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CURVATURE FUNCTIONSON A ONE-SHEETEED HYPERBOLOID
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ABSTRACT: We study the distribution of some curvature functions onesimeeted hyperboloid by
determining, describing, and visualizing the curves ofstant Gaussian, Mean, principal curvature,
and the curves of constant ratio of the principal curvatu@sr aim is a precise description of the
regions of prescribed curvature values. It turns out tHahake curves are algebraic and can be given
in terms of implicit equations. Surprisingly, it is pos&lib derive an explicit parametrization of the
curves of constant principal curvature in terms of algebianctions.

Keywords: One-sheeted hyperboloid, Gauss curvature, Mean curygitmeipal curvature, constant
curvature, support function, striction curve, ratio ofqmipal curvatures, principal view.

1. INTRODUCTION curves do not agree with the principal curvature
Some CAD-systems offer tools faurvature lines.
analysis With these tools parts of surfaces can
be textured with a color map of the Gaussian and ‘
Mean curvature. The primitives in a CAD sys-
tem are usually approximated by some free-form
surfaces. Thus, the curvature analysis some
times tends to produce strange results. Sym
metries of surfaces cause symmetries in the dis
tribution of curvatures (cf. Figurgl 1). Unfortu-
nately, these symmetries are not reproduced b
the curvature analysis tools. We aim at a pre-
cise description of the distribution of some well-
known curvature functions on a one-sheeted hy
perboloid. The case of a hyperboloid of revolu-
tion is not treated here, since allmost all of the Figure 1: Gaussian curvature (left) and mean cur-
curves we are dealing with are parallel circles invature (right) on a one-sheeted hyperboloid: Re-
this case. The respective curves on an ellipsoidyions of a certain color correspond to curvature
are studied in [6]. values within some interval.

In Section[2 we study the distribution of the
Gauss curvature. Then, Sectidn 3 is devoted to In the following, when we describe the iso-
the curves of constant Mean curvature. Finally,curves of some curvature functions, we use the
in Sectiori 4 we derive and investigate the curvedtriplet of orthogonal projections onto the three
of constant principal curvature together with the mutually orthogonal planes of symmetry of the
curves of constant ratio of the two principal cur- quadric. These planes shall coincide with the co-
vatures. We derive an explicit parametrization ordinate planes and we call the images appearing
of the curves of constant principal curvature in in the [x,y]-, [y,Z]-, and|x,Z-plane thetop view
terms of algebraic functions. Note that thesethefront view and the(right) side view
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2. CONSTANT GAUSSIAN CURVATURE hyperboloids) ini[4]. However, only for the one-
The surface.” in question shall be the one- sheeted hyperboloids there is a negative sign.

sheeted hyperboloid with the equation The support function of” equals the distance
TR of the surfaces points o’ to the origin exactly
g XY (1) at the verticeg+a,0,0)" and (0,+b,0)T. In-
a? b* sertingd = +a andd = £b in Eq. (8) we find
where 0< a < b andc > 0 are real coefficients. Ka = —a?b~%c™? andKp = —b%a"2c™2. Since

It is well-known that.¥ can be considered as a @ < b by assumption we can easily recognize
ruled surface in two different ways: Both ruled that the minimum of the Gaussian curvature on

surfaces < equalKin = Kp which is the case at the two
vertices(0, +b,0)T.

acosu —asinu The iso-curve withK = K; splits into a pair
Ry2(uv) = bscl)nu +v- b:EOSU (2)  of congruent ellipses concentric with the quadric
c

< (see Figurél2) with carrier planes through the
x-axis. The length of its semi-minor axis equals
a (i.e,, the semi-minor axis of” in the x-axis).
The length of the semi-major axis of theses two
lipses equalgv/a?b? + b2c? — c2a2.

Sincea, b, ¢ are constant and with Ed./(5) in
mind, we can state:

(with parametersi € [0,2r] andv € R) are en-
tirely contained in.

Solving Eq. [(1) forz and parametrizing?
by (x,y,+2z(x,y))T, the Gaussian curvature of ©
% can be expressed in terms of the underlying
Cartesian coordinate system as

1 1 Theorem 2.1. The tangent planes of the hy-
K= T2RE T 2 a2 (3)  perboloid.# along a curve of constant Gaus-
(§+¥F+Zg> sian curvature I§ are at fixed distance @=

vabcy/—Kg from the origin, and thus, they en-

Thesupport function af .7, i.e., the distance ~ velope a sphere which is concentric with and
of .#’s tangent planes to the origin of the coordi- has radius d.

hate system is given by Independent from the choice af b, andc, K

1 2 2 2 is always negative, as it was to be expected for
a- VA + o + o (4)  a ruled surface without singular surface points.

From Eq. [(B) we can deduce:
provided that the point of contact is the point

(x,y,2)T whose coordinates satisfy EG] (1). Thus, Theorem 2.2. The curves of constant C}augsian
we rewrite the formula for the Gaussian curva-curvature on a one-sheeted hyperboloid with Eq.
ture given in Eq.[(B) in terms of the support func- (@) are the quartic curves of intersection of the

tion of the one-sheeted hyperboloid and find ~ hyperboloid with concentric and coaxial ellip-
soidsé& with equation
ch 5) 2 2 2

e D e i ©
This is the analogue to a formula given by Wun- aboy'—K
derlich in [6] for the Gaussian curvature of an  Figure[2 shows some curves of constant Gaus-
ellipsoid. Actually, this simple formula relating sian curvature on a one-sheeted hyperboloid.
the distance of the tangent planes and the Gaus- SinceK < 0 for all points on¥, Egs. [6) are
sian curvature is derived for quadrics with cen-the equations of ellipsoids with real points. We

ter (including ellipsoids, one-, and two-sheetedcan reformulate this result as:
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Theorem 2.3. The curves of constant Gaussian be computed via

curvature kg < 0 on a one-sheeted hyperboloid 52

are the curves of contact of a developable ruled K=——5—">3 (7)
surface tangent to the hyperboloi@ with Eq. (6%+Vv9)

(@) and a concentric sphere of radiusse  whered = 5(u) = det(g,g,1)(g,d) 1 is the dis-
1/~/abcy/—Ko. tribution parameter of the rulingu) =d(u)+v-
g(u) and the parameterequals the distance of
the surface pointu,v) from the striction point.
(The indicates differentiation with respectug

This result is similar to that given by Wunder-
lich in [6] for the curves of constant Gaussian
cur\_/ature on an ellipsoid. Obviously, the Gaussian curvature considered as

Figure[3 illustrates the contents of Theoremsafunction on a ruling (or equivalenti(u, v) re-

2.1 and2.B. The part of the developable surface g a ’

. ) ri = fix ins its minimum ex-
joining the curve of constant Gaussian curvaturest cted tou = Uy (fixed)) attains its ume

. I = 0 which h icti
on . and a spherical curve (on the sphefe actly atv = 0 which corresponds to the striction

mentioning in Theorer 2.1) is shown. point. Therefore, we can say:

Theorem 2.4. The curves of constant Gauss cur-
vature touch the rulings exactly at the striction
points.

Figure[4 shows that the rulings and the iso-
curves ofK are in contact at the striction points.

For a fixed valuelo < 0 the hyperboloid
(@) and the ellipsoi&’ from (@) span a pencil of
guadrics passing through the curve with constant
Gaussian curvatury. Within this pencil we
find four singular quadrics. The first of which is
a quadratic cone emanating frd®0,0)T). The
remaining three are

T BB X2+ ata y? = atbt (A +1),
F . Cyy+b*B 2 =b**a?r -1), (8)
% . —ctyx?+ata 2 =atch(b’A - 1),

with a :=b%+c?, B :=c?+ a2, y:=a’—b?, and

Figure 3: The tangent planes along a .
9 gent p of g ~1.=abcy/—K. The equations of7, .#, and
curve a constant Gaussian curvature are tangen . . .
as given in[(8) are the equations of the top,

ncentri here and and form vels : : ) . .
to a concentric sphere and and form a deve front, and right side view since they are relations

opable surface which is in line contact with both . . _
quadrics. in two variables only. From that we learn:

Theorem 2.5. The curves of constant Gauss cur-

Assume? is parametrized as one of the ruled vature on a one-sheeted hyperboloid are non-
surfaces given by EqL{2) with directriu) =  rational quartic curves.
(acosu,bsinu,0) and the unit vector field(u) The top view and the right side view of the
parallel to eitheg = (—asinu,bcosu+c). (The  curves of constant Gauss curvature on a one-
+ and — correspond to theight andleft regu- sheeted hyperboloid are ellipses. The front view
lus.) According to IARMARLE’s formula (see of the curves of constant Gauss curvature on a
for examplel[2| 4]), the Gaussian curvature canone-sheeted hyperboloid are hyperbolae.
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Figure 4: The curves of constant Gaussian curvature (blkacioh the generators (violet) exactly at
the central points. The central curve (striction curvehigven in red (right-side view and front view).

Figure 2 shows the three principal views of the Theorem 3.1. The curve m of vanishing Mean
iso-curves of the Gaussian curvature. In Figure 4curvature on the one-sheeted hyperbolaid
the right side view and the front view are shown.with Eq. (1)) splits into the pair of smallest cir-

I if, and only if, c= a.
3. MEAN CURVATURE cles ons if, and only if, c=a

The Mean curvature can be given in two Proof. By assumptiora <b. If ¢ = a, the right
equivalent ways: First, we can start with the Side view# given in Eq. [(I1) splits into ac
parametrizatior{x,y, z(x,y))T with z being a so- pair of line segments on the lines/b? — a2 +

lution of Eq. [1). Thus, we have zv/a?+b? = 0. These lines are the views of the
projecting planeg and { with the same equa-

d® tion and they are real. These two planes meet
- 2a2b2c2L ) < in a pair of real ellipses. The semi-major

) ) _ o and semi-minor axis of the ellips® showing
with L being a quadratic funtion ir, y, z . , b2
up in the top view7 are of lengthe’ = |/ &5
andb’ = b. The right side viewn” is also an
ellipse and its semi-major and semi-minor axis

b2—a?
2

L:(bz—cz)Z—z-i—(az—cz)g—z—(az—i—bz)é. (10)

are of lengthb” = b anda” = . Since

From Eg. [9) we can immediately see: The
curves on.# with vanishing Mean curvature (&)?+(&")%= b, the second principal axis of

M = 0 are described by Eq.l(1) and {10). Theis of lengthb. This shows thamis a circle. All
|latter equation is that of a quadratic cageem- CirCles_ony are Contained in planes parallel to
anating froms’s center. Eliminating, ory, or ¢ and{. Since{ and{ pass through the’’s

z, we obtain the equations of the top vief, the ~ center and the vertice®, +b,0)7, these two cir-
front view .#, and the right side view# of the  cles are the smallest off.

curve of vanishing Mean curvature. Thus, we In case oft = bthe front view.# given in Eq.

have (1) equals?(b? — &%) 4 22(a? + b?) = 0 which
is a pair of complex conjugate lines (or planes)
T 1 2B X% +ala y=a?h?(a® +b?), sincea < b. Thus the curvenis the intersection
T —CPyy? +2B 2=12c2(c2—b?), (11) of a pair of complex conjugate planes witH

and carries no real point. O

R~y X2 —ala =a’c3(c? —a%). P
In a completely different way Krames has

Now we can show the following result: shown in [3] the following: If one point on the
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Figure 5: Curves of constant Mean curvature: right side yview view, front view (top row and
bottom row, right) showing the singular curve (magenta)lehyperboloich=1,b=v/2,c = /3;
areas with positive (red) and negative (blue) Mean cureaseparated by the (black) ellipses all of
whose points show! = 0 on the hyperboloi@& = c = 1, b= /2 (bottom, left).



smallest circles of a one-sheeted hyperboloid isA. PRINCIPAL CURVATURES

a point of vanishing Mean curvature, then anyThe principal curvatures; andk» are the eigen-

point on the smallest circles is a point of vanish-values of the Weingarten mapping cf. [1,5].

ing Mean curvature. If the Weingarten mapping o is described by
Figure[® (bottom row, right) shows a one- the quadratic matri¥V, then the Gaussian curva-

sheeted hyperboloid (with=c =1, b=+/2) ture equalX = detW = k;k» and the Mean cur-

with its curve of vanishing Mean curvature con- vature equal$/ = %tr(W) = %(Kl-i- K2). From

sisting of a pair of circles. these two equations we can eliminate eitker
In order to describe the curves of constantor Kk, and find

Mean curvature we can turn to an expression

equivalent to Eq[{9) K2 —2MK +K =0 (13)
a*btc*M? = 1L2d°. (12) where we suppress the unnecessary indices.
With Egs. [®), [(9), and (10) we can rewrite Eq.
From Eq. [(I2) we can deduce: 13) asq ©).10) H10) a
Theorem 3.2. The curves of constant Mean cur-
| ! ?b?c?k? —d3Lk —d* = 0. (14)

vature on a one-sheeted hyperboloid are alge-
braic curves of degre&2.

The principal views of the curves of constant
Mean curvature on a one-sheeted hyperboloid
are algebraic curves of degree

Separating the roots appearing in Hq.](14) and
squaring it once again, we obtain an implicit
equation,i.e., a polynomial equation, of a sur-
face that intersects” with equation [(Il) along
Proof. The curves of constant Mean curvature the curves of constant principal curvature. We
on.¥ are described by the quadratic equatidn (1)find the implicit equation of an algebraic surface
of . and the equation of a sextic surface with of degree with two disconnected components:
equation [(IR). According to Bezout's theorem
the curves’ degree equals@= 12. (a?’c’k? —d*)? —d°?L? = 0.
Each of the prinicpal views is traced twice be-
cause of¥’s symmetry. Hence, the degree of
the curves appearing in the three principal viewsTheorem 4.1. The curves of constant principal
reduces to 12: 2= 6. L curvature on a one-sheeted hyperboloid are al-
gebraic curves of degree 16. The principal views
of these curves are algebraic curves of degree

Thus, we have:

Among the curves of constant Mean curvature
there are srngular curves if the Mean curvature

IS erther3 573 3. These singular curves eight.
have four addltlonal real double points at Remark: The reduction of the degree of the
b c T image curves is caused by the_ symmetry of the
(O,i— 3a2+ b2, +——+/3a2— CZ) surface. with respect to the image planes of
va va the three orthogonal projections.

or Figure[6 shows the right side view and the

T
a c front view of the two families of curves of con-
2 /a2 2 =~ /a2 _ 2
(i\@ a%+30%,0,+ \/B 3% —c ) stant principal curvature on the one-sheeted hy-
perboloid witha= 1, b= v/2, andc = /3.

depending on whethee8—c? > 0 or % —c? > The implicit equation of the curves of con-
0. These curves are shown in Figlte 5 (magentatant principal curvature may not be useful
curves). for drawing or plotting. Thus, we derive a
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Figure 6: Curves of constant principal curvature (righesiew and front view).

of this system of linear equations reads
2 &' 3 202
‘ X = ByKd3(d —b“c°k)(a’k +d),
‘ 4
\ Y2 = —W(&— a’c’k)(b’k +d), (15)
4
Zz C

- (d®+a?b?k)(d — k).

3
Figure 7: Distribution of principal curvatures on afkd
a one-sheeted hyperboloid. Here, we have used the fact that EEqJ (14) is linear
in L, and thus, we have
221202 _ 44
parametrization of these curves. Actually, this L= Kaftre —dt (16)

parametrization is algebraic (but free of elliptic Kd?
functions). The iso-curves of the principal cur- Note that the curves of constant principal cur-
vature are curves oY (with equation[(ll)). We vature are different from the (principal) curva-
parametrize these curves Ddyi.e, the support turelines. The latter are characterized by the fact
function of the hyperboloid”. Thus,d and the that their tangents are always principal tangents.
coordinates, y, z of a point on such a curve are Furthermore, the two one-parameter families of
also subject to Eql[4). Further, the coordinates curvature lines are quartic curves and appear as
y, andz of a point on an iso-curve & fulfill Eq.  the intersection of the given quadric with the two
(@0). This system of three quadratic equations isone-parameter families of its confocal quadrics
linear in the squares of y, andz The solution as illustrated in Figurgl8.
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R= KK, ! on two different one-sheeted hyper-
boloids.

We aim at a precise analytic description of the
curves of constant ratio of principal curvature.
For that, we solve Eql_(14) far and find

2

= ———(dLE=W
K1,2 2a2b?c? (dLFW)

with W := v/d2L2 + 4a2b2c2. Now we letR =
KlKgl and derive an implicit equation for the iso-
surfaces oR by solving

Figure 8: The principal curvature lines do not R=(dL-W): (dL+W)
agree with the curves of constant principal CUrt0r W and squaring once. Finally,
vature. Principal curvature lines from either fam-
ily as the intersections of the hyperboloid (light
blue) with two confocal quadrics. a2b202(1+ R)Z +RFLZ = 0. (17)

— Now we have:

Theorem 5.1. The curves of constant ratio of
the principal curvatures on a one-sheeted hyper-
boloid are algebraic curves of degré& The
principal views of the curves of constant ratio
of principal curvatures are algebraic curves of
degree4 due to the symmetry of with respect

g . ‘ to the principal planes.

Figure[10 shows the right side view, the front
view, and the top view of the iso-curves of the
ratioR.

this yields an
implicit equation of degree 4 ir, y, andz

Figure 9: Curves of constant ratio of the prin-
cipal curvatures on two hyperboloidsa = 1,
b=1?2,c= 3 (left),a=c=1,b= /2 (right).

6. CONCLUSION

We have computed the iso-curves of several cur-
5 RATIO OF PRINCIPAL CURVATURES vature functions on a one-sheeted hyperboloid.
The ratioR = £ helps to classify the Dupin in- The case of a one-sheeted hyperboloid of revolu-
catrix. If R=1 at some poinP on a surface tion is trivial, for the iso-curves of all the func-
(which will not happen on the one-sheeted hy-tions discussed here are parallel circles.
perboloid), therP is an umbilic and the indica-  The iso-curves of the Gauss curvature, the
trix at P is a circle. SinceK = K1k <O atall  Mean curvature, the two principal curvatures,
points on.#”, we can only expecR= —1. In  and the ratio of principal curvatures are algebraic
this case, we have; = —kz, and thusM = 0.  curves on the hyperboloid, indeed on any alge-
At such a point the surface behaves (locally) like praic surface. This is also the case for the three
minimal surface and the indicatrix consist of a principal views (orthogonal projections onto a
pair of conjugate equilateral hyperbolae. triplet of three mutually orthogonal planese.,

Figure[® shows the distribution of the ratio in this case the three planes of symmetry). The

9
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Figure 10: Iso-curves ofy : k> on a hyperboloidd = ¢ = 1, b = 1/2): right side and front view (top
row), top view (bottom row, left).

degree of the curves showing up in the principal[6] W. WUNDERLICH: Uberblick Uiber die
views are half the degrees of the space curves, Krimmungsverdtnisse auf dem Ellipsoid.
since each fibre of any principal projection meets  Festschrift Emil Dolezal, 1967.

the curve twice.
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