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Abstract. Geometries in higher dimensional spaces have many appli-
cations. We shall give a compilation of a few well-known examples here.
The fact that some higher dimensional geometries can be found within
some lower dimensional geometries makes them even more interesting.
At hand of some familiar examples, we shall see what these concepts
in geometry can do for us. In the beginning, the meaning of dimension
will be clarified and an agreement is reached about what is higher di-
mensional. A few words will be said about the relations and interplay
between models of various geometries. To the concept of model spaces
a major part of this contribution will be dedicated to. A full section is
dedicated to the applications of higher dimensional geometries.

1 Introduction

Originally, geometry was the science of measuring the land in order to calculate
taxes and divide the fertile land. Later on, early cultures, eg., the Egyptians,
Babylonians, Greeks, . . . began to detach this science from real world problems
and entered the world of abstract two- and three-dimensional phenomena: things
that happened in a plane or in the space of our perception, described with a new
vocabulary like points, lines, angles, distances, triangles, and many, many more.
Within this period, many well-known elementary geometric results were discov-
ered and the techniques of proofs were developed. The old Greeks saw geometry
rather as a philosophical discipline than as a part of mathematics. It took more
than two thousand years until mathematicians and especially geometers became
aware of geometries that do not fit into two or three dimensions. A major break-
through was H. Grassmann’s Theory of linear Extensions [9] in the middle of
the 19th century.Grassmann’s work was maybe not the first attempt, but it was
successfully providing mathematicians and geometers with techniques that made
it possible to describe higher dimensional geometries. During the end of the 19th

century, a lot of work on higher dimensional geometries was done. Especially, the
Italian school, mainly represented by L. Cremona [6], G. Veronese [26], L.
Berzolari, and C. Segre (who also worked out important parts of F. Klein’s
mathematical encyclopedia [1, 24]) began to study algebraic geometries in spaces
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of dimensions greater than three. At that time, higher dimensional geometries
were not common sense to all mathematicians and geometers. Since history is
repeating itself, a few of them even doubted in the existence of such objects. It
was comparable to the physicists concept of the atom which entered the scien-
tific stage approximately at that time: Notable scientist denied the existence of
atoms using the argument that atoms cannot be seen.

2 A huge variety of higher dimensional geometries

2.1 What is a dimension?

We agree that the dimension is a number that counts the number of degrees of

freedom in a geometrical object. A line is of dimension one. This may not be
confused with the number of points on the line. The same is true for planes:
They all are of dimension two, no matter if it is the Euclidean plane were we can
choose Cartesian coordinates (x, y) in order to fix points, or if it is a projective
plane were homogeneous coordinates x0 : x1 : x2 are suitable for describing
points (still there are only two degrees of freedom, since x0 : x1 : x2 ∼ 1 : x : y),
or if it is a finite (projective) plane like the ones depicted in Fig. 1.

Fig. 1. Models of projective planes of order two, three, and four. However, these are
two-dimensional geometries, even though we can give a list of its points.

In the Euclidean plane and, more generally speaking, in any Euclidean space the
dimension gives the number of coordinates that are necessary in order to describe
points. It is a very useful and powerful result from differential geometry that any
differentiable manifold can locally be mapped to a certain real vector space R

n,
and thus, a dimension can be assigned to the manifold. Besides the degrees
of freedom of a geometrical system and the number of coordinates that are
necessary to determine points, there is a more mathematical notion of dimension
related to Grassmann’s theory of extension. The dimension of a vector space
equals the number of basis vectors, ie., a system of linearly independent vectors
that allow a unique representation of all elements of a vectors space, the vectors.
In the case of a vector space, it is assumed that coordinates are real or complex
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numbers, or taken from an arbitrary field - finite or not. Things are getting more
complicated, but nonetheless, more interesting, once we drop the assumption
that coordinates are taken from a field. Geometries over rings are sometimes
hard to handle and models need more space,ie., they are higher dimensional in
nature. Moreover, the set of points in geometries over rings can split into different
classes and it is not so easy to compare points, see [11]. Geometries over finite
fields and rings have a lot of applications, especially in physics, cf. [10, 13].

However, we shall agree that higher dimensional geometries and spaces are those

with a dimension greater than three. These are beyond our perception, since we
can move forward and backward, to the left and to the right, and up and down
in the space were we live. Time could be considered a possible fourth dimension,
but we have no sense to perceive time.

2.2 Some examples of higher dimensional geometries

Sometimes, the Euclidean unit sphere is called a three-dimensional object. How-
ever, this is not true in the strict sense. There are two things mixed up: The
sphere itself is two-dimensional, since we need two coordinates to describe points
on it: the latitude and the longitude. However, the sphere is embedded in a
three-dimensional space and it is not possible to embed it into a space of lower
dimension without any singularity.

Let us determine dimensions of some known geometries. A three-dimensional
(affine) space is usually a space where the manifold of points is three-dimensional,
ie., points are determined by three coordinates (x, y, z). From the equations of
planes ax+ by + cz − 1 = 0 (with a, b, c taken from some field, not all simulta-
neously zero), we see that the same space is three-dimensional considered as the
space of the planes in it. What about the lines in a three-space? As indicated in
Fig. 2, any line l can be uniquely determined by its two intersection points L1, L2

with two planes π1, π2. Each of these points is determined by two coordinates:
L1 = (x1, x2) and L2 = (x3, x4). Since these four numbers x1, . . . , x4 can be
chosen independently, there are four coordinates that describe a line. Note that
the submanifold of lines that meet π1 ∩ π2 is only of dimension three. Strange
to say, but the space of lines in a three-dimensional space is four-dimensional.
The geometry of lines plays an essential role in a huge variety of applications (cf.
Section 4). Naturally, there is a tremendous amount of literature dealing with
line geometry, see [25, 28, 30] and the references therein.

Many higher dimensional geometries are contained within lower dimensional
(point) geometries. The geometry of circles in the Euclidean plane is three-
dimensional. The center’s two coordinates and the radius define a circle.

Conics in a plane can be described by an equation of the form a11x
2 +2a12xy+

a22y
2+2a01x+2a02y+a00 = 0 with coefficients aij from some commutative field

(cf. [8]). (It is always possible to normalize an equation, ie., to multiply such that
one coefficient becomes unity, without altering the geometric object.) Obviously,
there are five relevant numbers that determine the conic, and thus, the geometry
(or manifold) of conics is five-dimensional. A useful tool for the study of conics
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Fig. 2. Left: Lines can be determined by four coordinates determining the intersection
points in two different planes. Right: Though there are only 35 lines in PG(2, 3), the
manifold of lines in a three-space is four-dimensional.

is due to G. Veronese (see [26]): The six quadratic monomials in the conic’s
equation can be used as a basis in the space of conics and a mapping into a
five-dimensional projective space is nearby. The manifold of singular conics is
called rank manifold whose equation is simply given by det(aij) = 0.

The reader may convince herself or himself by counting that the space of al-
gebraic curves of degree n in a plane equals 1

2
n(n + 3), including the case of

lines and conics. Applying knowledge from basic linear algebra, we find that the
manifold of k-dimensional subspaces of a projective space of n dimensions is
(n − k)(k + 1)-dimensional. In any case, one has to think about a proper way
of counting. The existence of a vector space model of the geometry in question
simplifies the process. However, the dimension of fractals is to be computed.

3 Model spaces

We have seen that the geometric objects we are dealing with usually depend on
a certain but fixed number of constants considered as shape parameters, varying
freely within some intervals, or range even in the real or complex number field. It
is nearby to use these determining constants as coordinates for these objects. The
number of these constants equals the dimension of the geometry. In this section,
we shall see that model spaces need not be affine, metric, or even projective.

3.1 Various geometries and their models

Circles, spheres. Oriented circles, spheres in three-space, . . . , spheres in an
n-dimensional space can be mapped to points in an n + 1-dimensional affine
model space that is usually the Minkowski space R

n,1, sometimes referred to as
the cyclographic model, [4, 7]. The coordinates in the model space are simply the
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sphere’s center plus the radius. Signed radii can be used to express orientations.
The pseudo-Euclidean metric in the model space is obtained by transferring the
Euclidean tangential distance of spheres into the model. The metric allows us
to characterize pairs of spheres as being in oriented contact and can be used to
compute oriented intersection angles.

A less natural approach to a point model of the manifold of oriented Euclidean
spheres uses (homogeneous) six-tuples (s1, . . . , s6) of real coordinates satisfying
the quadratic form L2

4 : s21+s22+s23+s24−s25−s26 = 0. The center and the radius of
the sphere can be recovered from this six-tuple as long as it satisfies the quadratic
form. The quadric L4

2 is called Lie’s quadric. It is contained in a projective
five-space and carries lines as maximal subspaces. This coordinatization of the
manifold of spheres is more universal: Points as spheres with radius zero and
planes as spheres with infinitely large radius are also described that way, see [2,
4]. Even the polar system of L4

2 has a geometric meaning: Conjugacy with regard
to L4

2 characterizes spheres in oriented contact.

The cyclographic model can be linked via a stereographic projection with the
Blaschke model, ie., a cylinder model of Euclidean Laguerre geometry (oriented
planes, and oriented spheres considered as the envelopes of oriented planes).
Blaschke’s cylinder is a tangential intersection of Lie’s quadric, see [2, 4, 7].

Lines in three-space. We have seen that lines in a three-dimensional space can
be mapped to points in a four-dimensional model. This naive approach works
well and is even applicable to interpolation problems (cf. [22]), but it is not as
universal as the model presented in the following.

It proved useful to describe lines by Plücker coordinates L = (l1, l2, l3, l4, l5, l6)
(see [28, 30]). Only those (homogeneous) six-tuples (l1, . . . , l6) that satisfy M4

2 :
l1l4 + l2l5 + l3l6 = 0 correspond to lines in three-space, and, vice versa. This
quadratic form is the equation of the four-dimensional model (surface) and de-
scribes a quadric M4

2 in a projective five-space. It is called Klein’s quadric or
Plücker’s quadric and it is also the first non-trivial Grassmannian, and therefore,
also denoted by G3,1. It is worth to mention that the maximal subspaces con-
tained in M4

2 are planes and that there exist two independent three-parameter
families of them corresponding to ruled planes and stars of lines in three-space.

Now, the model space splits into two components: The points on M4
2 correspond

to lines, while the points off M4
2 correspond to so-called regular linear line com-

plexes. The latter are as important in line geometry as the lines, since they are
closely related to helical motions. We shall make use of this in Section 4. The po-
larity with regard to M4

2 has a geometric meaning: Points conjugate with regard
to M4

2 correspond to intersecting lines in three-space. Euclidean specialization
of the model can achieve even more, cf. [25, 28, 30].

The interplay between spheres and lines. It is obvious that lines and
spheres are completely different things. Allowedly, the geometries of both can
be modeled within four-dimensional quadrics. However, while M4

2 carries real
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planes, L4
2 carries only real lines. Nonetheless, from the view point of complex

projective geometry, the two quadrics M4
2 and L4

2 can be transformed into each
other by means of a collineation, ie., a linear transformation in the vector space
model. This mapping linking the geometry of lines and the geometry of spheres
is called Lie’s line-sphere-mapping (see [2, 7, 28]). Consequently, there is no dif-
ference between lines and spheres, at least in theory.

Euclidean motions. Without going too much into detail, we shall recall that
Study’s quadric S6

2 serves as a point model for the Euclidean motions in three-
space. This quadric is ruled like L4

2 and M4
2 and carries three-dimensional sub-

spaces, see [7, 25, 28]. Its equation equals the orthogonality condition of dual unit
quaternions. Quadrics of the (real) projective type of S6

2 allow a definition of a
so-called triality (that generalizes duality), cf. [3, 28].

Subspaces of a projective space. Klein’s quadric is a very special version of
a Grassmannian. In general, a Grassmannian Gn,k is a point model for the set of
k-dimensional subspaces in an n-dimensional projective space. The dimensions
of the model space are growing rapidly: Gn,k spans a projective space of

(
n+1

k+1

)
−1

dimensions and its inner dimension equals (n− k)(k + 1), see [3, 7].

Veronese varieties and rational normal curves. As outlined earlier, conics
can be studied in the Veronese model containing the Veronese surface V 2

2 (all
of whose points correspond to conics) and the rank manifold representing the
singular conics. The ambient model space is five-dimensional. Clearly, the under-
lying concept of considering the monomials in the equation of a curve as a basis
can be carried over to quadrics, cubics, any algebraic curve, and surface. Here,
the symmetric tensor product of the underlying vector space builds the algebraic
grounding. The study of Veronese manifolds V n

1 , called rational normal curve,
being the n-fold symmetric product of a projective line is important for the study
of rational curves and rational transformations, since any planar rational curve
(including Bézier curves) is a projection of a rational normal curve, cf. [3].

Segre products, flag manifolds. Geometry models are not restricted to rep-
resent only one particular class of object. It is also possible to map combinations
of objects to points. It is not at all surprising that the dimension of the model
space grows with the complexity of the underlying objects. Models with the abil-
ity to simplify objects consisting of components of various classes of geometric
objects can be built using Segre varieties, see [3]. This allows us to create models
for example for the manifold of flags, ie., a sequence of nested subspaces in some
projective space, see [12, 17–19]. The flags need not be complete, some compo-
nents may be missing: For example, a line element is a partial flag. The incidence
conditions between the components give rise to equations of flag manifolds.
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Exterior algebras, Clifford algebras. The direct sum over all model spaces
that contain the Grassmannians Gn,k with k = 0, . . . , n (with fixed n) is called
exterior algebra if every summand is considered as a vector space. This 2n-
dimensional vector space can be the algebraic model of a projective space (of
dimension 2n − 1) being a model for the set of all subspaces of a projective
space of dimension n, cf. [3]. Sometimes, exterior algebras earn the structure of
the underlying vector space. This turned out to be useful in kinematics, even in
non-Euclidean geometries, see [16].

3.2 What makes a model space?

The mere fact that a geometric object can be mapped to a point in some strange
high-dimensional space is not enough. The model space itself would be nothing if
there is no structure in it. Sometimes, the structuring features come along with
the geometries in a natural way; sometimes one has to be creative. As we have
seen with lines and spheres, there is a quadratic form in the model space with
a geometric meaning. At this point, we note that many of the presented model
spaces can be created in a purely synthetic way. In all the aforementioned cases,
we always assumed the existence of an algebraic model space, since applications
need computations in almost any case. A good model space is easy to handle:
It should be affine or projective, of lowest possible dimension, the coordinates
should have a geometric meaning, and a metric (a quadratic form) should relate
the points in the model. Transformations that act on the manifold of certain
geometric objects should be easily transformed to the model space. Preferably,
the induced transformations are linear in terms of the coordinates in the model
space. As many properties of the underlying geometry as possible should be
displayed in a very simple way in the model space.

4 Applications - benefiting from model spaces

4.1 Interpolation with ruled an channel surfaces

In the point models for the set of (oriented) lines/spheres in Euclidean three
space, we recognize one-parameter families of (oriented) lines/spheres, ie., ruled
surfaces or channel surfaces as curves onM4

2 and L4
2, respectively. So, the geome-

try of ruled or channel surfaces in a three-dimensional space (whether Euclidean
or not) somehow simplifies to the geometry of curves on quadrics. The simplifi-
cation is bought at the costs of more coordinates.

Interpolation techniques and approximation techniques (as shown in Fig. 3) that
were originally developed for affine planes and spaces (see [15]) can be adapted
to arbitrary manifolds. In many cases, the adapted subdivision schemes are com-
binations of two operations: First, a subdivision scheme in the ambient space of
the target manifold and, second, a projection onto the target manifold. In any
case, one has to make sure that the projection does not fail and destroy the
result. Checking the convergence of a subdivision scheme is not the problem.
In the case of ruled surfaces, one can use also ordinary subdivision schemes in
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Fig. 3. Approximating (left) and interpolatory subdivision scheme (right).

order to first refine the striction curve and then refine the spherical image of
the rulings. However, this is only one pssibility, cf. [20]. Fig. 4 shows the action
of an interpolatory scheme on the sphere and applied to a finite sequence of
lines (discrete ruled surface). Subdivision of the motion of the Sannia frame is
obtain as a byproduct, see [20]. Since there is only a small difference between

Fig. 4. Above: SLERP - spherical linear interpolation on the sphere. Below: Subdivid-
ing ruled surface data is also suitable for discrete motions (here the Sannia motion)
and uses SLERP for the direction of the rulings.

the geometry of oriented lines and oriented spheres in Euclidean three-space, the
algorithms developed for ruled surfaces apply nearly in the same way to chan-
nel surfaces, see Fig. 5. Even the characteristic circles on a channel surface are
accessible to modified subdivision schemes that take place on a six-dimensional
cone-shaped variety which can be obtained as a projection of the Grassmannian
of two Lie quadrics, see [5]. Algebraic techniques like the ones used for Gr or even
Cr interpolation of data from curves (as described in [15]) need only some minor
modifications in order to apply to interpolation problems with ruled/channel
surfaces (cf. [21]). This allows us to perform Gr interpolation of data that stems
from ruled/channel surface data, see Fig. 6.

4.2 Recognition and reconstruction of surfaces

Surface recognition benefits from line geometry as well as from line element
geometry (cf. [14, 23, 18]). It is well-known that the normals of helical surfaces
(including surfaces of evolution and cylinders) are contained in a linear line

complex. The Plücker coordinates of the lines of such a three-dimensional sub-
manifold of M4

2 fulfill a linear homogeneous equation. Once a surface is captured
by a laser scanner, the point cloud allows an estimation of the surface normals.
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Fig. 5. Above: An approximating subdivision scheme applied to a discrete channel
surface. Below: The set of characteristic circles of a channel surface can also be refined.

Fig. 6. Hermite interpolation of ruled and channel surfaces uses a projective five-space.

Fig. 7. Left and middle: Scans of the articulate surfaces of the ankle joint. Right: The
gliding of the contact surfaces generates a helical motion.

Fitting linear subspaces to point data in the model space is a simple task and
the computation of the axis and the pitch of the helical motion generating the
scanned surface part is straight forward. Fig. 7 shows a comparison of the two
flanks of the human ankle joint. The comparison of the surfaces was only possi-
ble once the motion defined by the flanks was known. For objects composed of
many different surfaces, a segmentation is necessary.
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Fig. 8. Left: The geometric meaning of the coordinates of a line element. Middle: Data
from a snail shell can be recognized as a part of a spiral surface. Right: reconstruction.

An obvious extension of line geometry is called line element geometry. It is the
geometry of pairs (l, P ) where l is a straight line in Euclidean three-space with
a point P on l. Since the lines in Euclidean three-space can be identified with a
subset of M4

2 and one further parameter is needed in order to fix P on l, we end
up with a quadratic cone L5

2 erected overM4
2 serving as a point model for the set

of (oriented) line elements in Euclidean three-space (cf. [18]). The coordinates
(l, l, λ) ∈ R

7 of a line element satisfy 〈l, l〉 = 0 and λ ∈ R. A projective version can
be found in [19]. Fitting linear subspaces in the geometry of line elements works
well. The reconstruction uses the determined generating Euclidean or equiform
motion (ie., a combination of a Euclidean motion and a homothety) to find a
profile curve, see Fig. 8. In contrast to line geometry, a wider class of surfaces
(including spiral surfaces, ie., shells of molluscs) can be detected (cf. Fig. 9),
since the group of Euclidean motions is a subgroup of the group of equiform
motions.

Fig. 9. In line element geometry, 11 classes of surfaces can be detected (from top-left
to bottom-right): planes, spheres, spiral cones, cylinders of rev., spiral cylinders, cones
of rev., spiral surfaces, helical surfaces, surfaces of rev., generic cylinders and cones.
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4.3 Interpolation of poses by smooth motions

A complete flag (ie., a plane π containing a line l with an incident point
P ∈ l) in Euclidean three-space determines a Euclidean motion (not necessarily
unique). Thus, any model of the geometry of flags in Euclidean three-space can
be used for the design of one-parameter families of Euclidean motions. Either by
means of adapted subdivision schemes (like in [20]) or by algebraic techniques
(like in [21]). Fig. 10 (left) shows how flags can be coordinatized using a vector

(l, l, l̂, λ) ∈ R
10. The equation of the flag manifold in the model space R

10 is
obtained by the natural constraints to which the flag coordinates are subject
to: 〈l, l〉 = 〈l, l̂〉 = 0 (with ‖l‖ = ‖̂l‖ = 1). Combined subdivision techniques like
those from [20] apply here as well, see Fig. 10. A different approach is presented
in [27].

ll l̂

l

P

π

x

o

Fig. 10. Left: coordinatization of flags. Right: a Euclidean motion interpolating given
poses. The interpolation uses the rationally parametrized manifold of flags.

5 Conclusion

We have seen that higher dimensional geometries occur frequently and enable us
to do interpolation with ruled/channel surfaces, surface reconstruction, motion
planning and interpolation, and subdivision in spaces of geometric objects.
These are only a few and we haven’t treated shape spaces that are models for
moving and deformable objects. Kinematics uses the various model spaces for
motion design and the analysis of mechanisms.
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