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CURVATURE FUNCTIONS ON A ONE-SHEETEED HYPERBOLOID

Boris ODEHNAL
University of Applied Arts Vienna, Austria

ABSTRACT: We study the distribution of some curvature functions on a one-sheeted hyperboloid by
determining, describing, and visualizing the curves of constant Gaussian, Mean, principal curvature,
and the curves of constant ratio of the principal curvatures. Our aim is a precise description of the
regions of prescribed curvature values. It turns out that all these curves are algebraic and can be given
in terms of implicit equations. Surprisingly, it is possible to derive an explicit parametrization of the
curves of constant principal curvature in terms of algebraic functions.

Keywords: One-sheeted hyperboloid, Gauss curvature, Mean curvature, principal curvature, constant
curvature, support function, striction curve, ratio of principal curvatures, principal view.

1. INTRODUCTION
Some CAD-systems offer tools forcurvature
analysis. With these tools parts of surfaces can
be textured with a color map of the Gaussian and
Mean curvature. The primitives in a CAD sys-
tem are usually approximated by some free-form
surfaces. Thus, the curvature analysis some-
times tends to produce strange results. Sym-
metries of surfaces cause symmetries in the dis-
tribution of curvatures (cf. Figure 1). Unfortu-
nately, these symmetries are not reproduced by
the curvature analysis tools. We aim at a pre-
cise description of the distribution of some well-
known curvature functions on a one-sheeted hy-
perboloid. The case of a hyperboloid of revolu-
tion is not treated here, since allmost all of the
curves we are dealing with are parallel circles in
this case. The respective curves on an ellipsoid
are studied in [6].

In Section 2 we study the distribution of the
Gauss curvature. Then, Section 3 is devoted to
the curves of constant Mean curvature. Finally,
in Section 4 we derive and investigate the curves
of constant principal curvature together with the
curves of constant ratio of the two principal cur-
vatures. We derive an explicit parametrization
of the curves of constant principal curvature in
terms of algebraic functions. Note that these

curves do not agree with the principal curvature
lines.

Figure 1: Gaussian curvature (left) and mean cur-
vature (right) on a one-sheeted hyperboloid: Re-
gions of a certain color correspond to curvature
values within some interval.

In the following, when we describe the iso-
curves of some curvature functions, we use the
triplet of orthogonal projections onto the three
mutually orthogonal planes of symmetry of the
quadric. These planes shall coincide with the co-
ordinate planes and we call the images appearing
in the [x,y]-, [y,z]-, and[x,z]-plane thetop view,
thefront view, and the(right) side view.



2. CONSTANT GAUSSIAN CURVATURE
The surfaceS in question shall be the one-
sheeted hyperboloid with the equation

S :
x2

a2 +
y2

b2 −
z2

c2 = 1 (1)

where 0< a< b andc> 0 are real coefficients.
It is well-known thatS can be considered as a
ruled surface in two different ways: Both ruled
surfaces

R1,2(u,v) =





acosu
bsinu

0



+v·





−asinu
bcosu
±c



 (2)

(with parametersu ∈ [0,2π [ andv ∈ R) are en-
tirely contained inS .

Solving Eq. (1) forz and parametrizingS
by (x,y,±z(x,y))T, the Gaussian curvature of
S can be expressed in terms of the underlying
Cartesian coordinate system as

K =− 1
a2b2c2 ·

1
(

x2

a4 +
y2

b4 +
z2

c4

)2 . (3)

Thesupport function dof S , i.e., the distance
of S ’s tangent planes to the origin of the coordi-
nate system is given by

1
d
=

√

x2

a4 +
y2

b4 +
z2

c4 (4)

provided that the point of contact is the point
(x,y,z)T whose coordinates satisfy Eq. (1). Thus,
we rewrite the formula for the Gaussian curva-
ture given in Eq. (3) in terms of the support func-
tion of the one-sheeted hyperboloid and find

K =− d4

a2b2c2 . (5)

This is the analogue to a formula given by Wun-
derlich in [6] for the Gaussian curvature of an
ellipsoid. Actually, this simple formula relating
the distance of the tangent planes and the Gaus-
sian curvature is derived for quadrics with cen-
ter (including ellipsoids, one-, and two-sheeted

hyperboloids) in [4]. However, only for the one-
sheeted hyperboloids there is a negative sign.

The support function ofS equals the distance
of the surfaces points ofS to the origin exactly
at the vertices(±a,0,0)T and (0,±b,0)T. In-
sertingd = ±a andd = ±b in Eq. (5) we find
Ka = −a2b−2c−2 andKb = −b2a−2c−2. Since
a < b by assumption we can easily recognize
that the minimum of the Gaussian curvature on
S equalsKmin = Kb which is the case at the two
vertices(0,±b,0)T.

The iso-curve withK = Ka splits into a pair
of congruent ellipses concentric with the quadric
S (see Figure 2) with carrier planes through the
x-axis. The length of its semi-minor axis equals
a (i.e., the semi-minor axis ofS in the x-axis).
The length of the semi-major axis of theses two
ellipses equals1a

√
a2b2+b2c2−c2a2.

Sincea, b, c are constant and with Eq. (5) in
mind, we can state:

Theorem 2.1. The tangent planes of the hy-
perboloid S along a curve of constant Gaus-
sian curvature K0 are at fixed distance d0 =√

abc 4
√−K0 from the origin, and thus, they en-

velope a sphere which is concentric withS and
has radius d0.

Independent from the choice ofa, b, andc, K
is always negative, as it was to be expected for
a ruled surface without singular surface points.
From Eq. (3) we can deduce:

Theorem 2.2. The curves of constant Gaussian
curvature on a one-sheeted hyperboloid with Eq.
(1) are the quartic curves of intersection of the
hyperboloid with concentric and coaxial ellip-
soidsE with equation

E :
x2

a4 +
y2

b4 +
z2

c4 =
1

abc
√
−K

=
1
d2 . (6)

Figure 2 shows some curves of constant Gaus-
sian curvature on a one-sheeted hyperboloid.

SinceK < 0 for all points onS , Eqs. (6) are
the equations of ellipsoids with real points. We
can reformulate this result as:
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Figure 2: Curves of constant Gauss curvature: right side view and front view (top row, left and right),
top view (below, right). The magenta ellipses are the iso-curvesK = Ka.
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Theorem 2.3. The curves of constant Gaussian
curvature K0 < 0 on a one-sheeted hyperboloid
are the curves of contact of a developable ruled
surface tangent to the hyperboloidS with Eq.
(1) and a concentric sphere of radius d0 =
1/
√

abc
√−K0.

This result is similar to that given by Wunder-
lich in [6] for the curves of constant Gaussian
curvature on an ellipsoid.

Figure 3 illustrates the contents of Theorems
2.1 and 2.3. The part of the developable surface
joining the curve of constant Gaussian curvature
on S and a spherical curve (on the sphereE

mentioning in Theorem 2.1) is shown.

Figure 3: The tangent planes ofS along a
curve a constant Gaussian curvature are tangent
to a concentric sphere and and form a devel-
opable surface which is in line contact with both
quadrics.

AssumeS is parametrized as one of the ruled
surfaces given by Eq. (2) with directrixl(u) =
(acosu,bsinu,0) and the unit vector fieldg(u)
parallel to eitherg= (−asinu,bcosu±c). (The
+ and− correspond to theright and left regu-
lus.) According to LARMARLE ’s formula (see
for example [2, 4]), the Gaussian curvature can

be computed via

K =− δ 2

(δ 2+v2)2 (7)

whereδ = δ (u) = det(ġ,g, l̇)〈ġ, ġ〉−1 is the dis-
tribution parameter of the rulingr(u)=d(u)+v·
g(u) and the parameterv equals the distance of
the surface point(u,v) from the striction point.
(The˙indicates differentiation with respect tou.)
Obviously, the Gaussian curvature considered as
a function on a ruling (or equivalentlyK(u,v) re-
stricted tou= u0 (fixed)) attains its minimum ex-
actly atv= 0 which corresponds to the striction
point. Therefore, we can say:

Theorem 2.4. The curves of constant Gauss cur-
vature touch the rulings exactly at the striction
points.

Figure 4 shows that the rulings and the iso-
curves ofK are in contact at the striction points.

For a fixed valueK0 < 0 the hyperboloidS
(1) and the ellipsoidE from (6) span a pencil of
quadrics passing through the curve with constant
Gaussian curvatureK0. Within this pencil we
find four singular quadrics. The first of which is
a quadratic cone emanating from(0,0,0)T). The
remaining three are

T : b4β x2+a4α y2 = a4b4(c2λ +1),

F : c4γ y2+b4β z2 = b4c4(a2λ −1),

R : −c4γ x2+a4α z2 = a4c4(b2λ −1),

(8)

with α := b2+c2, β := c2+a2, γ := a2−b2, and
λ−1 := abc

√
−K. The equations ofT , F , and

R as given in (8) are the equations of the top,
front, and right side view since they are relations
in two variables only. From that we learn:

Theorem 2.5. The curves of constant Gauss cur-
vature on a one-sheeted hyperboloid are non-
rational quartic curves.

The top view and the right side view of the
curves of constant Gauss curvature on a one-
sheeted hyperboloid are ellipses. The front view
of the curves of constant Gauss curvature on a
one-sheeted hyperboloid are hyperbolae.
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Figure 4: The curves of constant Gaussian curvature (black)touch the generators (violet) exactly at
the central points. The central curve (striction curve) is shown in red (right-side view and front view).

Figure 2 shows the three principal views of the
iso-curves of the Gaussian curvature. In Figure 4
the right side view and the front view are shown.

3. MEAN CURVATURE
The Mean curvature can be given in two
equivalent ways: First, we can start with the
parametrization(x,y,z(x,y))T with z being a so-
lution of Eq. (1). Thus, we have

M =
d3

2a2b2c2L (9)

with L being a quadratic funtion inx, y, z:

L=(b2−c2)
x2

a2+(a2−c2)
y2

b2−(a2+b2)
z2

c2 . (10)

From Eq. (9) we can immediately see: The
curves onS with vanishing Mean curvature
M = 0 are described by Eq. (1) and (10). The
latter equation is that of a quadratic coneL em-
anating fromS ’s center. Eliminatingx, or y, or
z, we obtain the equations of the top viewT , the
front view F , and the right side viewR of the
curve of vanishing Mean curvature. Thus, we
have

T : b2β x2 +a2α y2=a2b2(a2+b2),

F :−c2γ y2 +b2β z2=b2c2(c2−b2),

R :−c2γ x2 −a2α z2=a2c2(c2−a2).

(11)

Now we can show the following result:

Theorem 3.1. The curve m of vanishing Mean
curvature on the one-sheeted hyperboloidS

with Eq. (1) splits into the pair of smallest cir-
cles onS if, and only if, c= a.

Proof. By assumptiona< b. If c= a, the right
side view R given in Eq. (11) splits into ac
pair of line segments on the linesx

√
b2−a2±

z
√

a2+b2 = 0. These lines are the views of the
projecting planesζ and ζ with the same equa-
tion and they are real. These two planes meet
S in a pair of real ellipses. The semi-major
and semi-minor axis of the ellipsem′ showing

up in the top viewT are of lengtha′ =
√

a2+b2

2
andb′ = b. The right side viewm′′′ is also an
ellipse and its semi-major and semi-minor axis

are of lengthb′′′ = b anda′′′ =
√

b2−a2

2 . Since

(a′)2+(a′′′)2 = b, the second principal axis ofm
is of lengthb. This shows thatm is a circle. All
circles onS are contained in planes parallel to
ζ andζ . Sinceζ andζ pass through theS ’s
center and the vertices(0,±b,0)T, these two cir-
cles are the smallest onS .

In case ofc= b the front viewF given in Eq.
(11) equalsy2(b2−a2)+z2(a2+b2) = 0 which
is a pair of complex conjugate lines (or planes)
sincea< b. Thus the curvem is the intersection
of a pair of complex conjugate planes withS
and carries no real point.

In a completely different way Krames has
shown in [3] the following: If one point on the
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Figure 5: Curves of constant Mean curvature: right side view, top view, front view (top row and
bottom row, right) showing the singular curve (magenta) on the hyperboloida= 1, b=

√
2, c=

√
3;

areas with positive (red) and negative (blue) Mean curvature separated by the (black) ellipses all of
whose points showM = 0 on the hyperboloida= c= 1, b=

√
2 (bottom, left).
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smallest circles of a one-sheeted hyperboloid is
a point of vanishing Mean curvature, then any
point on the smallest circles is a point of vanish-
ing Mean curvature.

Figure 5 (bottom row, right) shows a one-
sheeted hyperboloid (witha = c = 1, b =

√
2)

with its curve of vanishing Mean curvature con-
sisting of a pair of circles.

In order to describe the curves of constant
Mean curvature we can turn to an expression
equivalent to Eq. (9)

4a4b4c4M2 = L2d6. (12)

From Eq. (12) we can deduce:

Theorem 3.2. The curves of constant Mean cur-
vature on a one-sheeted hyperboloid are alge-
braic curves of degree12.

The principal views of the curves of constant
Mean curvature on a one-sheeted hyperboloid
are algebraic curves of degree6.

Proof. The curves of constant Mean curvature
onS are described by the quadratic equation (1)
of S and the equation of a sextic surface with
equation (12). According to Bezout’s theorem
the curves’ degree equals 2·6= 12.

Each of the prinicpal views is traced twice be-
cause ofS ’s symmetry. Hence, the degree of
the curves appearing in the three principal views
reduces to 12 : 2= 6.

Among the curves of constant Mean curvature
there are singular curves if the Mean curvature
is either bc

3a3
√

3
or ac

3b3
√

3
. These singular curves

have four additional real double points at
(

0,± b√
α

√

3a2+b2,± c√
α

√

3a2−c2

)T

or
(

± a
√

β

√

a2+3b2,0,± c
√

β

√

3b2−c2

)T

depending on whether 3a2−c2 > 0 or 3b2−c2 >
0. These curves are shown in Figure 5 (magenta
curves).

4. PRINCIPAL CURVATURES
The principal curvaturesκ1 andκ2 are the eigen-
values of the Weingarten mappingω, cf. [1, 5].
If the Weingarten mapping onS is described by
the quadratic matrixW, then the Gaussian curva-
ture equalsK = detW = κ1κ2 and the Mean cur-
vature equalsM = 1

2tr(W) = 1
2(κ1+κ2). From

these two equations we can eliminate eitherκ1
or κ2 and find

κ2−2Mκ +K = 0 (13)

where we suppress the unnecessary indices.
With Eqs. (5), (9), and (10) we can rewrite Eq.
(13) as

a2b2c2κ2−d3Lκ −d4 = 0. (14)

Separating the roots appearing in Eq. (14) and
squaring it once again, we obtain an implicit
equation,i.e., a polynomial equation, of a sur-
face that intersectsS with equation (1) along
the curves of constant principal curvature. We
find the implicit equation of an algebraic surface
of degree with two disconnected components:

(a2b2c2κ2−d4)2−d6κ2L2 = 0.

Thus, we have:

Theorem 4.1. The curves of constant principal
curvature on a one-sheeted hyperboloid are al-
gebraic curves of degree 16. The principal views
of these curves are algebraic curves of degree
eight.

Remark: The reduction of the degree of the
image curves is caused by the symmetry of the
surfaceS with respect to the image planes of
the three orthogonal projections.

Figure 6 shows the right side view and the
front view of the two families of curves of con-
stant principal curvature on the one-sheeted hy-
perboloid witha= 1, b=

√
2, andc=

√
3.

The implicit equation of the curves of con-
stant principal curvature may not be useful
for drawing or plotting. Thus, we derive a
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Figure 6: Curves of constant principal curvature (right side view and front view).

Figure 7: Distribution of principal curvatures on
a one-sheeted hyperboloid.

parametrization of these curves. Actually, this
parametrization is algebraic (but free of elliptic
functions). The iso-curves of the principal cur-
vature are curves onS (with equation (1)). We
parametrize these curves byd, i.e., the support
function of the hyperboloidS . Thus,d and the
coordinatesx, y, z of a point on such a curve are
also subject to Eq. (4). Further, the coordinatesx,
y, andzof a point on an iso-curve ofκ fulfill Eq.
(10). This system of three quadratic equations is
linear in the squares ofx, y, andz. The solution

of this system of linear equations reads

x2=
a4

βγκd3(d
3−b2c2κ)(a2κ +d),

y2= − b4

αγκd3(d
3−a2c2κ)(b2κ +d),

z2 =
c4

αβκd3(d
3+a2b2κ)(d−c2κ).

(15)

Here, we have used the fact that Eq. (14) is linear
in L, and thus, we have

L =
κ2a2b2c2−d4

κd3 . (16)

Note that the curves of constant principal cur-
vature are different from the (principal) curva-
ture lines. The latter are characterized by the fact
that their tangents are always principal tangents.
Furthermore, the two one-parameter families of
curvature lines are quartic curves and appear as
the intersection of the given quadric with the two
one-parameter families of its confocal quadrics
as illustrated in Figure 8.
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Figure 8: The principal curvature lines do not
agree with the curves of constant principal cur-
vature. Principal curvature lines from either fam-
ily as the intersections of the hyperboloid (light
blue) with two confocal quadrics.

Figure 9: Curves of constant ratio of the prin-
cipal curvatures on two hyperboloids:a = 1,
b=

√
2, c=

√
3 (left), a= c= 1, b=

√
2 (right).

5. RATIO OF PRINCIPAL CURVATURES
The ratioR= κ1

κ2
helps to classify the Dupin in-

catrix. If R= 1 at some pointP on a surface
(which will not happen on the one-sheeted hy-
perboloid), thenP is an umbilic and the indica-
trix at P is a circle. SinceK = κ1κ2 < 0 at all
points onS , we can only expectR= −1. In
this case, we haveκ1 = −κ2, and thus,M = 0.
At such a point the surface behaves (locally) like
minimal surface and the indicatrix consist of a
pair of conjugate equilateral hyperbolae.

Figure 9 shows the distribution of the ratio

R= κ1κ−1
2 on two different one-sheeted hyper-

boloids.
We aim at a precise analytic description of the

curves of constant ratio of principal curvature.
For that, we solve Eq. (14) forκ and find

κ1,2 =
d2

2a2b2c2 (dL∓W)

with W :=
√

d2L2+4a2b2c2. Now we letR=
κ1κ−1

2 and derive an implicit equation for the iso-
surfaces ofR by solving

R= (dL−W) : (dL+W)

for W and squaring once. Finally, this yields an
implicit equation of degree 4 inx, y, andz:

a2b2c2(1+R)2+Rd2L2 = 0. (17)

Now we have:

Theorem 5.1. The curves of constant ratio of
the principal curvatures on a one-sheeted hyper-
boloid are algebraic curves of degree8. The
principal views of the curves of constant ratio
of principal curvatures are algebraic curves of
degree4 due to the symmetry ofS with respect
to the principal planes.

Figure 10 shows the right side view, the front
view, and the top view of the iso-curves of the
ratioR.

6. CONCLUSION
We have computed the iso-curves of several cur-
vature functions on a one-sheeted hyperboloid.
The case of a one-sheeted hyperboloid of revolu-
tion is trivial, for the iso-curves of all the func-
tions discussed here are parallel circles.

The iso-curves of the Gauss curvature, the
Mean curvature, the two principal curvatures,
and the ratio of principal curvatures are algebraic
curves on the hyperboloid, indeed on any alge-
braic surface. This is also the case for the three
principal views (orthogonal projections onto a
triplet of three mutually orthogonal planes,i.e.,
in this case the three planes of symmetry). The
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Figure 10: Iso-curves ofκ1 : κ2 on a hyperboloid (a= c= 1, b=
√

2): right side and front view (top
row), top view (bottom row, left).

degree of the curves showing up in the principal
views are half the degrees of the space curves,
since each fibre of any principal projection meets
the curve twice.
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