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Abstract

We provide a synthetic study of the top-
views of spherical trochoids. These projec-
tions turn out to be higher trochoids, i.e.,
curves generated by the superposition of
more than two rotations. Special shapes of
these trochoids show up for special choices
of the spherical radii of the rolling circles.
A relation to closed algebraic curves of con-
stant width is shown. These curves allow
for a kinematic generation.

Key words: spherical trochoid, rolling,
evolute, involute, curve of constant width

MSC 2020: 53A17, 51N05 (primary),
14H45 (secondary)

Sačetak

Nudimo sintetičku studiju pogleda odozgo
sfernih trohoida. Ispostavilo se da su
te projekcije više trohoide, tj. krivulje
generirane superpozicijom više od dvije
rotacije. Posebni oblici ovih trohoida
pokazuju se posebnim odabirom sfernih
polumjera kotrljajući krugovi. Prikazan
je odnos prema zatvorenim algebarskim
krivuljama konstantne širine. Ove krivulje
omogućuju kinematičku generaciju.

Klučne riječi: spherical trochoid, rolling,
evolute, involute, curve of constant width

MSC 2020: 5?X?? (primary), 5?X???
(secondary)

1 Introduction

1.1 Motivation, prior work, and

contributions of the pre-

sent paper

This paper is devoted to the memory of
Walther Jank (1939–2016). An unpub-
lished and hand written manuscript of a
talk given by W. Jank at the Geometrie-
tagung in Vorau (Austria) in June 2004
was the basis of this article. It deals with
the geometric deduction of results on the
shapes of the top-views of spherical tro-
choids. Since W. Jank was a dedicated fol-

lower of Walter Wunderlich’s work of
merit on kinematics (cf. [20]) and especially
on trochoids and higher trochoids (see [19]),
he applied some of these results to spheri-
cal trochoids which have gained a little less
attention than their planar counterparts.

There exist only a few notable publica-
tions on spherical trochoidal curves related
to W. Jank’s manuscript. In [6], we find
historical remarks and a collection of known
results. Maybe, it was Rudolf Bereis
who first described the images of spherical
trochoids under various parallel projections
in [1].

This article shall first follow W. Jank’s
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manuscript, i.e., we lay down his results
and his reasoning. This includes a detailed
description of spherical trochoids based on
a constructive approach. The kinematic
generation of the top-views of spherical
trochoids leads to the finding that some
of these top-views are curves of constant
width.

Moreover, a synthetic proof of En-
neper’s theorem on the shape of the top-
views of curves of constant slope on ellip-
soids of revolution (with their axis in lead
direction, i.e., in the direction of the pro-
jection) can be found along the way.

At the end of the manuscript, the author
raised the question whether it is possible to
describe planar algebraic and closed curves
of constant width, i.e., planar curves whose
projection onto a line (within their plane) is
a segment of fixed length independent of the
direction of the projection, see [17]. Such
curves, comparable to the example given
in Fig. 14, were derived in [14]. The re-
sults therein were veryfied and improved
by [12] and the related Zindler curves were
described in [15]. The approaches towards
curves of constant width in these references
are analytic and algebraic in nature, and by
no means, constructive or geometric. We
shall close this gap.

The present paper is organized as fol-
lows: The remainder of this section de-
scribes the constructive treatment of spher-
ical trochoids and discusses the kinematic
generation. Special cases occur for special
assumptions on the spherical radii of the
rolling circles which causes special shapes
of the curves and their top-views. We try
to follow W. Jank’s diction by trying to
translate his manuscript as direct as possi-
ble. This does not necessarily include the

original notation and symbols. In Sec. 2, a
special spherical trochoid and its top-view
are the starting point for the investigation
of algebraic curves of constant width and
their kinematic generation.

1.2 Generation of spherical

trochoids

In the three-dimensional Euclidean space
R

3 of our perception, we distinguish a cer-
tain direction L (lead direction) and a fixed
sphere Σ centered at O. Further, we as-
sume that the equator e lies in the horizon-
tal plane through Σ’s center O (i.e., in the
plane orthogonal to the lead L and through
O). On a fixed circle p0 ⊂ Σ (fixed polhode)
with its axis parallel to L, spherical center
M0, and spherical radius >r0, we roll another
circle p ⊂ Σ (moving polhode) with spher-
ical center M and spherical radius >r. The
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Figure 1: Front-view of the initial configu-
ration of the rolling cones and circles.

2



path l ⊂ Σ of an arbitrary point X ∈ Σ
firmly attached to p is called a spherical
trochoid of order 2. Note that any point
rigidly attached to p and not necessarily on
Σ traces a spherical trochoid on a sphere
concentric with Σ.

The spherical trochoid motion can also
be considered as the glide-free rolling of the
cone of revolution Γ = p∨O along the cone
(of revolution) Γ0 = p0∨P (sharing the ver-
tex O) during the entire motion. The point
P is the point of contact of c and c0 and
is also referred to as the spherical instanta-
neous pole (see Fig. 1). Γ is rolling on Γ0

without gliding. These cones play the role
of the axodes and the instantaneous axis
equals the common generator m = [O,P ]
of these two cones along which they share
the tangent plane (cf. [5, 16]).

For the constructive treatment of spheri-
cal trochoids, we intersect Σ with the plane
ε which is orthogonal to the axis [O,M ] of
p and passes through X. Then, we consider
the rolling of the parallel circle c = ε ∩ Σ
(center N = ε ∩ [O,M ]) together with the
point X on the fixed cone’s parallel circle c0
(in the plane ε0, with the spherical radius
>r0, and axis [O,M0]).

We shall make explicit that each spherical
(or planetary) trochoidal motion is equiva-
lent to the (glide-free) rolling of a sphere S

on two coaxial circles c1 and c2, see Fig. 3.
The tangent of l at X is orthogonal to

the (spherical) instantaneous pole P .
Spherical kinematics mirrors another

well-known result from planar kinematics.
In the Euclidean plane, the theorem by
S. Aronhold and A.B.W. Kennedy (cf.
[20]) states that the instantaneous poles P01,
P02, P12 of the relative motions of three
moving systems Σ0, Σ1, Σ2 (concentric with

tPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtPtP
tPtPtPtPtPtPP

A

B

A⋆

B⋆

Q

Figure 2: Construction of osculating circles
of the spherical trochoid l at X according
to Bobillier.

and congruent to Σ) are collinear. Further
the relative angular velocities ω01, ω02 and
the distances between the poles are related
by

P01 P12 : P02 P12 = ω02 : ω01.

The center of the osculating circle of l at
X can be constructed with the help of É.
Bobillier’s construction (cf. [20]) which is
also valid on the sphere. This result holds
also in spherical kinematics, see [5, 10, 16].

1.2.1 Top-views, trochoids of higher

order

The following results on the top-views (or-
thogonal projections in the direction of the
lead L) of spherical trochoids were deduced
by W. Ströher in an analytic way (see
[16]). Here, these results shall be proved
by means of synthetical reasoning. In
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Figure 3: Alternative generation of a spher-
ical trochoid: A sphere S is rolling on two
coaxial circles k1 and k2.

the beginning, we recall a theorem by H.
Pottmann (cf. [13] and see Fig. 4):

Theorem 1.1. Let k
′

be an ellipse with cen-
ter N ′, semi-major axis length a, and the
moving point X ′ ∈ k

′

. Assume further that
the angular velocities of the rods N ′S and
SX ′ in the crank slider mechanism N ′SX ′

(derived from the paper strip construction
of k

′

) are equal to −β and β (with regard to
k
′

) and let k
′

0
be the ellipse’s circumcircle

(which is an affine image of k
′

). Then, any
two out of the following three statements are
equivalent:

• β = const.

• N ′X ′

0
rotates with constant angular ve-

locity, and therefore, also constant area
velocity (with regard to k′

0
).

• N ′X ′ rotates with constant area veloc-
ity with respect to k′.

The top-view of the situation shown in
the front-view in Fig. 1 is displayed in Fig.

5. From the latter we can deduce some
results on the top-views of spherical tro-
choids:

Theorem 1.2. The top-view l′ of a spher-
ical trochoid l is (in general) a trochoid of
order 3 (cf. [19, 20]).

Proof. We see that k
′

rotates with angu-
lar velocity α about O′. Provided that α

is constant, NX rotates with constant an-
gular and area velocity (with respect to k)
according to Thm. 1.1. Thus, N ′X ′ rotates
with constant area velocity with respect to
k
′

. Because of the existence of the affine
mapping between the ellipse and its circum-
circle, N ′X ′ rotates with constant area ve-
locity −β with respect to k

′

. Hence, N ′X ′

moves with constant and absolute angular
velocity α− β(α+ β).

N ′

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

X ′

0

X ′

k
′

0

k
′

a

b

βββββββββββββββββββββββββββββββ

βββββββββββββββββββββββββββββββ

−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β−β

Figure 4: The crank slider mechanism and
the equivalencies around an ellipse.
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In [1], it is already mentioned that the
top-view (orthogonal projection in the di-
rection of the axis of the fixed cone) is a
trochoid of order 3. Moreover, R. Bereis
has shown that the generic orthogonal pro-
jection of a spherical trochoid of order 2 is
a planar trochoid of order 5, and a generic
(oblique) parallel projection results in a pla-
nar trochoid of order 8 (see also [1]). This
means that the latter curves are path curves
of points under planar motions which are
the superpositions of 5 or 8 planar rotations
(cf. [19]).
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N ′
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k
′′

k
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X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′

X ′
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SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

Figure 5: The top view of a spherical tro-
choid is a planar trochoid of order three.
It can be generated by an open three-bar
mechanism.

More precisely, we can infer:

Theorem 1.3. The top-view l′ of a spher-
ical trochoid l is, in general, a trochoid of
order 3, and its characteristic equals

α : (α− β) : (α + β),

cf. [19] and [20, p. 164]. It can be gener-
ated by the open-loop three-bar mechanism
O′N ′SX ′.

In the special case
>

b =
>

MX = π

2
and

N = O, l′ has the characteristic

(α− β) : (α+ β). (1)

In this case, a great circle k is rolling, taking
the point X ∈ k with it. Hence, l a spherical
involute of a (spherical) circle, and also, a
spherical curve of constant slope. Naturally,
l′ is a curve with cusps gathering on a circle
which is concentric with the equator’s top
view e′. (It is the top view of that parallel
circle of Σ along which Σ’s tangent planes
have the same slope as l.) The vertices of l′

lie on e′. By virtue of (1), l′ is an epicycloid.
Referring to the very special case of

spherical trochoids l as curves of constant
slope on Σ, we shall point out the following:
It is possible to transform the sphere Σ into
ellipsoids of revolution by applying orthogo-
nal affine mappings with the equator plane
as a fixed plane (corresponding points are
joined by lines orthogonal to the equator
plane). Although such an orthogonal affine
mapping changes the value of the slope of
l, the slope remains constant. Some exam-
ples of curves of constant slope are shown
in Fig. 6. Hence, we have verified that part
of Enneper’s theorem (see [7, p. 138] and
[11, p.462]) describing the shape of curves
of constant slope on ellipsoids of revolution
(see Fig. 7): The top-view (orthogonal pro-
jection in the direction of the lead L) of a
curve of constant slope on an ellipsoid of
revolution is an epicycloid, provided that the
axis of revolution is parallel to L.

In Fig. 8, the top-view of the case of con-
gruent polhodes k0 and k1 is illustrated. In
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Figure 6: Some curves of constant slope on
an ellipsoid of revolution with vertical axis.

the top-view, we can see a so-called sym-
metric rolling if we flip the moving circle
k1

1 into the horizontal plane of the fixed
circle k0. So, we see that the locus l◦′ of
all points X◦

i
′′ (i.e., the orbit of X◦

1

′ or X◦

2

′)
equals a Pascal limaçon. Further, we can
deduce that the top-view l′ of the spherical
trochoid is also a limaçon which is a sim-
ilar and smaller copy of l◦′. The mapping
ζ : l◦′ → l′ is a central similarity with cen-
ter Z (cf. Fig. 8) and similarity factor

0 < µ =
1

2
(1 + cos ν) < 1, (2)

where ν is the angle enclosed by the planes

1Here, the indices 1, 2, . . . assigned to the mov-
ing circle refer to different (time) instances.

Figure 7: The top-view of the curves of
constant slope on an ellipsoid shows some
epicycloids.

of the moving circles (on Σ) and the hori-
zontal planes.

In Fig. 9, another special case is illus-
trated: A great circle k ⊂ Σ is rotating
about Σ’s vertical axis while its radius OX

rotates with the same absolute angular ve-
locity. By rotating the initial position ε1
(which is projecting in the front-view) into
a generic position ε2, we find that the inte-
rior angle bisector of [O′, X ′

1
] and [O′, X◦

2

′]
equals the trace of ε2 in the equator plane.
Therefore, l′ is the image of e′ under a cen-
tral similarity ζ with center X ′

1
and the sim-

ilarity factor (2). Hence, l′ is a circle.
In the much more special case ν = π

2
, we

have µ = 1

2
, and it is rather obvious that

the latitude and the longitude of each point
X ∈ l are equal, provided that Σ is consid-
ered as the Earth and the contour for the
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Figure 8: Top: The similarity factor be-
tween l′ and l◦′ depends on the inclination
of the rolling circle’s plane. Bottom: The
fixed and moving polhodes are congruent
and the top-view shows a symmetric rolling.
Therefore, l′ is a Pascal limaçon, as is l◦′.

top-view is assumed to be the zero merid-
ian. In this case, l is Viviani’s curve (see
Fig. 10, the orange curve l).

In Fig. 11, we recall again the construc-
tive approach and flip the plane ε (including
k, N , and X) to both sides, i.e., to the in-
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Figure 9: A very simple form of a spherical
trochoid which is still a similar copy of an
undistorted image: a circle.

l

Figure 10: Viviani’s curve (orange) can also
be found among the spherical trochoids.
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terior and exterior of the sphere. For the
inner version, this yields the circle k◦ with
the center N◦ and radius r1. The moving
point shall be denoted by X◦. The outer
circle k◦ has the center N◦, the radius r2,
and the moving point shall be labelled with
X◦. Then, we complete the parallelograms

O′N◦′X◦′Q1 and O′N ′

◦
X ′

◦
Q2.

Now, we have 0 < r0, 0 < r1 < r0, r1 = −r2,
and α = r2 = const., see Fig. 11. If now
O′N◦′N ′

◦
rotates with the angular velocity

α, then O′Qi rotates with angular velocity
βi (i ∈ {1, 2}), where

0 < β1=r0+r2 and 0 > β2=−r0+r2

holds. According to [20, p. 151], we can see
the two-fold generation of a hypocycloid z

as the envelope of n = [Q1, Q2, X
◦′, X ′, X ′

◦
]

with the characteristic β1 : β2 < 0 (cf. [20,
p. 156]). From the top-view O′N◦′N ′

◦
of

the instantaneous axis, we can infer that
n is orthogonal to l′ at X ′. Therefore, l′

is the involute of z or an offset curve (par-
allel curve) of its similar involute. For the
two instantaneous poles Pi (i ∈ {1, 2}) cor-
responding to the i-th Euler generation (cf.
[20, p. 151]) of the path (or i-th generation
as the envelope of a straight line) of z, we
have: OPi = OQi ·

r0
ri

. Further, the circle c

centered at O′ with radius O′Pi carries the
cusps of z and the concentric circle v with
radius O′Qi carries the vertices of z

Special values of some spherical distances
result in special shapes of the spherical tro-
choid and simplify their top-views:

Theorem 1.4. For the following values of
spherical distances >r0,

>r, >a =
>

M0M ,
>

b =
>

MX , the top-views of spherical trochoids
are ordinary trochoids (of order 2):

• If >r =
>

b = π
2
, l′ is an epicycloid.

• If >r0 =
>r, l′ is a Pascal limaçon.

• In the special case >r0 = >r, b = π
2
, l is

a hippopede of Eudoxus with a circle l′

for its top-view.

• If >r0 =
>r and >a =

>

b = π
2
, l is Viviani’s

curve.
• If >r0 =

π
2
, l′ is the envelope of a straight

line undergoing an ordinary trochoid
(planetary) motion or the offset of a
cycloid (cf. [20]).

1.3 Algebraic spherical tro-

choids

The spherical trochoids are algebraic if the
ratio r0 : r1 : r2 is rational. With a proper
scaling, we can achieve that each ri (j ∈
{0, 1, 2}) is an integer.

Then, the rotation number w and the al-
gebraic degree d of the top-view are

w =
β1 − β2

| gcd(β1, β2)|
and d = 2

∣∣∣∣
β2

gcd(β1, β2)

∣∣∣∣ .

Since the spherical curve can be considered
as the intersection of the projection cyclin-
der and the sphere Σ, the algebraic degree
of the spherical trochoid equals

2d = 4

∣∣∣∣
β2

gcd(β1, β2)

∣∣∣∣ .

We shall have a look at the following
example, see Fig. 12. Here, a circle k is
rolling on Σ’s equator e and the radius of
the rolling circle k is half that of e. That
means r0 = 2 and r1 = 1, and thus, β1 = 1,
β2 = −3, and α = −1. Since w = 4 and
d = 6, z is an astroid. Since a point on the
boundary of k is moving, l′ is an involute
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Figure 11: The top-view l′ of a spherical trochoid is the involute of a hypocycloid z. The
two different flips of k′’s plane are displayed in different colors (blue = to the outside,
violet = to the inside).
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of z with two cusps X ′

1
and X ′

3
of the third

kind2.
The initial position of the rolling circle

shall be labelled with k1.

2 Some algebraic curves

of constant width

A further example shall be illustrated in
Fig. 14. Here, we have chosen r0 = 3 and
r1 = 1. Therefore, β1 = 2, β2 = −4, and
α = −1. This yields w = 3 and d = 4
which makes z a Steiner hypocycloid. In
this case, l′ is a closed algebraic curve of
constant width. This raises the question, if
spherical trochoids can be generated such
that their top-views are curves of constant
width.

As mentioned earlier, the top-view l′ of
the spherical trochoid is the involute of a
cycloid. It is well-known (see [4, 8, 9, 18])
that the involute of a cycloid is a trochoid,
and moreover, it is also the envelope of
a straight line under a trochoidal motion.
Therefore, it is nearby to look for curves
of constant width among trochoidal, and
eventually, among higher order trochoidal
curves.

Up to scale and w.r.t. a properly chosen
Cartesian coordinate system, the curve z in
Fig. 14 can be parametrized as

z(t) = 2e2it + e−4it, t ∈ [0, π[

2Cusps of the first and second are characterized
by the initial terms of their local expansions (t2, t3)
and (t2, t4), respectively. The expansion at a cusp
of the third kind starts with (t3, t4). In German
such a point is called Spitzpunkt.

and l′ allows the representation

l′(t) =
2

3
e2it −

1

3
e−4it − de−it. (3)

The curve l′ is an involute of z and the
choice of real constant d determines the
starting point of the involute. We shall use
the support function h : S2 → R which as-
signs to each point on the unit circle the ori-
ented distance of the curve’s tangent from
the origin of the coordinate system. From
the parametrization of z, we obtain the unit
normal vector field n = (sin t, cos t). Now,
the support function h equals the canon-
ical scalar product of the position vector
l
′ = (Re l′, Im l′) of the points of l′ (from
(3)) with the corresponding unit normal.
This yields h = 〈n, l′〉 = d − 1

3
cos 3t which

agrees, up to a scaling, with the support
function used in [14] to compute a closed
algebraic curve of constant width. It is nec-
essary and sufficient that h fulfills

h(t)+h(t+ π)=const., const. width

ḣ(t)+ḣ(t+π)=0,
h(t)−h(t+2π)=0, closedness

(4)

besides some conditions on continuity and
differentiability (which are always fulfilled
in the case of trochoidal curves). The dot
indicates differentiation w.r.t. the parame-
ter t.

It is a matter of fact that functions that
fulfill (4) can be expanded in Fourier series

h(t)=a0+
n∑

k=1

(ak cos kt+bk sin kt) =

= 1

2

∞∑
k=0

(ak−ibk)e
ikt+(ak+ibk)e

−ikt,
(5)

where n ∈ N
× and ak, bk ∈ R (not all zero

at the same time). Fourier series are to be

10
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Figure 12: The spherical trochoid with r0 = 2, r1 = 1, and thus, with β1 = 1, β2 = −3,
and α = −1 is mapped to a sextic curve l′ in the top-view with two cusps of the third
kind at X ′

1
and X ′

3
, to the upper half l′′ of a doubly covered cubic (with an ordinary

node) in the front-view, and to a part l′′′ of Neil’s parabola in the left-side view.
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preferred for they naturally fulfill the third
condition in (4). An alternatively, Cheby-
shev polynomials were used in [15].

Closed algebraic curves of constant width
whose support functions can be given as a
finite Fourier series are always rational and
their representations can always be con-
verted into an equivalent series of complex
exponential functions

l′(t) = h(t)eit + ḣ(t)e−it (6)

with h from (5). Hence, these curves are
higher trochoids of order n and first and
intensively studied in [19]. They allow for
a generation as the superposition of n in-
dependent rollings in n! ways which in-
cludes the two-fold generation of ordinary
trochoids (were n = 2). Further, they can
be generated by closed n-bar linkages.

The example of a closed algebraic curve
of constant width given in [14] can be de-
scribed by the support function

h = 9 + cos 3t

and is an algebraic curve of degree 8. It ad-
mits a rational parametrization, and thus, it
has to have the maximum number of singu-
larities two of which are the absolute points
of Euclidean geometry (pair of complex con-
jugate ideal points, ordinary double points
with self-osculation) and three of which are
real isolated ordinary double points on the
curves’ lines of symmetry. In [12], the au-
thors modified the support function to

h̃ = 8 + cos 3t

in order to remove the isolated double
points. This particular choice of the sup-
port function pushes the isolated double

h =
1

10 (cos 3t+
9)

h =
1

10
(co

s 3
t+

9)

×15

Figure 13: Two curves of constant width
(similar to those mentioned in the text and
scaled to equally sized circumcircles. The
vicinity of the right vertex is enlarged by the
factor 15 in order to display the differences
between the two curves.

points to points on the curve, and thus,
they become cusps of the third kind (see
[2, 3, 4, 18]).

The choice of a support function of the
form (3) (such that it fulfills (4)) leads in
any case to a curve of constant width which
allows for a kinematic generation by means
of sufficiently many rotations. These curves
can always be interpreted as the top-view
of spherical curves. Depending on whether√
1− l′(t)l′(t) can be written as a finite

sum of exponential functions (or trigono-
metric functions) or not, the curve l allows
for a kinematic generation by means of su-
perposed rollings on a sphere. The order of
the spherical trochoid l will, in general, be
higher than 2.
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Figure 14: The top-view l′of a spherical trochoid may even be a closed and algebraic
curve of constant width.
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