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Abstract

We show an algebraic way to interpolate Hermite data of ruled or chan-

nel surfaces by computing polynomial curves within Plücker’s and Lie’s

quadric serving as point models for the geometries of lines and spheres.

The Bézier ansatz for a curve in either quadric involves some design

parameters guiding the shape of the ruled or channel surface. These

parameters are to be determined by solving a system of algebraic equa-

tions. Since in our ansatz there are more shape parameters than equa-

tions, there are some degrees of freedom which can be used in the design

process. The degrees of the equations allow us to predict the number

of possible solutions. Together with geometric criteria, useful solutions,

i.e., solutions that meet practical requirements can be selected. Our

main goal is the interpolation of Gk data at the boundaries of ruled

surfaces or channel surfaces. We aim at low degree interpolants.
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1 Introduction

There are several algorithms treating interpolation problems with ruled sur-

faces. Many algorithms focus on developable ruled surfaces, see [14, 18, 19,

29]. In some cases, interpolation of ruled surfaces solves reconstruction tasks

and comes along with surface recognition [27, 28].
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The most simple case sees a finite sequence of lines that is to be interpolated

by a ruled surface, cf. [14, 15, 18, 19, 23, 29]. A polynomial ruled surface

that passes through the given lines could also be found with the algorithm

presented in [8] by replacing the hypersphere with Plücker’s quadric. For

practical reasons this may be not sufficient, since a ruled surface that just

interpolates a certain number of lines has to be of sufficiently high degree.

Therefore, the interpolant will show some unwanted behavior in between the

data lines, for example, uncontrolled oscillation or even loops, see Fig. 1. Such

a nasty behavior especially occurs when we interpolate data with algebraic

ruled surfaces of very high degree.

P

Q
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Figure 1: Interpolation of G2 data: The depicted solution interpolates G2

data consisting of two osculating reguli OP and OQ(green) at the boundary

rulings P and Q (violet). The solution has a loop and self-intersections in

between the boundary data due to the high degree and due to improperly

chosen shape parameters.

The interpolation with non-torsal ruled surfaces is only treated in the G1 case

until now, see [26]. In order to glue ruled surface patches with G1 continuity,

it is suggested to adapt the bi-arcs technique as known from planar splines to

ruled quadrics by matching contact projectivities along common generators.

This resulted in bi-arcs of ruled quadrics and has, however, two disadvantages:

1. An intermediate line has to be inserted. 2. The degree of the interpolants

is restricted to two, and thus, torsal rulings or inflection rulings cannot be

interpolated properly.

In the following, we shall drop the restrictions on the degree. However, we

do not want to raise the degrees of the interpolants too far. Oscillations as

can be observed with polynomial functions also occur with algebraic ruled or
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channel surfaces of higher degree (cf. Fig. 1). Therefore, we shall use the

lowest possible degrees in order to solve certain interpolation problems.

The equivalent interpolation problem for channel surfaces has been attacked

using the cyclographic model of sphere geometry in [2]. However, this ap-

proach ignores that on the way from the cyclographic model back to the

channel surface in R3 one degree of smoothness gets lost when differenti-

ating in order to get the envelope (=channel surface) of the one-parameter

family of spheres.

As we shall see in Sec. 3, the interpolation of G1 data on quadrics can be done

by means of cubic curves in general. Raising the degree of the G1 interpolant

to four could either lead to more flexibility (since there is one more control

point) or to more precision (since the control points can be determined such

that we gain a C1 transition). We shall discuss this in more detail in Sec. 5.

However, in this case we have no guarantee for real solutions.

Interpolation of G2 and G3 data is more fascinating, challenging, and perhaps

of more practical relevance since higher smoothness of interpolants makes

them useful for many design purposes. A G3 transition between two surfaces

is highly desirable. Shiny surfaces composed of G3 patches show reflection

lines and isophotes with G2 smoothness at the transition curves, see Fig. 2.

Figure 2: At a G3 transition between two ruled surface patches, even the

curve of flecnodes (only one branch is shown) turns out to be at least of

smoothness G0 (left: discrete version with curve of flecnodes; right: smooth

surface patches with some reflection lines showing a G2 link at the transition

from one patch to the other).

Until now, we have put emphasis on the interpolation of ruled surface data

in R3. An old and well-known result from classical geometry states that the
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geometry of lines in three-space is more or less the same as the geometry

of spheres in Euclidean three-space, see [5, 31, 32]. Both geometries are

four-dimensional and can be modeled on quadrics as we shall see in Sec. 2.

Thus, interpolation problems in both geometries can be reformulated as inter-

polation problems in quadrics. Although there are algorithms for such tasks,

see for example [6, 7, 8, 11], we go a different way in order to find exact

polynomial parametrizations of the interpolants with lowest algebraic degree.

Inserting the polynomial representation (preferably, the Bézier representation)

into the quadric’s equation results in a polynomial that has to vanish for all

parameter values. Therefore, all the polynomial’s coefficients have to vanish

and this yields a system of polynomial equations. This allows us to deter-

mine the control points of the polynomial interpolant. The interpolation by

means of developable ruled surfaces can also be done this way. We just have

to impose further algebraic conditions on the Bézier representation of the

interpolants and the endpoint data has to fulfill some conditions.

In Sec. 2, we collect all necessary facts on line and sphere geometry in order

to make the computations understandable. The various kinds of contacts

between two ruled or channel surfaces shall be explained roughly. For details

we refer to the classical literature. The geometry of spheres and channel

surfaces can be treated in a similar way. Sec. 2 also provides an overview on

the geometry of spheres and channel surfaces. In Sec. 3, we study Bézier

curves in quadrics and treat the line geometric and the sphere geometric case

in a uniform way. This enables us to give the algebraic systems of equations

that have to be solved in order to compute the interpolants to given boundary

data for ruled surfaces as well as for channel surfaces. Sec. 4 describes the

algorithms and collects the main results. We give examples and show how the

presented interpolation technique works. Finally, we conclude in Sec. 5 and

add some more material. We discuss alternative approaches to the various

interpolation problems.

2 Klein’s quadric and Lie’s quadric

We deal with lines and spheres in the Euclidean three-space R3 where we

use Cartesian coordinates (x, y , z). Whenever necessary, we switch to the

complex extension and to the projective closure.
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2.1 Line geometry

We give just a very brief overview and results as far as they are necessary

in order to understand the computations and considerations. For details, we

refer to the classical literature, such as [10, 11, 22, 30, 31, 32, 33].

A straight line L ⊂ R3 shall be represented by its Plücker coordinates (l, l) ∈

R
6\{o}1 where l = (l1, l2, l3) ∈ R

3 is a direction vector and l = (l4, l5, l6) ∈ R
3

is the line’s momentum vector. Assume that the line L is spanned by two

different points P and Q with Cartesian coordinate vectors p and q. Then,

we write L = [P,Q] and the Plücker coordinates are given by

l = q− p, l = p× q (1)

where × : R3 ×R3 → R3 indicates the canonical exterior product of vectors

in R3 induced by the canonical scalar product 〈·, ·〉 : R3 × R3 → R. Here, L

is oriented, i.e., l points from P to Q. From (1) it is clear that

2〈l, l〉 = 0 =: ΩL(L, L) (2)

holds for the Plücker coordinates of any line in R3. We will not introduce a

further symbol for the Plücker coordinates of a line L (or the Lie coordinates

of a sphere S) in order not to overload the notation. So, we shall sometimes

write ΩL(X, Y ), or later, ΩS(S, T ) for the value of the particular bilinear form

taken on the respective pairs of vectors in R6.

On the other hand, any pair of vectors (l, l) ∈ R6 \ {o} that satisfies (2) can

be interpreted as Plücker coordinates of a line L in three-space, see [11, 31].

Any scalar multiple (λl, λl) with λ ∈ R⋆ describes the same line in L ⊂ R3

(or even in P3) which allows us to interpret (l, l) as homogeneous coordinates

of a point L in projective five-space P5(R). However, the orientation of lines

gets lost if we change to homogeneous coordinates. Henceforth, L means

either the line in R3 (or in P3) or the corresponding point in P5.

Although we have started with oriented lines in Euclidean three-space, Plücker

coordinates can also be used to describe lines at infinity. Such lines are given

by l = o while l 6= o. Lines through the origin of the coordinate system

are characterized by l = o while l 6= o. The transition from inhomogeneous

Cartesian coordinates in R3 to homogeneous coordinates does not affect (2).

If x = (x1, x2, x3) and x = (x4, x5, x6), then

M42 :
1
2
ΩL(X,X) = 〈x, x〉 = x1x4 + x2x5 + x3x6 = 0 (3)

1We use the symbol o for the zero vector in any vector space.
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is the equation of a quadratic hypersurface M42 in projective five-space P
5 all

of whose points correspond to lines in P3, and vice versa. M42 is of index two

which means that the maximal subspaces (of P5) contained in M42 are planes.

There are two kinds of planes in M42 : Those of the first kind correspond to

stars of lines in P3; those of the second kind correspond to ruled planes in

P
3. The quadric M42 is covered by two three-parameter manifolds of planes

and contains a five-parameter manifold of lines corresponding to the pencils

of lines in P3.

ΩL(X, Y ) is the polar form of M42 and assigns to each point X ∈ P
5 the polar

hyperplane with regard toM42 . Especially, ifX ∈ M
4
2 , then Ω

L(X, Y ) = 0 is the

equation of the tangential hyperplane TXM
4
2 of M

4
2 at X. Any two different

lines (linearly independent Plücker coordinates) L,M with ΩL(L,M) = 0 are

coplanar, i.e., they are either intersecting in a point or they are parallel.

A Cr ruled surface in P3 is a one-parameter family of lines with an r -times

differentiable parametrization R : I × P1 → P3 and can be converted via (1)

into a Cr parametrization R : I ⊂ R → M42 of a curve in M
4
2 . Conversely,

each Cr curve inR ⊂ M42 defines a C
r ruled surface in P3. The interpolation of

ruled surfaces can, therefore, be traced back to a curve interpolation problem

on the quadric M42 .

Especially, algebraic curves of degree n in M42 correspond to algebraic ruled

surfaces of degree n. Among them, we find lines and conics representing pen-

cils of lines and reguli (i.e., the one-parameter families of rulings on quadrics),

see [10, 11, 30, 31]. Rational ruled surfaces admit rational parametrizations

and can be described by curves in M42 with even polynomial parametrization

due to the homogeneity of the Plücker representation.

Since we are dealing with Gk (k ∈ {0, 1, 2, 3}) interpolation of ruled surfaces,

we should understand the basics of (projective) differential geometry of ruled

surfaces (or curves in M42). For details, we refer to [10, 11, 30].

A point R0 = R(t0) is called regular if Ṙ0 = Ṙ(t0) and R0 are linearly

independent, otherwise R0 is called singular. (In the following, we suppress

the precise position t0 ∈ I on the curve in order not to overload the notation

and write simply R, Ṙ, . . . instead of R0, Ṙ0, . . . . With a ˙ we indicate the

differentiation with respect to the one and only parameter.)

At a regular point R, the tangent T1 to the curve R ⊂ M
4
2 is spanned by

the point R and the first derivative point Ṙ, i.e., T1 = [R, Ṙ]. The line T1
is also tangent to M42 . A reparametrization of R only causes a shift of the

derivative point Ṙ on T1 which is equivalent to the change of the speed of a

particle moving on the curve. The intersection of T1’s polar space with regard
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to M42 is a two-dimensional cone whose points correspond to the lines of the

parabolic linear line congruence of surface tangents of R along R, see Fig.

3. This congruence collapses to a ruled plane if T1 ∩M
4
2 or, equivalently, if

ΩL(T1, T1) = Ω
L(Ṙ, Ṙ) = 0.2 A ruling R is called torsal if ΩL(Ṙ, Ṙ) = 0. A

ruled surface that consists of torsal rulings only is called a torsal ruled surface,

is developable, and its parametrization R(t) satisfies Ω(Ṙ, Ṙ) ≡ 0 ∀t ∈ I.

Figure 3: Differential geometric properties of order 0, 1, 2 of a ruled surface

(blue) along a regular ruling R (yellow): the ruling (left), the surface tangents

along R (middle), the osculating regulus (red) along R (right).

The osculating subspaces Tk of any dimension k = 0, 1, 2, 3, . . . are spanned

by the first k + 1 derivative points R(k) of R at R including R(0) = R.

Further, the points ofM42∩T2 correspond to the lines of the osculating regulus

(see Fig. 3), regularity of the non-torsal ruling R and the linear independence

of R, Ṙ, R̈ provided. The points of M42 which lie in the polar space of T2
(with regard to M42) correspond to the lines of the complementary regulus on

the osculating quadric of R along R. If T2 ⊂ M
4
2 , then R behaves locally

either like a quadratic cone or a plane.

If the osculating three-spaces of two different curves in M42 agree at some

regular non-inflection point P , then the two ruled surfaces share even the

flecnodes on the common ruling P , see [24, 30, 33].

2.2 Geometry of spheres

Now, we start and stay in Euclidean three-space R3. We use a coordinati-

zation of the manifold of Euclidean spheres that was used in [32]. There, a

2Note that ΩL(R,R) = ΩL(R, Ṙ) = 0 for all t ∈ I.
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generic sphere S is usually given by its inhomogeneous equation in Cartesian

coordinates as

S : (s6 − s4)(x
2 + y 2 + z2)− 2s1x − 2s2y − 2s3z + (s6 + s4) = 0 (4)

where si ∈ R (for i ∈ {1, . . . , 6}) and s6 − s4 6= 0 until stated otherwise. It

is elementary to verify that the center M of S has the Cartesian coordinates

m = 1
s6−s4
(s1, s2, s3) and the radius R satisfies R

2 =
s21+s

2
2+s

2
3

(s6−s4)2
− (s6 + s4). We

define the fifth coordinate s5 of the sphere S by letting R =
s5
s6−s4

which yields

s26 − s
2
4 − s

2
1 − s

2
2 − s

2
3 = −s

2
5 , and thus,

L42 :
1
2
ΩS(S, S) = s21 + s

2
2 + s

2
3 + s

2
4 − s

2
5 − s

2
6 = 0. (5)

The sign of R can be used in order to express the sphere’s orientation.

Now, we define s = (s1, . . . , s6) ∈ R
6\{o} as the coordinates of the sphere S.

It is easy to see that any scalar multiple σ · s ∈ R6 with σ ∈ R⋆ describes the

same sphere, since both, the centerM and the radius R are linear rational in si
and the factor σ can be canceled. Like in the case of the Plücker coordinates

of lines, any six-tuple (s1, . . . , s6) ∈ R
6 \{o} subject to (5) can be interpreted

as the homogeneous coordinate vector of a point in projective five-space P5.

If the six-tuple satisfies (5), then it corresponds to a point in L42 ⊂ P
5. On the

other hand, any point on L42 corresponds to a sphere in Euclidean three-space

R
3. However, orientations may be altered when dealing with homogeneous

coordinates.

Obviously, the hypersurface L42 ⊂ P
5 is a quadric; frequently called Lie’s

quadric and it is a point model for the geometry of oriented spheres in Eu-

clidean three-space R3. However, L42 differs from M
4
2 over the real number

field: It is of index 1, i.e., the maximal subspaces of P5 contained in L42 are

straight lines. The polar system of L42 also has a geometric meaning. Any pair

(S, T ) of points conjugate with respect to L42, i.e., Ω
S(S, T ) = 0, corresponds

to a pair of spheres in Euclidean three-space being in (oriented) contact.

The hyperplane s6−s4 = 0 intersects L
4
2 along the three-dimensional quadratic

cone Γ : s21 + s
2
2 + s

2
3 − s

2
5 = 0 whose points correspond to the (oriented)

planes in Euclidean three-space which are then considered as spheres with

R =∞. Γ is usually referred to as Blaschke’s cone and it is a point model for

Laguerre geometry, i.e., the geometry of oriented planes in Euclidean three

space, cf. [3, 5, 9]. Points on L42 with s5 = 0 represent spheres with radius 0

which should rather be considered as isotropic cones of Euclidean geometry.

Like in case of ruled surfaces, a Cr curve (r ≥ 1) C : I ⊂ R → L42 in Lie’s

quadric represents a one-parameter Cr family of spheres in R3. Usually, such
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families of spheres have an envelope which is touched by all spheres along

their characteristic circles. These envelopes are called channel surfaces if the

radius of the spheres varies and pipe surfaces if the radius is constant. It is

worth to point out that the computation of the envelope of a family of spheres

needs the process of differentiation. Thus, starting from a Gk interpolant in

any point model of sphere geometry, we end with a Gk−1 envelope. This

should always be taken into account when dealing with Gk interpolants in the

model space. Moreover, the envelope of a family of spheres needs not be

real even though all spheres in the family are real as is the case with a family

of concentric spheres. If the algebraic degree of the curve (m, R) : I → R4

(cyclographic image of the one-parameter family of spheres 〈x−m, x−m〉 =

R2, see [5, 9, 21]) equals n, then the algebraic degree of the envelope (channel

surface) is at most 4n − 2.

Figure 4 illustrates the differential geometric properties of one-parameter fam-

ilies of spheres up to order two. The top row shows only the one-parameter

families of spheres, while the bottom row illustrates the envelopes of the

families of spheres, i.e., the channel surfaces.

Figure 4: Top row: Differential geometric properties of one-parameter fami-

lies of spheres. From left to right: G0, G1, G2. Bottom row: the envelopes.

L42’s intersection with the osculating subspaces Tk of C ⊂ L
4
2 correspond to

families of spheres that are in the k-th order contact with the spheres in the

family C, and further, they represent, among others, channel surfaces that

are in contact of order k − 1 with the envelope of the family of spheres.

Curves in L42 of degrees one and two correspond to special channel surfaces:

cones/cylinders (of revolution) and Dupin cyclides.
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We shall close this section with the conversion of sphere data into sphere

coordinates, points on Lie’s quadric L42. Assume a sphere S has the center M

with Cartesian coordinates m = (m1, m2, m3) and let the radius of the sphere

be R. The point in L42 that corresponds to S shall also be denoted by S. We

want to find the coordinate vector s = (s1, s2, s3, s4, s5, s6) of the sphere S.

Note that s is subject to (5) and s6 − s4 6= 0, otherwise S is a plane.

First, we observe m1(s6 − s4) = s1, m2(s6 − s4) = s2, m3(s6 − s4) = s3, and

R(s6− s4) = s5. The latter four equations can be solved for s1, s2, s3, and s5.

This results in a two-dimensional subspace of R6 with the parametrization

V := (m1(s6 − s4), m2(s6 − s4), m3(s6 − s4), s4, (s6 − s4)R, s6)

with (s4, s6) ∈ R
2 \ {o}. Now, ΩS(V, V ) = 0 yields

s4 : s6 =
(

R2 − 〈m,m〉+ 1
)

:
(

R2 − 〈m,m〉 − 1
)

which finally results in

s =
(

2m1, 2m2, 2m3, 〈m,m〉 − R
2 − 1, 2R, 〈m,m〉 −R2 + 1

)

. (6)

The latter equation is that of the stereographic projection from the cyclo-

graphic model to Lie’s quadric.

3 Bézier curves within quadrics

We will not use the algorithm offered in [8], since it only returns interpolants

on a collection of points (without any further information on derivatives

there). The idea from [16] cannot be applied directly to problems in higher

dimensional spaces. The techniques developed in [17] or [25] can only be ap-

plied once a channel surface is known. The interpolation with cyclide patches

is well understood, see [20], but it restricts to a certain very stiff class of

channel surfaces.

We assume that Ω : R6 × R6 → R is a non-degenerate symmetric bilinear

form on R6. It could be either one of the forms ΩL and ΩS from (3) and (5)

or any other. Naturally, Q : Ω(x, x) = 0 is the equation of a regular quadric

in P5 whose polar system is described by the polar form Ω.

Let B : I ⊂ R→ R6 be a Cr parametrization of a curve with sufficiently large

r ∈ N. For the sake of simplicity, we use the symbol B for the curve as well as

for its parametrization. If the curve is entirely contained in the quadric, then
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B0

B1

B2

B3

B

Q

Figure 5: Bézier curve B in a quadric with its control polygon.

the parametrization annihilates the quadric’s equation and so Ω(B,B) ≡ 0

holds in I. Differentiation with respect to t yields the following identities

Ω(B, Ḃ) ≡ 0, Ω(B, B̈) + Ω(Ḃ, Ḃ) ≡ 0, 3Ω(Ḃ, B̈) + Ω(B,
...
B ) ≡ 0, . . . . (7)

In the following, when we deal with interpolation tasks, we always have bound-

ary data D0 := [P, Ṗ , P̈ , . . .] andD1 := [Q, Q̇, Q̈, . . .] which comes either from

one or two ruled surface(s) or channel surface(s) and satisfies (7). In any case,

D0 and D1 shall be the boundary data of the interpolant that admits a poly-

nomial representation B : [0, 1] ⊂ R→ Q. This polynomial parametrization

is written in the geometrically favorable Bernstein basis, i.e., as a Bézier curve

B(t) =

n
∑

k=0

ϕkbk (8)

with control points Bk (represented by their homogeneous coordinate vectors

bk) and with the Bernstein polynomials

ϕk =

(

n

k

)

(1− t)n−ktk (with k ∈ {0, 1, . . . , n}) (9)

as basis functions, see [13].

The control points shall be determined such that the given osculating sub-

spaces agree with that of the interpolant:

B(0) = P, [B(0), Ḃ(0)] = [P, Ṗ ], [B(0), Ḃ(0), B̈(0)] = [P, Ṗ , P̈ ], . . . ,

B(1) = Q, [B(1), Ḃ(1)] = [Q, Q̇], [B(1), Ḃ(1), B̈(1)] = [Q, Q̇, Q̈], . . . .
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A Bézier curve B : [0, 1] ⊂ R→ R6 is entirely contained in the quadric Q if,

and only if,

p(t) := Ω(B(t),B(t)) ≡ 0 (10)

holds in I. We assume that B(t) is a Bézier curve of degree n ∈ N⋆ as given

in (8). Then, (10) is a polynomial p(t) =
2n
∑

i=0

ait
i in t of degree 2n with 2n+1

coefficients a0, . . . , a2n depending on the control points Bk . Since (10) has

to vanish all over [0, 1], all of its coefficients have to vanish simultaneously.

In other words, B has to have more than 2n points of intersection with the

quadric Q : Ω(x, x) = 0. This yields 2n + 1 conditions on the control points

Bk of the Bézier curve B.

In order to make the coefficients of p(t) somehow symmetric, we shall write

the polynomial also in the Bernstein basis. Therefore, p(t) =
2n
∑

i=0

aiϕi . Since

(7) is valid, we can immediately see that the coefficients of (1− t)2n, t(1−

t)2n−1, t2n−1(1− t), and t2n vanish. Thus, the two zeros t = 0 and t = 1 of

p(t) (both with multiplicity two) are a priori known, and hence, the polynomial

is divisible by the factor t2(1 − t)2 and the actual degree drops to 2n − 4.

The polynomial p(t) · t−2 · (1− t)−2 has only 2n−3 coefficients which equals

the number of equations to be solved.

Later, we will make use of the abbreviation

Ωi ,j := Ω(bi , bj)

for the value taken by the bilinear form Ω on the pair (bi , bj) of coordinate

vectors representing the pair (Bi , Bj) of base points of the Bézier curve B.

We shall point out that any (rational) polynomial curve in a ruled quadric is

a collinear image of a rational normal curve, see [4]. Further, rational normal

curves are entirely contained in a huge variety of quadrics. Rational normal

curves are Veronese varieties and, as such, they admit a projective generation.

The latter fact may be used for a synthetic or constructive approach to Gk

interpolation problems with ruled or channel surfaces.

The degree of B and the type of the quadric Q have to match. For example,

on a two-dimensional (Euclidean) sphere we will never find real cubics.
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4 Results and Algorithms

4.1 G1 interpolation - common parabolic linear line con-

gruence of surface tangents

We solve the G1 interpolation problem on a quadric with a single cubic. How-

ever, we don’t have to insert an additional control point (i.e., a ruling or

sphere) in between the two sets of boundary data and we get along with one

interpolant in contrast to [26].

P

Q

τP,1

τP,2

τP,3

τQ,1

τQ,2

τQ,3

Figure 6: Left: G1 ruled surface data consisting of rulings P , Q, and the

tangent planes τP,j , τQ,i (i , j ∈ {1, 2, 3}) along P and Q. Right: A ruled

surface that interpolates the given G1 data.

Unlike in the approach to G1 interpolation given in [26], we do not have to

take care of tangent planes at particular points on the boundary rulings. Since

we are performing the interpolation solely in the quadric model of the present

geometry, it is guaranteed that the contact projectivities at the rulings P and

Q (i.e., the boundaries) match.

If we let n = 3 in (8), we have to determine four control points B0, . . . ,

B3 (with coordinate vectors bi). The interpolant B shall satisfy B(0) = P ,

B(1) = Q at the ends which causes B0 = P and B3 = Q, i.e.,

b0 = p, b3 = q. (11)

Along these bounding rulings, the parabolic linear line congruence of surface
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tangents shall be determined by [P, Ṗ ] and [Q, Q̇]. Similarly, we can formulate

this in terms of spheres. Consequently, the inner control points of the cubic

Bézier curve B have to be chosen such that B1 ∈ [P, Ṗ ] and B2 ∈ [Q, Q̇]

which, expressed in terms of vectors, reads

b1 = λ1p+ µ1ṗ, b2 = λ2 q+ µ2q̇ (12)

where, in general, λi : µi 6= 0 : 0 for i ∈ {1, 2}.

Now, n = 3 and (10) is a polynomial of degree 6 with seven coefficients.

Since P , Ṗ , Q, and Q̇ fulfill (7), four coefficients vanish automatically and

only three coefficients remain:

2Ω0,2 + 3Ω1,1 = 0, 2Ω1,3 + 3Ω2,2 = 0, Ω0,3 + 9Ω1,2 = 0. (13)

Inserting (11) and (12) into (13), we arrive at

2λ2Ωp,q + 2µ2Ωp,q̇ + 3µ
2
1Ωṗ,ṗ = 0,

2λ1Ωp,q + 2µ1Ωṗ,q + 3µ
2
2Ωq̇,q̇ = 0,

Ωp,q + 9(λ1λ2Ωp,q + λ1µ2Ωp,q̇ + λ2µ1Ωṗ,q + µ1µ2Ωṗ,q̇) = 0.

(14)

The first and second equation of (14) can be solved for λ1 and λ2:

λ1 = −
Ωṗ,q
Ωp,q
µ1 −

3Ωq̇,q̇
2Ωp,q

µ22, λ2 = −
Ωp,q̇
Ωp,q
µ2 −

3Ωṗ,ṗ
2Ωp,q

µ21, (15)

provided that P and Q are not conjugate with respect to the quadric Q (which

is natural to assume). With (15) and the third equation of (14) we have a

single equation

r : 81Ωṗ,ṗΩq̇,q̇µ
2
1µ
2
2 + 36(Ωp,qΩṗ,q̇ −Ωp,q̇Ωṗ,q)µ1µ2 + 4Ωp,q

2 = 0 (16)

involving µ1 and µ2 describing a degenerate quartic curve in the [µ1, µ2]-plane,

see Fig. 7. The curve r is the union of a pair of hyperbolae and the points

on it correspond to solutions of the G1 interpolation problem.

Thus, we can formulate

Theorem 4.1. G1 Hermite data D0 = [P, Ṗ ] and D1 = [Q, Q̇] satisfying (7)

from a ruled or channel surface can be interpolated by a cubic ruled surface or

a cubic one-parameter family of spheres and has two independent quadratic

one-parameter families of solutions.
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µ1

µ2

r
r

r

r

s

s

solutions with
side condition

Figure 7: The degenerate quartic curve (16) consists of a pair of homothetic

hyperbolae in the [µ1, µ2]-plane. A non-linear side condition is imposed on

the shape parameters µ1, µ2 in order to choose special solutions.

Figure 8: G1 Hermite interpolation with one-parameter families of spheres.

In order to choose a certain solution in the G1 problem, we can impose a

side condition on the shape parameters µ1 and µ2. This results in a further

curve s in the [µ1, µ2]-plane (cf. Fig. 7) and the computation of the solutions

subject to this additional equation requires the intersection of r and s.

The case of the interpolation of channel surfaces somehow differs from that

with ruled surfaces. In general, we cannot give a precise degree of the inter-

polating channel surface. However, the degree of the channel surface will not

exceed 10 if the (cyclographic image of the) family of spheres is of degree 3.

Figure 8 shows two examples of G1 interpolation with channel surfaces: Only

the spheres are plotted, since the interpolation algorithm is actually applied
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to G1 Hermite data of one-parameter families of spheres. In Figure 9, only

the envelopes of the boundary channel surfaces and the interpolating channel

surface of degree 10 are shown.

Figure 9: Envelopes of the families of spheres shown in Fig. 8 (left).

Improvements of the visualization of channel surfaces may be given in [1],

although the results of our algorithms are presented sufficiently well.

4.2 G2 interpolation - common osculating quadrics or Dupin

cyclides

In the case of G2 interpolation, the Hermite data D0 = [P, Ṗ , P̈ ] and D1 =

[Q, Q̇, Q̈] contains information up to the second derivatives of the initial ruled

or channel surface (see Fig. 10), and thus, also of the interpolant B. Now,

we assume that B is given by (8) with n = 5.

The endpoints P , Q still have to be interpolated as well as the G1 conditions

still have to be fulfilled. Since now n = 5, (11) and (12) are valid in the G2

case too and read

b0 = p, b5 = q,

b1 = λ1p+ µ1ṗ, b4 = λ2 q+ µ2 q̇
(17)

with λi : µi 6= 0 : 0 for i ∈ {1, 2}. In order to obtain G
2 transitions at the

boundaries P and Q, we have to make sure that the osculating planes of the
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n1,1

n1,2

n1,3
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n3,1

n3,2
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Figure 10: Left: G2 ruled surface data consisting of rulings Ri , the prescribed

tangent planes τi ,j (with normals ni ,j), and the osculating reguli Oi (i , j ∈

{1, 2, 3}). Right: Two ruled surfaces that interpolate the given G2 data seen

from the convex side with reflection lines.

interpolant agree with those of the initial curve. This is achieved by making

sure that B2 ∈ [P, Ṗ , P̈ ] and B3 ∈ [Q, Q̇, Q̈] which means

b2 = α1p+ β1ṗ+ γ1p̈, b3 = α2 q+ β2 q̇+ γ2 q̈ (18)

with αi : βi : γi 6= 0 : 0 : 0 for i ∈ {1, 2}.

The condition (10) on B to be entirely contained in M42 is a polynomial of

degree 10 with 11 coefficients. Since the identities given in (7) are valid, the

coefficients of (1 − t)10, t(1 − t)9, t9(1 − t), and t10 vanish automatically.

Thus, seven coefficients remain and give that much conditions on the control

points B0, . . . , B6 and the shape parameters of B. So, we have

4Ω3i−3,3i−1+ 5Ω3i−2,3i−2 = 0,

Ω2i−2,2i+1 + 5Ω2i−1,2i = 0,

Ωi−1,i+3+ 10Ωi ,i+2 + 10Ωi+1,i+1= 0,

Ω0,5 + 25Ω1,4 + 100Ω2,3 = 0,

i ∈ {1, 2}. (19)

Inserting (17) and (18) into the first two equations of (19), we find

γi = −
5
4
µ2i , (i ∈ {1, 2}). (20)

17



The partial solutions (20) are now inserted into (19) which are still linear in

αi . Therefore, they can be solved for αi which yields

α2 = −
1
Ωp,q
(β2Ωp,q̇ + γ2Ωp,q̈ + 5Ωṗ,ṗ(β1µ1 − γ1λ1) + 5γ1µ1Ωṗ,p̈) ,

α1 = −
1
Ωp,q
(β1Ωṗ,q + γ1Ωp̈,q + 5Ωq̇,q̇(β2µ2 − γ2λ2) + 5γ2µ2Ωq̇,q̈) .

(21)

Now, the three remaining equations involve only six variables: βi , λi , and

µi . The following list displays the degree of each equation considered as a

polynomial in the respective variable:

[[β1, 2], [β2, 1], [λ1, 2], [λ2, 1], [µ1, 4], [µ2, 3]],

[[β1, 1], [β2, 2], [λ1, 1], [λ2, 2], [µ1, 3], [µ2, 4]],

[[β1, 1], [β2, 1], [λ1, 1], [λ2, 1], [µ1, 3], [µ2, 3]].

(22)

With two further elimination steps, we can eliminate two more variables from

the latter equations. This shows that there is a three-dimensional algebraic

variety of solutions to the G2 Hermite interpolation problem. Each point on

this variety corresponds to an interpolant of the given G2 data.

For practical reasons, the huge variety of solutions shall be restricted. Since

the parameters µ1 and µ2 regulate the influence of the first derivative, and

therefore, the tangential behavior of the interpolant, one can make sure that

they do not vanish by setting them to a fixed value. This has one major

advantage: The degrees of three equations, simplified in (22) drop and, after

eliminating λi , we obtain an algebraic curve of degree 6 in the [β1, β2]-plane

all of whose points correspond to solutions of the G2 Hermite interpolation

problem with ruled or channel surfaces. Summarizing, we can say:

Theorem 4.2. The Hermite interpolation of G2 data D0 = [P, Ṗ , P̈ ] and

D1 = [Q, Q̇, Q̈] satisfying (7) from a ruled or channel surface can be solved

with a quintic ruled surface or a quintic one-parameter family of spheres. The

variety of solutions is algebraic, of dimension 3, and is at most of degree 150.

With prescribed weights µi for the tangent points (derivate points) the man-

ifold of solutions is an algebraic curve of degree 8.

Remark: The degree 150 of the variety of solutions mentioned in Thm. 4.2

can (more or less) easily be verified by computing the Hilbert polynomial of

the ideal defined by (22). In this case, the complexity of the computation

was too high to carry it out by Maple c©. The number 150 is an upper bound

and is the product of the degrees of the equations given in (22) (according

to Bézout’s theorem).
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Fig. 11 shows three different solutions to one certain G2 interpolation task.

It is no surprise that the interpolants intersect the osculating quadrics at the

ends in more than just the common ruling. The interpolant and the osculating

quadrics share only differential geometric properties up to order two.

Figure 11: Three different solutions to a G2 Hermite interpolation problem.

The given reguli at the ends are shown in red and violet; the respective

boundary lines show up as blue and red cylinders. It is not at all surprising

that the three different interpolants (cyan, yellow, and orange) show some

intersection curves with the G2 data at the boundaries, since these surfaces

only agree with the data up to differentiation order two.

In cases similar to that illustrated in Fig. 11, it is useful to have some tool

which helps us to decide which solution is the best. Interpolants with small

variations shall be preferred. Of course, solutions with self-intersections or

even complicated topology should be omitted. Especially in the cases of G2

(and later also G3) interpolation, the shape parameters of the interpolants are

solutions of systems of algebraic equations, and thus, they can only be found

with numerical methods, in general. Then, the Bézier representation B of the

interpolant has numerically defined control points and this makes the solution

somehow imprecise. Algebraically speaking, the polynomial p(t) = Ω(B,B)

will not be zero.

Fig. 12 shows the plot of the polynomials p corresponding to some solu-

tions of a G2 interpolation problem. Clearly, the best solution would be that

corresponding to p(t) ≡ 0. However, in practice one chooses the solution

correponding to the polynomial p(t) that is closest to the abscissa, at least

in [0, 1].

Fig. 13 shows a comparison of two solutions of a G2 interpolation problem
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perfect

p(t)

t

0 1

Figure 12: The polynomial p(t) is not equal to zero for numerically obtained

solutions. The solution corresponding to the polynomial function p closest to

0 is probably the best one.

Figure 13: Comparison of two solutions of G2 interpolation problem for ruled

surfaces. The G2 data was taken from the blue surface. The yellow and the

orange solution have been chosen according to the deviations of the function

p(t) from the zero polynomial.

for ruled surfaces. We can still observe some intersections of the initial ruled

surface (blue) and the interpolants (yellow, red) in Fig. 13. This is clear,

since the interpolants computed from the G2 data (green) agree with the

initial surface (blue) only at the boundaries and to a certain extent.

The proposed algorithm also works for channel surfaces as can be seen in

Fig. 14. There, two good solutions are displayed together with two bad

solutions. In the latter case, we observe that the radius function may have

zeros in the interval [0, 1]. This means that the orientation of the spheres in

the one-parameter family changes. If this happens twice (an even number of

changes), then both data sets at the ends are properly oriented (they have
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equal orientations). Such cases can be treated relatively easy by adjusting the

shape parameters µi . An odd number of zeros, or equivalently, an odd number

of orientation switches, can be repaired by changing the orientation of the

sphere at one of the two ends. If a solution looks pretty good and shows no

Figure 14: Top row: two good solutions of a G2 interpolation problem with

channel surfaces. Bottom row: two bad solutions with zeros of the radius

function (left) or growth into the wrong direction (right).

zeros of the radius function, it may still grow into the wrong direction, see

Fig. 13 (bottom row, right). This can be repaired by changing the signs of

µi .

4.3 G3 Hermite interpolation - common flecnodes

Finally, we pay attention to the interpolation of G3 data D0 = [P, Ṗ , P̈ ,
...
P ]

and D1 = [Q, Q̇, Q̈,
...
Q ]. In this case, the interpolant does not only share

the ruling or sphere P , the parabolic linear line or sphere congruence defined

by [P, Ṗ ], and the osculating regulus or Dupin cyclide defined by [P, Ṗ , P̈ ]

21



with the ruled or channel surface to be interpolated. Among the asymptotic

tangents or spheres of both ruled or channel surfaces along the common ruling

or sphere P (and different from P ), there are in general two lines or spheres

which hyperosculate the ruled or channel surfaces, i.e., locally they intersect

the surfaces at least with multiplicity four. These two asymptotic lines or

spheres are called flecnodal tangents or flecnodal spheres, [24, 30, 33].

F TF

R

R

c

f

Figure 15: The tangent plane TF at a flecnode F of a ruled surface R inter-

sects R along the ruling R through F and a curve c with an inflection point

at the flecnode F . The locus of all flecnodes on R is the curve f consisting

of two branches (at least in this example).

We have to choose n = 7 in (8) in order to have the necessary degrees of

freedom, i.e., the necessary number of control points. The relations between

the control points and the derivative points at the boundary, similar to (11),

(12), and (18) are

b0 = p, b7 = q,

b1 = λ1p+ µ1ṗ, b6 = λ2q+ µ2q̇,

b2 = α1p+ β1ṗ+ γ1p̈, b5 = α2q+ β2q̇+ γ2q̈

(23)

where λi : µi 6= 0 : 0 and αi : βi : γi 6= 0 : 0 : 0 for i ∈ {1, 2}. Additionally,

we have to take the third derivatives at the boundaries into account. In
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order to achieve a G3 contact at P and Q, we make sure that the osculating

three-spaces of the interpolant and the curves to be interpolated agree at the

endpoints P and Q. Therefore, we have

b3 = ν1p+ ω1ṗ+ ρ1p̈+ σ1
...
p , b4 = ν2q+ ω2q̇+ ρ2q̈+ σ2

...
q (24)

where νi : ωi : ρi : σi 6= 0 : 0 : 0 : 0 for i ∈ {1, 2}. In analogy to (13) and

(19), the coefficients of the polynomial (10) yield the eleven equations

6Ω5i−5,5i−3 + 7Ω5i−4,5i−4 = 0,

5Ω4i−4,4i−1 + 21Ω4i−3,4i−2 = 0,

10Ω3i−3,3i+1 + 70Ω3i−2,3i + 63Ω3i−1,3i−1 = 0,

3Ω2i−2,2i+3 + 35Ω2i−1,2i+2 + 105Ω2i ,2i+1 = 0,

2Ωi−1,i+5 + 42Ωi ,i+4 + 210Ωi+1,i+3 + 175Ωi+2,i+2 = 0,

Ω0,7 + 49Ω1,6 + 441Ω2,5 + 1225Ω3,4 = 0

(i ∈ {1, 2}) (25)

since four coefficients vanish automatically. Because of (7), we have Ω0,0 =

Ω7,7 = Ω0,1 = Ω6,7 = 0. So far, (25) involve 18 variables, i.e., the ho-

mogeneous coordinates fixing the control points in the osculating subspaces

together with the shape parameters. These 18 variables are subject to 11 con-

ditions. From that we can infer that there is a seven-dimensional manifold of

solutions to the G3 interpolation problem.

We insert (23) and (24) into (25). The first two equations are univariate and

linear in γi and can be solved for which gives

γi =
7

6
µ2i (i ∈ {1, 2}) (26)

since Ωp,p̈ = −Ωṗ,ṗ and Ωq,q̈ = −Ωq̇,q̇ according to (7). The third to sixth

equation of (25) are four linear equations in ρi and σi (i ∈ {1, 2}) even after

the substitution of (26). So, we solve the latter four equations for ρi , σi and

substitute into the remaining equations. This yields five equations in twelve

unknowns. There, we observe that the first two equations are linear in α1
and α2, and thus, they can be solved for αi which (after substitution for αi)

leads to three equations in ten unknowns still describing a seven-dimensional

manifold of solutions. These three equations are all of the same algebraic

shape, i.e., they agree in the degree in total as well as in the degrees when

considered as polynomials in certain variables:

[26, [βi , 6], [λi , 6], [µi , 16], [νi , 2], [ωi , 2]] (i ∈ {1, 2}).

The first number equals the total degree (it is 26).
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Surprisingly, the latter three polynomial equations all share the same quadratic

factor c1λ1λ2 + c0 with multiplicity two. On the doubly counted quadratic

hypercylinder Γ : c1λ1λ2+c0 = 0 in R
10, we can for sure find a huge variety of

real solutions to the G3 interpolation problem on quadrics. Unfortunately, the

complexity of the computation - the high degrees of the three final equations

- forces us to restrict the manifold of solutions in practical cases. It means

no restriction to set some of the shape parameters to certain fixed values,

thereby guaranteeing that all derivative points contained in the boundary data

have influence on the interpolant.

For example: Setting the parameters βi , λi , and µi to certain fixed values

and eliminating all remaining unknowns except νi yields an algebraic curve

of degree 16 in the [ν1, ν2]-plane all of whose points correspond to solutions

to the initial G3 interpolation problem in general. The solutions taken from

the sextadecic differ from those corresponding to the points on the quadratic

cylinder Γ. We can summarize:

Theorem 4.3. The G3 Hermite interpolation problem for ruled and channel

surfaces can be done with septic curves on Plücker’s or Lie’s quadric. The

solutions correspond to points on a seven-dimensional algebraic variety whose

degree is at most 263 = 17576.

With prescribed weights βi , λi , and µi the variety of solutions is an algebraic

curve of degree 16.

Figure 16 shows three ruled surface patches glued together with G3 continuity.

The smoothness of the reflection lines of a spherical grid demonstrates the

quality of the interpolation.

5 Conclusion and further ideas

5.1 C1 instead of G1 connections

In Sec. 1 (see page 1), we have foretold that a quartic curve can also be used

for the interpolation of G1 data on a quadric Q. Moreover, even a C1 join

can be achieved. We use the well-known fact that the derivatives of a Bézier

curve B at both of its endpoints can be given in the simple form Ḃ(0) = ∆b1
and Ḃ(1) = ∆b4 where ∆bi = bi−bi−1 is short hand for the forward difference

operator applied to the i-th control point bi (see, e.g., [13]). Now, we have

Ḃ(0) = ṗ = 4(b1 − b0), Ḃ(1) = q̇ = 4(b4 − b3),
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Figure 16: Three patches of ruled surfaces joined with third order geometric

continuity. The fading grid of curves on the surface(s) is the reflection of a

spherical grid.

and clearly B(0) = b0 = p and B(1) = q = b4, and therefore, we find

b1 = p+
1
4
ṗ and b3 = q−

1
4
q̇.

This particular choice of b0, b1, b3, and b4 is necessary and sufficient for a C
1

connection of B with two curves having G1 data D0 = [p, ṗ] and D1 = [q, q̇]

at its endpoints since the derivative points of the Bézier curve agree with that

of the given curve(s).

There is one control point left and we assume that b2 = x ∈ R
6. Then, (10)

yields the following five equations

3Ω2i−1,2i + 4Ω2i−1,2i−1 = 0, Ωi−1,i+2 + 6Ωi ,i+1 = 0, i ∈ {1, 2},

Ω0,4 + 16Ω1,3 + 36Ω2,2 = 0.

The first four equations are linear in the coordinates of x which, in general,

describe a two-dimensional subspace of the affine space over R6 as the orbit

of all possible X (or x = b2). In total, we have the system of equations

12Ωp,x +Ωṗ,ṗ = 0, 12Ωq,x +Ωq̇,q̇ = 0,

4Ωp,q −Ωp,q̇ + 24Ωp,x + 6Ωṗ,x = 0, 4Ωp,q −Ωṗ,q + 24Ωq,x − 6Ωq̇,x = 0,

17Ωp,q + 4(Ωṗ,q +Ωp,q̇)−Ωṗ,q̇ +Ωx,x = 0.
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Obviously, the solutions of the C1 interpolation problem fill a one-dimensional

quadratic variety (i.e., a conic) in the quadric Q (either L42 or M
4
2). That is

definitely less than in the more flexible cubic ansatz given in (11) and (12).

Unfortunately, the reality of solutions cannot be guaranteed in this case.

5.2 Channel surfaces and the cyclographic model

The interpolation with channel (or even pipe) surfaces should preferably done

within the cyclographic model (cf. [9, 21]). There, the interpolation task

simplifies to a linear Gk spline interpolation. The solutions to prescribed

boundary data will be of low degree and unique. The latter may be seen as a

minor flaw.

However, one problem still persists: The interpolation in the cyclographic

model yields a Gk curve corresponding to a Gk family of spheres. The com-

putation of the envelope consumes one degree of smoothness and so the

resulting channel surface shows only a Gk−1 continuity at the boundaries.

5.3 Torsal interpolants

The presented algebraic approach to the interpolation in quadrics could also be

used for finding interpolating torsal ruled surfaces. Therefore, the parametriza-

tion B of the interpolant has to fulfill Ω(Ḃ, Ḃ) ≡ 0 in addition to (10). The

number of conditions imposed on the fixed number of shape parameters in-

creases and in each case we have to clarify if the chosen degree of the ansatz

is sufficiently high.

5.4 Further possible applications

The presented interpolation method on quadrics could also be used for families

of circles in the plane, no matter if the plane is Euclidean or pseudo-Euclidean.

A stereographic projection to a Euclidean or pseudo-Euclidean sphere estab-

lishes the quadric model and the techniques apply.

Our technique can also be used to find exact parametrizations of interpolating

motions since Study’s quadric S62 serves as a point model for the manifold of

motions in Euclidean three-space, see [31]. A detailed study of the behavior

of polynomial curves on S62 is needed, especially the relative position of the

osculants with respect to the quadric’s three-dimensional generators.
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5.5 Conclusion

We have presented a unifying treatment of the Gk Hermite interpolation

within quadrics. The method was tested at hand of two special geometries:

the geometries of lines and spheres. This was done not only since these

are apparently of more practical relevance than others. These geometries

are understood much better than others. Nevertheless, the results given in

Thms. 4.1 – 4.3 are formulated in the general setting of an arbitrary (possibly)

regular quadric. Therefore, they contain general results on the Gk Hermite

interpolation by means of polynomial curves within quadrics.
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Göschen’sche Verlagshandlung, Leipzig, 1906.

29


