
On Generalized LN-Surfaces in 4-Space

Martin Peternell
University of Technology

Vienna, Austria
martin@geometrie.tuwien.ac.at

Boris Odehnal
University of Technology

Vienna, Austria
boris@geometrie.tuwien.ac.at

ABSTRACT
The present paper investigates a class of two-dimensional
rational surfaces Φ in R

4 whose tangent planes satisfy the
following property: For any three-space E in R

4 there ex-
ists a unique tangent plane T of Φ which is parallel to E.
The most interesting families of surfaces are constructed ex-
plicitly and geometric properties of these surfaces are de-
rived. Quadratically parameterized surfaces in R

4 occur as
special cases. This construction generalizes the concept of
LN-surfaces in R

3 to two-dimensional surfaces in R
4.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Miscella-
neous

General Terms
Theory

Keywords
LN-surface, quadratically parameterized surface, linear con-
gruence of lines, chordal variety, rational parameterization.

1. INTRODUCTION
In R

3 there exists a remarkable class of rational surfaces
which are characterized by possessing a field of normal vec-
tors which is linear in the surface parameters. These so-
called LN-surfaces [2, 3] possess remarkable properties. Their
family of tangent planes are represented by graphs of ratio-
nal functions [6]. LN-surfaces possess rational offset surfaces
[3] and the convolution surface of an LN-surface with an ar-
bitrary rational non-developable surface is always rational
[11]. Surprisingly, quadratically parameterized surfaces be-
long to this class [6].

This article will generalize the concept of LN-surfaces to
R

4. From the dual representation the generalization to hy-
persurfaces in R

4 is evident, see Section 2.1. Interesting
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questions occur when determining two-dimensional rational
surfaces Φ in R

4 with similar properties. We characterize
the class of rational surfaces Φ in R

4 which satisfy the prop-
erty that for all given 3-spaces E the surface parameters of
Φ can be expressed in terms of rational functions of the co-
efficients of E. This implies that for all 3-spaces E there
exist a unique tangent plane T parallel to E with a unique
point of contact p ∈ Φ. The proposed construction pre-
sented in Section 3 circumvents the integration and leads to
explicit parameterizations and geometric characterizations
of these surfaces Φ. Quadratically parameterized surfaces in
R

4 occur as special cases.
The motivation for this research is based on the following

relation: Considering R
4 as model space of oriented spheres

in R
3, it has been shown in [7] that quadratically parameter-

ized surfaces in R
4 correspond to two-parameter families of

spheres in R
3 whose envelope surfaces and their offsets are

rational surfaces. A criterion for all parameterized surfaces
in R

4 whose corresponding two-parameter families of spheres
have envelopes which admit rational parameterizations has
been given in [4].

As already indicated in [7], the proposed construction to
obtain rational parameterizations of the envelopes of the
two-parameter families of spheres can not only be performed
with quadratically parameterized surfaces but with a much
larger class of surfaces in R

4. These surfaces are investi-
gated here without taking into account these relations to
sphere geometry but only considering the generalization of
the concept of LN-surfaces to R

4.
The paper is organized as follows: Section 2 discusses

some necessary facts about lines in 3-space, and presents
the concept of LN-surfaces. Section 3 discusses the different
cases of surfaces and gives explicit parameterizations. Some
examples illustrate the method. In Section 4 we conclude
the article and give hints to possible applications.

2. GEOMETRIC BACKGROUND
Points in R

n are represented by their inhomogeneous co-
ordinate vectors x = (x1, . . . , xn). The projective closure of
R

n is denoted by P
n. Points in P

n are identified with their
homogeneous coordinate vectors

yR = (y0, y1, . . . , yn)R, with y �= o. (1)

Let ω : y0 = 0 be the hyperplane at infinity in P
n. The in-

terchange between homogeneous and Cartesian coordinates
for points in R

n is realized by

x1 =
y1

y0
, x2 =

y2

y0
, . . . , xn =

yn

y0
. (2)
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Moreover, let P
n� be the dual projective space, whose points

are identified with the hyperplanes in P
n. A hyperplane

E : e0y0 + e1y1 + . . . + enyn = 0 in P
n is identified with the

homogeneous coordinate vector eR = (e0, . . . , en)R.

2.1 LN-curves and LN-surfaces
A rational curve C ⊂ R

2 is called an LN-curve if its tan-
gent lines admit the representation T (u) : x1u + x2 = f(u),
where f(u) is a rational function. This implies that the curve
C possesses the linear normal vector field n(u) = (u, 1). A
parameterization c(u) of C can be computed by intersecting

T ∩ Ṫ . This leads to

c(u) = (ḟ , f − uḟ), with ḟ = df/du. (3)

Analogously LN-surfaces F ⊂ R
3 are characterized as ra-

tional surfaces possessing a linear normal vector field n. By
excluding cylinders we can assume that n = (u, v, 1). The
tangent planes T (u, v) of F admit the representation

T : x1u + x2v + x3 = f(u, v), (4)

where f(u, v) is a bivariate rational function. A parameteri-
zation f(u, v) of F can be computed as intersection T ∩Tu ∩
Tv. This leads to

f(u, v) = (fu, fv, f − ufu − vfv), (5)

where fu = df/du and fv = df/dv. These surfaces first
occurred in computer aided geometric design in [2]. They
have very special properties concerning envelope computa-
tion with respect to two-parameter translational motions,
see [11]. LN-surfaces F in R

3 are also characterized by the
fact that for any plane ε in R

3 the surface parameters of F
can be expressed in terms of rational functions of the coef-
ficients of ε. This implies that for all planes ε there exists a
unique tangent plane T parallel to ε with a unique point of
contact f ∈ F .

The generalization of this concept to LN-hypersurfaces
F in R

4 is straightforward. Prescribing the tangent hyper-
planes by

T (u, v, w) : x1u + x2v + x3w + x4 = f(u, v, w), (6)

F is parameterized by f =(fu, fv, fw ,f − ufu − vfv − wfw).

2.2 Basic facts on surfaces in 4-space
Let Φ ⊂ R

4 be a two-dimensional surface, and let p :
(u, v) ∈ R

2 → R
4 be a parameterization of Φ. At a regular

surface point p(u, v) the partial derivative vectors pu and
pv determine the tangent plane T at p. Considering R

4 as
Euclidean space with the canonical scalar product, there ex-
ist two linearly independent vectors e(u, v) and f(u, v) which
determine the normal plane N at p. These vectors satisfy
the relations eT pu=eT pv=0 and fT pu=fT pv=0. The tan-
gent plane T at p can be considered as intersection of the
3-spaces (x − p)T e = 0 and (x − p)T f = 0.

When studying rational surfaces Φ in R
4 it is advanta-

geous to consider the projective extension P
4 of R

4. Let
ω = P

4 \ R
4 be the ideal 3-space. The ideal lines g = T ∩ ω

of the tangent planes T of Φ form a rational two-parameter
family of lines G. Likewise the ideal lines h = N ∩ ω of the
normal planes T of Φ form a rational two-parameter family
of lines H. The rational surfaces which will be constructed
in Sect. 3 are characterized by special properties of the fam-
ilies G and H in ω. Therefore we point to some facts from

the geometry of lines in P
3. For more details on this topic

we refer to [9].

2.3 Lines in projective three-space
In order to introduce coordinates for lines in P

3, let a line
g be spanned by two different points P = pR and Q =
qR, with p and q in R

4. The Plücker coordinates G =
(g1, . . . , g6) of g are defined by

G = ( p0q1 − p1q0, p0q2 − p2q0, p0q3 − p3q0,
p2q3 − p3q2, p3q1 − p1q3, p1q2 − p2q1 ).

(7)

The coordinates gi are homogeneous and independent of the
choice of the points P and Q. Thus, they can be interpreted
as the coordinates of points GR = (g1, . . . , g6)R in P

5. The
coordinates gi are not independent but satisfy the Plücker
relation

g1g4 + g2g5 + g3g6 = 0. (8)

A line g in P
3 can also be considered as intersection of two

planes ε and ϕ. Let these planes be given by their ho-
mogeneous coordinate vectors e = (e0, e1, e2, e3)R and f =
(f0, f1, f2, f3)R. The Plücker coordinates G = (g1, . . . , g6)
of g = ε ∩ ϕ are computed by

G = ( e2f3 − e3f2, e3f1 − e1f3, e1f2 − e2f1,
e0f1 − e1f0, e0f2 − e2f0, e0f3 − e3f0 ).

(9)

2.4 Special two-parameter families of lines
We study rational two-parameter families of lines G with

the property that for almost all planes ε in P
3 there exists a

unique line g ∈ G with g ⊂ ε. Applying a duality or polarity
δ in P

3, the family of lines G is mapped to a family of lines
H = δ(G). The family H has the property that for almost all
points X ∈ P

3 there exists a unique line h ∈ H with X ∈ h.
Algebraic families of lines of this type have an exceptional
set, which means that there exists at most a one-parameter
family of points where the line h ∈ H is not unique.

Since it is more intuitive in some cases we describe ratio-
nal two-parameter families of lines H sending a unique line
through a generic point. These families are called congru-
ences of lines of degree one and class n, denoted as (1, n)-
congruences. The degree denotes the number of lines passing
through a generic point, and the class denotes the number
of lines lying in a generic plane.

It is a result of classical algebraic line geometry [10], that,
besides the star of lines, there exist the following types:

• Chordal variety of a spatial cubic: (1, 3)-congruence.

• (1, n)-congruences of the first kind: there exist two
different singular curves.

• (1, n)-congruences of the second kind: there exists only
one singular curve which is a line.

This classification holds for families of lines in complex pro-
jective space P

3. Since we have to focus on families of real
lines, we describe seven types of families of lines. Besides
the star of lines (type 6) and the chordal variety (type 5)
there exist two linear line congruences (type 1 and type 3)
with different singular curves and one linear line congruence
(type 2) with only one singular curve for n = 1. For types
1–3 the families G and H are of the same type. Type 4 de-
scribes (1, n)-congruences of the first kind are given in type
4. Analogously, type 7 deals with (1, n)-congruences of the
second kind.
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B

Figure 1: Line congruences of types 1 and 3.

A
L

Figure 2: Line congruences of types 2 and 7.

Type 1 – hyperbolic linear line congruence: This fam-
ily of lines in P

3 consists of those lines intersecting two
real skew lines A and B which are called the axes of the
congruence. The exceptional set consists of A and B,
considered as point set for H and as pencils of planes
for G.

Type 2 – parabolic linear line congruence: It consists
of a one-parameter family of pencils of lines in planes
through the axis A and with vertices on A. The corre-
spondence between the carrier planes and the vertices
of the pencils is a projective mapping. The exceptional
set consists of the axis A, considered as point set for
H and as pencil of planes for G.

Type 3 – elliptic linear line congruence: This is a fam-
ily of real lines in P

3 which intersect a pair of skew and
conjugate complex lines A and A. Some authors use
the notation spread for this family. The exceptional
set does not contain real points or planes.

Type 4 – (1, n)-congruence of the first kind: Let C be
an algebraic space curve of degree n and let L be a line
intersecting C in n−1 points. The family H comprises
the lines intersecting both C and L. For any generic
point X /∈ C, L there exists a plane X ∨ L intersect-
ing C in a further point Y and XY is the unique line
of the family passing through X. The exceptional set
consists of C and L.

Type 5 – chordal variety: This family H of lines consists
of the chords of a spatial cubic C in P

3. It contains also
tangent lines of C and lines connecting two conjugate
complex points of C. The points of the cubic C form
the exceptional set.

Type 6 – star of lines: This family H consists of the lines
through a fixed point P . It sends a unique line through
any point X �= P , and P is the exceptional set. The
dual family G is called ruled plane and is formed by all
lines lying in a fixed plane π, which is the exceptional
set.

Type 7 – (1, n)-congruence of the second kind: Let L
be a line. There exists a rational correspondence be-
tween the points X ∈ L and the planes ε through L

L

C
C

P

Figure 3: Line congruences of types 4,5, and 6.

in a way that each point X corresponds to n planes
but each plane ε ⊃ L corresponds only to one single
point. The family consists of pencils of lines with ver-
tices X ∈ L which lie in planes ε ⊃ L. The line L is
the exceptional set of this family of lines.

For the types 4 and 7 it is not possible to give a complete
list. Examples for the families of type 4 for n = 2 and n = 3
are given in Sect. 3.4. An example for a family of type 7 for
n = 2 is given in Sect. 3.7.

3. CONSTRUCTION OF THE SURFACES
We present a construction for rational two-dimensional

surfaces Φ in R
4 which generalizes LN-surfaces. Let p(u, v)

be a rational parameterization of Φ, and let E : e0 +e1x1

+e2x2 +e3x3 +e4x4 = 0 be a 3-space in R4.

Definition 1. A rational two-dimensional surface Φ in R
4

is called generalized LN-surface if for all 3-spaces E the sur-
face parameters u and v can be expressed in terms of rational
functions depending on the coefficients ei of E.

This implies that for all 3-spaces E there exists a unique
tangent plane T of Φ which is parallel to E. Although this
definition characterizes an affine-invariant class of surfaces,
it is convenient to introduce the orthogonality in R

4 deter-
mined by the canonical scalar product xT y =

∑
i xiyi.

Let P
4 be the projective extension of R

4, and let ω =
P

4 \R
4 be the ideal hyperplane (at infinity). The ideal lines

g = T ∩ ω of the tangent planes T of Φ form the family G.
Let ε = E ∩ ω be the ideal plane of a 3-space E. According
to Def. 1, these rational surfaces Φ are characterized by the
fact that all planes ε ∈ ω carry a unique ideal line g ∈ G. A
duality δ in ω maps planes ε to points X and the family G to
a family of lines H = δ(G). If any plane ε carries a unique
line g ∈ G then the family H sends a unique line h ∈ H
through any point X.

Without loss of generality we may choose δ as polarity
with respect to the quadric y2

1 + y2
2 + y2

3 + y2
4 = 0. This

implies that the canonical scalar product in R
4 is induced

by δ. Therefore H is considered as the family of ideal lines
h = N ∩ ω of the normal planes N of Φ. The construction
of the surfaces uses the classification of (1, n)-congruences
from [10]. For each type of congruence of degree one we
obtain an affine-invariant family of generalized LN-surfaces.
Besides the surfaces from Sect. 3.6 we restrict our interest
to surfaces Φ which span R

4.
The proposed construction interprets a surface Φ in R

4 as
envelope of its tangent planes. Each plane T (u, v) is consid-
ered as intersection of the 3-spaces

E(u, v) : e(u, v)T x = a(u, v),
F (u, v) : f(u, v)T x = b(u, v),

(10)
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where e(u, v) and f(u, v) can be considered as normal vector
fields of Φ and a(u, v) and b(u, v) are rational functions.
The ideal lines g of T are represented as intersection lines
g = ε∩ϕ of the ideal planes ε = E∩ω and ϕ = F∩ω of E and
F . Using x as homogeneous coordinates in ω, these planes
are given by the equations ε : eT x = 0 and ϕ : fT x = 0. The
question arises, which conditions have to be fulfilled by the
functions e, f and a, b such that the family of planes T (u, v)
possesses an envelope surface?

Corollary 1. Let T = E∩F be a rational two-parameter
family of planes in R

4, where E and F are rational two-
parameter families of hyperplanes. The planes T possess a
rational envelope surface Φ if and only if the following sys-
tem of linear equations has a solution,

E : eT x = a, F : fT x = b,
Eu : eT

ux = au, Fu : fTux = bu,
Ev : eT

v x = av, Fv : fTv x = bv.
(11)

Proof. Let p(u, v) be a solution of the system (11). We
have to prove that T = E∩F is the tangent plane at a regular
point p(u, v). Since T is parameterized by p + spu + tpv ,
this is equivalent to verify the relations

eT pu = 0, eT pv = 0 and fT pu = 0, fT pv = 0.

Differentiating eT p = a with respect to u and v and taking
eT

up = au, and eT
v p = av into account, leads to eT pu = 0

and eT pv = 0. Analogously we proceed for f, which con-
cludes the proof.

If the rank of the coefficient matrix of the system (11)
is less than four, the solution may degenerate. Since the
normal forms of vectors e and f we use later always lead to
matrices of rank four, we do not consider degenerate cases
here.

Generalized LN-surfaces Φ according to Def. 1 can be
characterized equivalently in the following way. Let W :
wT x = c be an arbitrary 3-space in R

4. The surface Φ is a
generalized LN-surface if and only if it possesses a parame-
terization p(u, v) in a way that the equations

wT pu(u, v) = 0 and wT pv(u, v) = 0 (12)

possess rational solutions u = α(w), v = β(w) depending
on the coordinates wi of w ∈ R

4.

Remark 1. From the parameterizations p(u, v) of the seven
types of generalized LN-surfaces Φ in R

4 discussed later one
arrives at systems of polynomial equations (12). Without
taking into account the geometric generation of these sur-
faces, one would have to use Gröbner basis or other elimina-
tion techniques to solve these equations for u and v. The ge-
ometric generation (11), however, induces a preferable com-
putation, because we already know that e(u, v) and f(u, v)
are normal vector fields of Φ. This allows to compute two
vector fields s(u, v) and t(u, v) spanning the tangent spaces
of Φ with methods from linear algebra. Substituting pu and
pv by s and t, equations (12) simplify. Moreover, the con-
struction itself proves the rationality of the solutions for u
and v.

Each of the types of rational families of lines from sec-
tion 2.4 leads to a family of generalized LN-surfaces Φ in
R

4, according to Def. 1. In most cases these surfaces are
studied by using special normal forms for functions e and

f, and conditions to the functions a and b for the existence
of envelope surfaces Φ are determined. This is no restric-
tion since the construction of the surfaces is invariant with
respect to affine transformations in R

4. In most cases these
surfaces admit simple geometric generations and relations to
LN-curves and LN-surfaces will appear.

3.1 Surfaces of type 1
If H is a hyperbolic linear line congruence, the family

G is of the same type. The Plücker coordinates of the
axes A and B of G are chosen as A = (0, 0, 0, 0, 1, 0) and
B = (0, 1, 0, 0, 0, 0). The two pencils of planes ε(u) and
ϕ(v) passing through A and B are parameterized by

e(u) = (1, 0, u, 0) and f(v) = (0, 1, 0, v).

The tangent planes T of Φ have ideal lines g = ε∩ϕ, and its
Plücker coordinates are G = (uv, 0,−u, 1, 0, v). Since e(u)
and f(v) are univariate polynomials, a(u) and b(v) have to
be chosen as univariate rational functions. They satisfy

av = 0 and bu = 0. (13)

Vectors e and f define two independent normal vector fields
of Φ. A rational parameterization of Φ is obtained as solu-
tion of the system (11), and reads

p(u, v) = (a − uau, b − vbv, au, bv) . (14)

Thus a surface Φ of type 1 is a translational surface p(u, v) =
c(u) + d(v) with profile curves C and D,

c(u) = (a − uau, 0, au, 0) ,
d(v) = (0, b − vbv, 0, bv) .

(15)

Comparison with (3) shows that C and D are LN-curves.
The tangent planes T of Φ are spanned by p and the vectors
s = (−u, 0, 1, 0) and t = (0,−v, 0, 1). The partial derivatives
can be expressed by

pu = auus and pv = bvvt.

According to (12) the equations wT s = 0 and wT t = 0
result in the rational expressions

u =
w3

w1
and v =

w4

w2
. (16)

Theorem 1. A generalized LN-surface Φ in R
4 of type 1

is a translational surface p(u, v) = c(u) + d(v) with planar
LN-curves as profile curves. Conversely, any translational
surface Φ which spans R

4 and whose profile curves are LN-
curves is a surface of type 1.

Proof. We only have to show that a translational surface
F which spans R

4 obtained by translating LN-curves C and
D is equivalent to (14). Since C and D shall span R

4, we
may choose an affine coordinate system in a way that C and
D are parameterized by (15). Since F is parameterized by
f(u, v) = c(u) + d(v), the statement holds.

Example 1. Choosing quadratic polynomials a(u) = 1/2u2

and b(v) = 1/2v2, the surface of type 1 is a quadratically
parameterized surface p = (−1/2u2,−1/2v2, u, v), see [8].
Fig. 4 illustrates the projection p = 1/2(−u2,−v2, u + v) in
R

3.
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C

DΦ

Figure 4: Projection of a surface of type 1 into R
3.

3.2 Surfaces of type 2
If H is a parabolic linear line congruence, the family G is

of the same type. The lines g(u, v) of G are the intersection
lines of the pencil of planes ε(u) through the axis A of G
and an appropriate star of planes ϕ(u, v) passing through a
vertex /∈ A. We choose

e(u) = (1, 0, u, 0) and f(u, v) = (0,−1, v, u).

The family G consists of the pencils of lines with vertices
(0, 1, 0, u)R lying in planes ε(u). The Plücker coordinates
of the lines g(u, v) are G = (u2, 0, u,−1, v, u). Since ev =
(0, 0, 0, 0) and eu = fv holds, the rational functions a(u) and
b(u, v) have to satisfy the relations

av = 0 and au − bv = 0. (17)

This implies b(u, v) = vau − λ(u). Solving (11), the surface
Φ is parameterized by

p(u, v) = (a − uau, ubu + λ, au, bu) .

The tangent planes T of Φ are spanned by p and the vectors
s = (−u, v, 1, 0) and t = (0, u, 0, 1). The partial derivatives
can be expressed by

pv = auut and pu = auus − (λuu − vauuu)t.

According to (12) the equations wT s = 0 and wT t = 0
result in the rational expressions

u = −w4

w2
and v = −w1w4 + w2w3

w2
2

. (18)

Since bu = vauu − λu holds, p(u, v) is linear in v and Φ
is a ruled surface. Letting ṽ = bu, one obtains the ruled
surface parameterization

p(u, v) = c(u) + ṽd(u)
= (a − uau, λ, au, 0) + ṽ(0, u, 0, 1).

(19)

The directrix curve c(u) is a rational curve on a cylinder over
the LN-curve (a − uau, 0, au), and d(u) is a linear direction
vector field along c. The reparameterization ṽ = bu has
influence on the parameterization of G. However, for the
geometric properties of surfaces of type 2 this is not relevant.

Theorem 2. A generalized LN-surface Φ in R
4 of type

2 is a ruled surface with a rational curve C on a cylinder
over an LN-curve as directrix curve and a linear direction

vector field. Conversely, any ruled surface which spans R
4

and possesses these properties is a surface of type 2.

Proof. To prove the converse statement one only has to
choose an appropriate affine coordinate system and obtains
the parameterization (19).

Figure 5: Cayley’s surface(left) and Whitney’s um-
brella(right)

Example 2. For a(u) = 1/2u2 we obtain the surface f(u, v) =
(−1/2u2, uv, u, v). It can also be represented as quadrat-
ically parameterized surface, see [8]. The projection onto
x4 = 0 in direction of (1, 0, 0,−1) is recognized as Cayley’s-

surface with parameterization f̃(u, v) = (−1/2u2 + v, uv, u).
The orthogonal projection onto x3 = 0 is known as Whit-
ney’s umbrella or Plücker’s conoid with parameterization

f̃(u, v) = (−1/2u2, uv, v).

3.3 Surfaces of type 3
If H is an elliptic linear line congruence, the family G

is of the same type. In order to describe G, let α be a
projective mapping between two stars of planes ε(u, v) and
ϕ(u, v). Their vertices are chosen as Ve = (0, 1, 0, 0)R and
Vf = (1, 0, 0, 0)R, and the planes ε and ϕ can be determined
by

e(u, v) = (1, 0,−u, v) and f(u, v) = (0,−1, v, u),

Their intersection lines g(u, v) ∈ G are given by the Plücker
coordinates G = (u2 + v2, v, u, 1,−v,−u). The projective
mapping α : ε 	→ ϕ maps the pencil of planes through VeVf

onto itself, η(t) = (0, 0, t, 1)R 	→ α(η(t)) = (0, 0, 1,−t)R.
Since α restricted to the pencil η(t) possesses two conjugate
complex fixed planes (0, 0, i, 1)R and (0, 0, 1,−i), the family
G of lines g = ε ∩ ϕ is an elliptic linear line congruence.

Because of eu = −fv and ev = fu, a parameterization
p(u, v) of a surface Φ of type 3 is obtained as solution of
(11) for any choice of rational functions a(u, v) and b(u, v)
which satisfy

au = −bv and av = bu. (20)

Thus a and b are harmonic conjugate and b is the real part
and a is the imaginary part of a univariate polynomial or
rational function in the complex variable z = u + iv. A
rational parameterization of Φ reads

p(u, v) = (a − uau − vav,−b − vau + uav,−au, av) . (21)

We show that a surface Φ of type 3 is a translational surface
with two conjugate complex profile curves C and C with
parameterizations c(z) and c(z), respectively. Let f(z) be
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a rational function in the complex variable z with imagi-
nary part a(u, v) and real part b(u, v). Thus f = b + ia.
Differentiating f with respect to z and z̄ gives

df

dz
= fz = av + iau and

df

dz̄
= 0.

It is not difficult to verify that Φ can be represented by

p(u, v) = 1
2
(c(z) + c(z)), with

c(z) = (i(zfz − f), (zfz − f), ifz, fz) ,
(22)

where c(z) is a planar curve. Its carrier plane is given by
ix1 + x2 = ix3 + x4 = 0. Since the tangent lines of C
have direction vectors dc/dz=fzz(iz, z, i, 1), the curves C
and C are a pair of planar conjugate complex LN-curves.
The tangent planes T of Φ are spanned by p and the vectors
s = (u, v, 1, 0) and t = (−v, u, 0, 1). The partial derivatives
can be expressed by

pu = −auus + buut and pv = bvvs + avvt.

According to (12) the equations wT s = 0 and wT t = 0
result in the system of linear equations for u and v,(

w1 w2

w2 −w1

) (
u
v

)
=

( −w3

−w4

)
. (23)

Theorem 3. A generalized LN-surface Φ in R
4 of type

3 is a translational surface p(z) = 1/2(c(z) + c(z)) with a
pair of planar conjugate complex LN-curves as profile curves.
Conversely, any translational surface Φ whose profile curves
are a pair of conjugate complex LN-curves which span R

4 is
a surface of type 3.

Proof. We only have to show that a translational surface
F obtained by translating LN-curves C and C is equivalent
to (21). Since we require that C and C shall span R

4, we
can choose an affine coordinate system in a way that C is
parameterized by c(z) from (22). Since F is parameterized

by p(z) = 1/2(c(z) + c(z)), the theorem holds.

Figure 6: Projection of a surface of type 3.

Example 3. For the choice a = 1/2(v2 − u2) and b = uv
one obtains the quadratically parameterized surface p =
(1/2(u2 − v2), uv, u, v). A projection of this surface onto
x4 = 0 is displayed in Fig. 6.

3.4 Surfaces of type 4
Let C be a spatial algebraic curve of degree n in ω which

has at least one chord L joining n − 1 points of C. The
number of points is counted algebraically. The family H of
lines h meeting the curve C and the line L sends a unique
line through a generic point X ∈ ω.

Since there exist more than one family H for n > 2, we
only give examples for n = 2 and n = 3:

• Let C be a conic and let L be a line meeting C at a
single point. The family H consists of all lines meeting
both C and L. The polarity maps C to a quadratic
cone D, and L to a tangent line M of D.

• Let C be a cubic and let L be a chord of C. The
family H consists of all lines meeting both C and L.
The chord L of C can be replaced by a tangent line
of C. The polarity maps C to a developable surface
D of class three, and L to a line M carrying two tan-
gent planes of D. These two tangent planes are not
necessarily real.

The construction of a surface of type 4 is illustrated by the
example for n = 2.

The planes ε(u) and ϕ(v) can be represented by

e(u) = (−1, 0, 0, u) and f(v) = (0, u,−v, v2).

The Plücker coordinates of lines g(u, v) = ε(u) ∩ ϕ(v) are
G = (uv, u2, 0,−u, v,−v2). The rational functions a and b
have to satisfy

av = 0 and ubu + vbv − b − v2au = 0. (24)

Choosing a as univariate rational function a(u) and with
b(u, v) being of the form b(u, v) = uh(u/v) + v2/ua(u) a
parameterization of this particular subclass of surfaces Φ of
type 4 reads

p(u, v) = (uau − a, bu, 2vau − bv, au). (25)

The tangent planes T of Φ are spanned by p and the vectors
s = (u, 0, v, 1) and t = (0, v, u, 0). The partial derivatives
can be expressed by

pu = auus +
buu

v
t and pv =

buv

v
t.

According to (12) the equations wT s = 0 and wT t = 0
result in the rational expressions

u =
w2w4

w2
3 − w1w2

and v =
−w3w4

w2
3 − w1w2

. (26)

Example 4. For the choice a = 1/2u2 and b = 1/2uv2

one obtains the quadratically parameterized surface p =
(1/2u2, 1/2v2, uv, u). A projection of this surface onto x1 =
0 is the Plücker’s conoid as displayed in Fig. 5. Another
projection of this surface reads (p1 − p2, p3, p4), which is
displayed in Fig. 6.

3.5 Surfaces of type 5
Let H be the chordal variety of a spatial cubic C. Apply-

ing the polarity δ maps H to the axes variety G of a devel-
opable surface D of class 3. The family G consists of the real
intersection lines of two tangent planes of D. These planes
can also be conjugate complex. In addition the generating
lines of D belong to G.
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Let ε(t) be the real tangent planes of D. The intersection
lines g(u, v) = ε(u) ∩ ε(v) form a subset of G. This param-
eterization however has the disadvantage that each line g
is obtained for two different parameter values (u1, v1) and
(v1, u1). Consequently the uniqueness property does not
hold for this representation. This can be avoided by using
proper parameterizations of the axes variety G.

The lines g ∈ G can be obtained by joining points xR =
(u, 0, v, 1)R and yR = (1, v, u, 0)R. Because of the linearity
in u and v, the correspondence α : xR 	→ yR is a projective
mapping between the planes y1 = 0 and y3 = 0. The Plücker
coordinates of lines g are G = (uv,u2 − v,−1,−u,v,−v2).
In order to generate the surface Φ in R

4 as envelope of its
tangent planes, lines g ∈ G are considered as intersection of
planes ε and ϕ. Their coordinate vectors are chosen as

e = (u, 0,−1,−u2 + v) and f = (−v, 1, 0, uv). (27)

By investigating the equations (11), we realize that the sys-
tem is solvable if and only if the functions a(u, v) and b(u, v)
satisfy the conditions

bu = vav and bv = −au − uav. (28)

This system is integrable if the function a(u, v) satisfies

auu = −uauv − 2av − vavv. (29)

A solution for b(u, v) follows by

b =

∫
vavdu−

∫
(

∫
(vavv +av)du+au +uav)dv +C. (30)

Reducing our interest to polynomial solutions, the integra-
tion of b(u, v) is not problematic. The condition (29) for the
function a(u, v) can be satisfied with a polynomial ansatz.
The corresponding parameterization of a surface Φ in R

4 of
type 5 is

p(u, v) = (uav − bv, b − vbv,−a + bu − ubv , av) . (31)

This representation depends on the choice of e and f which
determine the parameterization of the axes variety G. Dif-
ferent parameterizations typically lead to different represen-
tations for surfaces Φ of type 5. The tangent planes T of
Φ are spanned by p and the vectors s = (u, 0, v, 1) and
t = (1, v, u, 0). The partial derivatives can be expressed by

pu = auvs− vavvt and pv = avvs − bvvt.

According to (12) the equations wT s = 0 and wT t = 0
result in the system of linear equations for u and v,(

w1 w3

w3 w2

) (
u
v

)
=

( −w4

−w1

)
. (32)

Theorem 4. A generalized LN-surface Φ in R
4 of type

5 admits explicit rational parameterizations. The tangent
planes of Φ have linearly parameterized direction vectors s =
(u, 0, v, 1) and t = (1, v, u, 0).

Example 5. Performing a polynomial ansatz for a(u, v) of
degree three, a general solution of (28) for a and b depending
on the coefficients ci reads

a(u, v) = c4 + c3u − c2u
2 − 1/2c1u

3 + c2v + c1uv,
b(u, v) = c2uv + 1/2c1u

2v − c3v − 1/2c1v
2.

The coefficients (c1, . . . , c4) = (0, 0, 0, 1) give the polynomi-
als a(u, v) = −1/2u3 +uv and b(u, v) = 1/2u2v−1/2v2. Fi-
nally the surface Φ of type 5 is a quadratically parameterized

surface, parameterized by p(u, v) = (1/2u2+v, 1/2v2, uv, u).
Fig. 7 displays a projection onto x4 = 0.

Figure 7: Projection of a surface of type 5.

3.6 Surfaces of type 6
If H is a star of lines, G is a ruled plane. The ideal lines

g(u, v) of the tangent planes T (u, v) of a surface Φ of type 6
are obtained by intersecting the planes of a star ε(u, v) with
the fixed carrier plane ϕ of G. We choose

e(u, v) = (1, u, v, 0) and f = (0, 0, 0, 1)

as parameterizations of ε and ϕ, respectively and an arbi-
trary bivariate rational function a(u, v) and b = const. Since
G is a ruled plane, Φ is contained in a 3-space. Solving (11)
a rational parameterization of a surface Φ of type 6 reads

p(u, v) = (a − uau − vav, au, av, b) . (33)

Comparison with section 2.1 shows that Φ is an LN-surface
contained in x4 = b. An example for a(u, v) = u3 + v3

and b = 0 is displayed in Fig. 8. The tangent planes T of
Φ are spanned by p and the vectors s = (−u, 1, 0, 0) and
t = (−v, 0, 1, 0). The partial derivatives can be expressed
by

pu = auus + auvt and pv = auvs + avvt.

According to (12) the equations wT s = 0 and wT t = 0
result in the rational expressions

u =
w2

w1
and v =

w3

w1
. (34)

Theorem 5. A generalized LN-surface Φ in R
4 of type 6

is an LN-surface in a hyperplane of R
4.

3.7 Surfaces of type 7
Let H be a (1, n)-congruence of the second kind. It pos-

sesses a singular line L and consists of pencils of lines with
vertices X ∈ L with carrier planes ε ⊃ L. Thereby each
point X ∈ L corresponds to n planes through L but each
plane ε ⊃ L corresponds only to one point X ∈ L. The case
n = 1 is exactly type 2, and we give an example for n = 2.
To represent planes ε and ϕ we choose

e(u) = (1 − u2, 0, 0, 2u) and f(u, v) = (0, 1, u, v).

The Plücker coordinates of lines g = ε ∩ ϕ are G = (−2u2,
2u, 0, 1−u2, u(1−u2), v(1−u2)). Investigating the equations
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Figure 8: Surface of type 6.

(11), the functions a(u, v) and b(u, v) have to satisfy the
conditions

av = 0 and 2bv(1 + u2) = au(1 − u2) + 2ua. (35)

Thus the solvability of (11) requires a univariate rational
function a(u) and b is determined by

b(u, v) =
v

2(1 + u2)
(au(1 − u2) + 2ua) + λ(u).

A parameterization p of Φ is obtained by

p(u, v) =

(
a − uau

1 + u2
, b − ubu − vbv, bu, bv

)
. (36)

The tangent planes T of Φ are spanned by vectors s =
(0,−u, 1, 0) and t = (2u/(u2 − 1),−v, 0, 1). The partial
derivatives can be expressed by

pu = buus + buvt and pv = buvs.

According to (12) the equations wT s = 0 and wT t = 0
result in the rational expressions

u =
w3

w2
and v =

2w1w2w3 + w4(w
2
3 − w2

2)

w2(w2
3 − w2

2)
. (37)

Since b = vbv +λ is linear in v, surfaces Φ are ruled surfaces.
By letting ṽ = bu we find the ruled surface parameterization

p(u, v) =

(
a − uau

1 + u2
, λ, 0,

au(1 − u2) + 2ua

2(1 + u2)

)
+ṽ (0,−u, 1, 0) .

Corollary 2. A generalized LN-surface Φ in R
4 of type

7 is a ruled surface whose generating lines are parallel to a
fixed plane.

Fig. 9 shows two different projections of the surface for a =
(1 + u2)2 and λ = 0.

Figure 9: Two projections of a surface of type 7.

4. CONCLUSION
We have presented a class of rational surfaces Φ in R

4

which satisfy the property that for all given vectors w ∈
R

4 the surface parameters u, v of Φ can be expressed by
rational functions of the coefficients wi of w. Considering
R

4 as model space for the four-parameter family of spheres
in R

3, the presented surfaces correspond to two-parameter
families of spheres whose envelope surfaces and their offsets
admit rational parameterizations. These relations will be
elaborated in a separate publication.
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