Remark: Such cubics exist in pseudo-Euclidean and Euclidean planes but not in isotropic ones.

We note that another object of elementary Euclidean geometry appears in the more general setting. The midpoints of any side of Δ are the fourth harmonic points of the ideal lines of Δ 's sides. Obviously we can define *midpoints* with help of any line ω . The generalization of pedals of Δ 's altitudes is straight foreward as well as the construction of midpoints on those parts of the altitudes which lie in between the vertices and the orthocenter of Δ . So we end up with nine points lying on one conic section f, which can be called the FEUERBACH *conic*. This is illustrated in Fig. 11.

Finally we observe that the generalized GERGONNE points of Δ determine its own NAGEL points:

Theorem 4.2

The incidences given in Theorem 2.4 hold true in the generalized case.

Proof: The isotomic transformation can be performed in the general setting. In order to find the isotomic conjugate of a point P (which is not contained in Δ 's sides) we first project P from Δ 's vertices to the opposite edges and obtain P_{AB} , P_{BC} , and P_{CA} . Then we reflect these points about the midpoints of AB, BC, CA, i.e., we apply the harmonic (involutive) projective mapping on each side of Δ that fixes the ideal point on the side (side's intersection with ω) and its harmonic conugate. We obtain points P'_{AB} , P'_{BC} , and P'_{CA} . The cevians through the latter points are concurrent. \Box

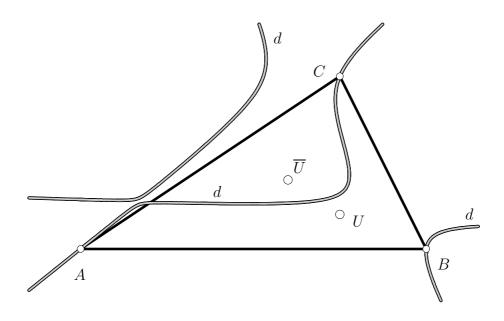


Figure 10: Projective version of DARBOUX's cubic d.

In Fig. 12 the generalized NAGEL points as well as the generalized GER-GONNE points are displayed.

5 Trilinear coordinates

For sake of completeness we give the trilinear coordinates of the GERGONNE points¹ G_1 , G_2 , and G_3 for triangles Δ in a Euclidean plane. The lengths of the sides of Δ shall be |AB| = c, |BC| = a, |CA| = b and the coordinates are sorted in the same order. So we have

$$G_{1} = \begin{bmatrix} \frac{ab}{a-b+c} & : & \frac{-bc}{a+b+c} & : & \frac{ac}{a+b-c} \end{bmatrix},$$

$$G_{2} = \begin{bmatrix} \frac{ab}{-a+b+c} & : & \frac{bc}{a+b-c} & : & \frac{-ac}{a+b+c} \end{bmatrix},$$

$$G_{3} = \begin{bmatrix} \frac{-ab}{a+b+c} & : & \frac{bc}{a-b+c} & : & \frac{ac}{a+b-c} \end{bmatrix}.$$

According to Th. 2.4 the NAGEL points N_i are the isotomic conjugates of the GERGONNE points G_i for $i \in \{1, 2, 3\}$. So we compute the trilinear

¹It is not necessary to give the coordinates of $G = X_7$. they can be found in [10, 11].

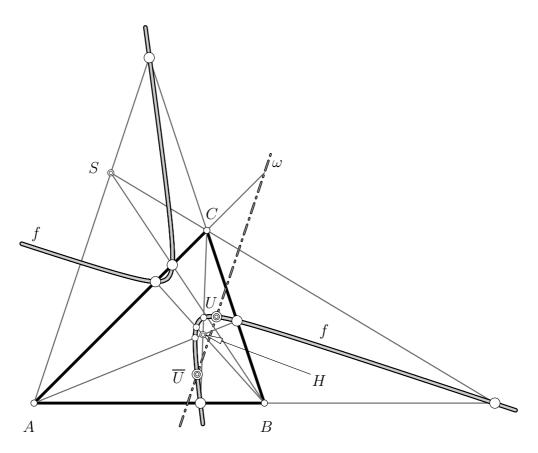


Figure 11: FEUERBACH's nine point conic f together with the projective versions of the barycenter S and the orthocenter H.

coordinates of the N_i from those of G_i . For a point X with trilinear coordinates $(\xi_0 : \xi_1 : \xi_2)$ the trilinear coordinates of its isotomic conjugate X' are $(c^{-2}\xi_0^{-1} : a^{-2}\xi_1^{-1} : b^{-2}\xi_2^{-1})$, cf. [11]. Therefore the trilinear coordinates of the NAGEL points² N_1 , N_2 , and N_3 are

$$N_{1} = \begin{bmatrix} \frac{a-b+c}{-c} & : & \frac{a+b+c}{a} & : & \frac{a+b-c}{-b} \end{bmatrix},$$

$$N_{2} = \begin{bmatrix} \frac{-a+b+c}{-c} & : & \frac{a+b-c}{-a} & : & \frac{a+b+c}{b} \end{bmatrix},$$

$$N_{3} = \begin{bmatrix} \frac{a+b+c}{c} & : & \frac{a-b+c}{-a} & : & \frac{a+b-c}{-b} \end{bmatrix}.$$

²The trilinear coordinates of the NAGEL point $N = X_8$ can also be found [10, 11].

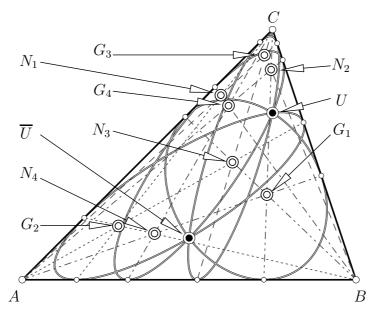


Figure 12: The generalized NAGEL points together with the generalized GER-GONNE points.

Acknowledgements

I have to express my sincere thanks to Prof. Hellmuth Stachel for comments on an earlier version of this paper.

References

- P. BAPTIST, E.M. SCHRÖDER: Merkwürdige Punkte von Dreiecken in euklidischen und Minkowskischen Ebenen. (Remarkable points of triangles in Euclidean and Minkowskian planes.) Mitt. Math. Ges. Ham. 11/5 (1988), 591–616.
- [2] J.N. BOYD, P.N. RAYCHOWDHURY: The Gergonne point generalized through convex coordinates. Int. J. Math. Sci. 22/2 (1999), 423–430.
- [3] H.S.M. COXETER: Introduction to Geometry. J. Wiley & Sons, New York London, 1961.
- [4] H.S.M. COXETER, S.L. GREITZER: *Geometry Revisited*. Math. Assoc. America, 1967.

- [5] H.M. CUNDY, C.F. PARRY: Some cubic curves associated with a triangle. J. Geom. 53(1995), 41–66.
- [6] O. GIERING Vorlesungen über höhere Geometrie. Vieweg, Wiesbaden, 1982.
- [7] M. HAJJA, P. WALKER: The Gergonne and Nagel centers of a tetrahedron. J. Geom. 75 (2002) 106–112.
- [8] M. HAJJA, P. WALKER: The inspherical Gergonne center of a tetrahedron. J. geom. Graph. 8/1 (2004), 23–32.
- [9] M. HOFFMANN, S. GORJANC: Concentric circles and the generalized Gergonne point. Proc. 13th Int. Conf. on Geometry and Graphics, August 4–8, 2008, Dresden (Germany), 4 pages. ISBN: 978-3-86780-042-6.
- [10] C. KIMBERLING: *Encyclopedia of Triangle Centers.* Available at: http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [11] C. KIMBERLING: Triangle centers and central triangles. Congressus numerantium **128**, Utilitas Mathematica Publishing Inc., Winnipeg, 1998.
- [12] E. KOZNIEWSKI, R.A. GORSKA: Gergonne and Nagel points for a simplex in n-dimensional space. In: Proc. of the 9th international conference on geometry and graphics, Johannesburg, South Africa, July 28–31, 2000, Vol. 1, 79–84.

Boris Odehnal Vienna University of Technology Institute of Discrete Mathematics and Geometry Wiedner Hauptstraße 8--10 A-1040 Wien, Austria email: boris@geometrie.tuwien.ac.at