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MIXED INTERSECTION OF CEVIANSAND PERSPECTIVE
TRIANGLES
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ABSTRACT: Any pointP in the plane of a triangl& = (A, B,C) can be considered as the intersection
of certain Cevians, whethé&is a triangle center or not. Taking two centers, ¥agndZ, we find six
Cevians with a total of 11 points of intersection, among tiésvertices andt andZ. The remaining
six points form two triangled; andA, which are both perspective to the base triadgbnd to each
other. The three centers of perspectivity are triangle centefsawfd collinear, independent of the
choice ofY andZ. Furthermore any pair out &, A1, andA, has the same perspectrix which yields a
closed chain of Desarguegl03,103) configurations. Then special affine appearances of Desargues’
configurations can be obtained by a suitable choicéafidZ. Any choice of a fixed centef leads to
exactly one centef as the fourth point of intersection of two conic sections circumscribédsiach
that the perspecto®, P,, and consequentliy;» are points at infinity. For fixed cent®¥rwe obtain a
guadratic transformation i&y’s plane which transforms central lines to central conic sections.

Keywords: triangle, Cevian, perspective triangles, Desargues configuration, triangle center, cross-
point

1. INTRODUCTION

Many triangle centers appear as the intersection
of certain Cevians. For example the incerXer

is the intersection of the interior angle bisectors
of a triangleA with verticesA, B, C. The cen-
troid X, can be found as the common point of
the medians, whereas the circumcegrs the
meet of the bisectors af's edges. The ortho-
centerX4 comes along as the intersection of the A B
altitudes ofA. Here and in the following, centers
of A are labelled according to C. Kimberling’s
list, cf. [4,.6].

What happens if one makes the erroneousenters, say andzZ, and intersect the respective
construction by mixing Cevians of different cen- Cevians we obtain, besides the two centeasd
ters when intersecting them? Figure 1 showsz, the three vertices oh. Further we find six
such a mistake: The mixed intersection of me-points which can be arranged in many ways in
dians and altitudes iAA produces a triangle. two perspective triangles; andA,.

Usually three arbitrarily chosen Cevians will  In Sectiorl 2 we shall show that these triangles
not meet in a common point, except maybe inare perspective to each other with perspekier
cases where the side lengths/fofulfil certain  They are also perspective fowith perspectors
relations. However, if we start with two triangle P, and P, cf. Figure[6. All the three perspec-

Figure 1: Is it a mistake?
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tors are triangle centers &, providedY andZ
are centers ofA. Moreover, the perspectoR,
P,, and Py, are collinear and consequently the

b:= CA andc := AB denote the side lengths
of A. We denote the line joining two poinf3
andQ by [PQ]. ApointZ=(z:21:2)is

perspectrix is the same for any pair of trianglesa center exactly ity = f(a,b,c) is a homoge-
out of the three. So we obtain a closed chainneous function of the side lengtlas b, andc

of three Desarguesian (3,003) configurations.

This will be discussed in Sectidn 4. An Exam-
ple is displayed in Figurel 6. Special affine ver-
sions of(103,103) configurations are described

in Sectiorl 5. In Sectionl 3 we show that the per-

spectorPy, is the crosspoint o andZ. This

of the base triangl& with z = f(b,c,a) and
2, = f(c,a,b). Later we use the symbdglin or-
der to indicate that a homogeneous functfois
transformed via the cyclic shift: f = f(a,b,c),
then ¢ = f(b,c,a). Thus a triangle centet =

(&0 : &1 : &) is characterized by, 1 = &° for

gives a new access to the crosspoints of trianglg < {0,1,2} andi is counted modulo 3. Simi-

centers.

Figure 2: The triangleA; andA; whose vertices
are the mixed intersections of Ceviansyoaind
Z.

If we fix Y then the mapping|: Z — Pi2is

larly a line inA’s plane is called a central line
if its homogeneous trilinear coordinates follow
the same rules as those of centers. Note {hat
applies to any cyclically ordered triplet.

2.PERSPECTIVE TRIANGLES AND
THEIR PERSPECTORS

AssumeY = (&p:é1:&2)andZ=(no:nN1i:n2)

are triangle centers &. Then we look at the fol-

lowing points of intersection of Cevians through

Y andZ:

A1 :[C7Y] A [B7 Z], 2 [BaY] N [C7Z]7
Bi:=[A,Y]N[C,Z],Bx=[C,Y]N[A.Z], (1)
Cr:=[B,Y]N[A,Z],Ca:=[A,Y]N[B,Z]

We define two triangles collecting the intersec-
tion points ofwrong pairs of Ceviandy letting
A= (A]_, Bl,C]_) andA2 = (Az, Bz,Cz) as illus-
trated in Figuré 2.

No we can show:

guadratic and sends centers to centers and cen-
tral lines are mapped to central conics. The Maprheorem 2.1. The trianglesh; and A, are per-

ping g is birational,i.e., its inverse is also ra-
tional. It turns out that is a composition of
the isogonal conjugation with a collineation. We
pay our attention tq in Sectiori 6.

In the following we use homogeneous trilin-
ear coordinate$pp : p1 : p2) in order to repre-
sent points in the plane di. The vertices of

spective to the base triangle The perspectors
P, and B are triangle centers oA.

Proof. With the above prerequisites we find the
vertices ofA; andA; as

A1 = (éono - €10 : éon2),

A are the base points and thus their coordinate

vectorsareA=(1:0:0,B=(0:1:0), and

C=(0:0:1),cf. [4,/6]. Further we lea:= BC,

B1 = (&1n0: &1n1: &2m1), (2

Cr=(&on2: &n1:&2n2),



A

Figure 3: The three perspectd?g P, andP»
constructed out of the centroi = X, and the
orthocenteZ = Xu.

A /

Figure 4: The three perspectdeg P, andPy»
constructed out of the circumcentér= X3 and
the centeZ = Xyg.

and
A2 = (&ono - €Nz : €2N0).
B2 = (&ony: é1n1: é1n2),
Co = (&2n0: &1n2: &2n2).
Then we show that the linelg\;, Ay], [B1,B2],
and [C1,C,| are concurrent by computing their

trilinears and showing the linear dependency.
The perspectorg of A andA; (withi € {1,2})

3)

can be found as intersection [¢f, A} and[B, Bj]
and we arrive at

PL = (&oé1nonz : €1€2n1No : €280n2N1)
and

P> = (&0é2non1 : é1éon1n2: &2€1N2N0).

P, and P, are centers fo; and n; (with i €
{0,1,2}) are center functions,e., they are ho-
mogeneous and cyclic symmetricanb, andc.
For example(&o&1non2)¢ = &1&2n1no and like-
wise for all the other coordinate functions Bf
andP,, respectively. O

(4)

Obviously P, and P, are triangle centers for
any choice of centerg andZ. It can be seen at
once thatY = Z results inP, = P,. Furthermore
if Y =Xy, i.e, the incenter of andZ is an arbi-
trary center not equal t&;, thenP; = (non2 :
N1No : N2No) and P> = (Non1 : N1N2 : N2No).
The mappingZ — P, andZ — P, are birational
for they are compositions of the isogonal conju-
gation (Xg : X1 : X2) > (X1X2 : X2Xo © XoX1) With
collineations inA’s plane with X; for a fixed
point and shiftingA’'s vertices in clockwise or
counter clockwise direction, respectively.

It is easy to show that the following holds:

Theorem 2.2. The trianglesA; and A, are per-
spective. The perspectofHs a triangle center
that is collinear with R and B from Theorem
2.1, except ¥=Z,where P=P, =P, =Y =Z.

Proof. The lines[Aq,Az], [B1,Bg], and[Cq,Cy]
are concurrent. In order to prove this, we com-
pute the trilinear coordinates of the three lines
and show that they are linearly dependent.

The point of concurrency can be computed as
the intersection of any pair of the above given
lines which gives

P> = (&ono(&2n1+&1n2) :
&1n1(&on2+&2no) -
&n2(&1no+&on1)),

which is obviously a triangle center affor the
coordinate function + 1 is the{-image of the

(5)



coordinate function, for i € {0,1,2} andi is  of P and Q, respectively. Then definAz =
counted modulo 3. (A" B" C") by letting

The three perspectorB;, P, and P> are
collinear, for their trilinear coordinate vectors " p g
are linearly dependent. Bm o [B, B,,] n [C,’A,]’

If Y = Z, thenP, = P, = Z as outlined above. C":=[C,Cn[A.B].

Letéi = ni (fori € {0,1,2})thenPio=Z. [0  Now it turns out thatd; and Az are perspec-
tive and the perspector is called the crosspoint
of P andQ. Somehow this definition seems to
be unsymmetric. However, if we definl, =
(A////7 B//”,Cm/) with A = [A, A/] N [B//,CH], and
B"” and C"” cyclic, thenA, is perspective to
Ap. Surprisingly, the crosspoint also serves as
the perspector for the latter two triangles.

Now we have a simple geometric meaning of
the crosspoint of two centers. It can be found
as the perspector of the two triangesandA,
defined in Equations [2) andl (3) constructed via
3. THE RELATION TO CROSSPOINTS mixed intersection of the Cevians of two cer-
Equation [(b) allows us to define a mapping tain centers. Note thak; and A, differ from
®: (Y,Z2) =Y & Z =Py, for any pair of points the triangles which are usually involved in the
Y andZ in the plane ofA. In Table[l and Table construction of the crosspoint as defined!lin [6,
[2 the®-images of some pairs of triangle centersp. 202] and|[7]. So we have found a simple ac-
X; andX; are given. Ax indicates a yet innom- cess to the crosspoints.
inate center, the numbers in the Takllés 1 @nd 2
are the Kimberling numbers & © X;. We have C
the following result:

A=A AN [B,C],

At this point we shall remark tha®;, from
Equation [(b) is the bicentric sum & and P,
given in Equation[(4) as defined in [3, 5].

Figured B andl4 show the perspectBrs P,
andP;» for different choices oY andZ.

Note thatY andZ are also perspectors of the
following four pairs of triangles:Y connects
(A,Z(A1)) and (A,{71(A2)), whereasZ con-
nects(A,{(A2)) and (A, 71(A1)), with £ ap-
plied to the vertices of the triangles.

crosspoint of P and Q
Theorem 3.1. The point YBZ that is assigned to
any pair (Y,Z) of points inA’s plane via Equa-
tion (8) coincides with the crosspoint of Y and
Z. A//

Proof. We compare the coordinate representa-
tion of Y & Z given in Equation[(5) with the ex-
pressions for crosspoints given in [6, p. 202] or
[7]. O

We shall emphasize that our access to the
crosspoint differs from the definition given in [6]
or [7]. Figure 5: The usual way of finding a crosspoint

Figure[ shows how the crosspoint of two ar- of two point.
bitrary pointsP and Q with respect to a trian-
gle A is usually found: LetP and Q be any Figurel3 illustrates the case wheéfe= X, and
two points inA’s plane. LetA; = (A,B',C')  Z = X4. The line carrying the three perspectors
and A, = (A”,B”,C") be the Cevian triangles Pi, P,, andPi2 = Xg is also shown. To the best
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of the authors knowledge this is the only pair
(Xi,Xj) whereX; @ Xj = Xi1j holds. In Figure
4 we have chosevi = X3 andZ = Xog.

The mapping® gives a tool for the construc-

tion of triangle centers as perspectors of triangles

A, andA,. Therefore we find a way to construct
some triangle centers for which elementary con-
structions are missing until now, especially those
with large Kimberling number. For example
Xagsa = X7 D X10, i.€., the centerXsgss can be
found as the perspect®i, with Y = X7 (Ger-
gonne point o) andZ = Xy (Spieker point of
D), cf. Tablel.

perspectors

B

Figure 6: A closed chain of Desargues configu-
rations withY being the Lemoine poirXg andZ
being the Feuerbach poiKi.

4. CHAINS OF DESARGUES
RATIONS

From Theoremh 2]1 we know that any pair of tri-

angles out of the tripleiA, A1, Ay) is perspective

to a certain point. According to Desargues’ two

triangle theorem, any pair of triangles which is

CONFIGU-

perspective to a point, is also perspective t0 a.,ral line

line. Consequently, any pair of triangles out of
the triplet(A, Az, A) is also perspective to a line.
The perspectrices shall be labellpg, p2, and

5

Table 1. @-compositions of some centers be-

sidesX; @ Xo = Xa7.
o] 3] 4] 5]
73 | 65 | 2599
216 6 233
3| 185 *
4 | 3574
5

53]

6 |
22
39
184
51
*
6

7]
354

8 |
3057

9
55
1212
*
1864
*
2347
*
210
9

10 |
2292
1213

*
1834

OO N[O B|WIN| -

=

Table 2: More®-compositions of centers.
e[ 1] 2] [ 4] 6] 8] 19] 31

19 31 * 1824 | 1400 2179
20 * | 1249 * * *
21 || 2646 * 1858 * *
31 || 1964 * * 213 31
32 * * | 3051 1918

3
*
*
*
*

682

p12 according to the perspectors. Since the per-
spectors are collinear we have:

Theorem 4.1. The perspectricesip pz, and p2
fallin one line,i.e., p1 = p2 = p12. The common
perspectrix is a central line.

Proof. The fact that all three perspectrices co-
incide is caused by the collinearity of the three
perspectors and the fact that the perspectrix is
the same for two different pairs of triangles of
the triplet(A,A1,Ap), for the set of perspective
collineations with common axis and collinear
centers constitute a group, cf. Figlte 7. Itis also
possible to compute the perspectrix for any pair
of triangles from our triplet.

We only have to show that the perspectrix is
a central line. The computation of its homo-
geneous trilinear coordinates is straightforward
and we find its first coordinate

é1éan1n2

o= o2z
07 m& — o

(lo: Ig : Igz). Therefore itis a
[

and furtherpio =

The Theorem$ 212 arid 4.1 tell us that there
is a closed chain of Desargues configurations



numbers of centers are written. We have fixed
Y = X and thusc; is the Steiner circumellipse
of A, cf. [6]. The perspectoP,» again moves to
the ideal line andP o> = Xso4.

Figure 7: Chain of Desargues configurations.

) ) _ Figure 8: Special affine appearance of Desar-
with three mutually perspective triangles, threegues configurationX; & X100 = Xs13 which lies
collinear perspectors, and one common perspecay, the line at infinity.

trix. Figure[6 shows such a chain of Desargues
configurations built fronY = Xg andZ = Xi;.

5.SPECIAL AFFINE VERSIONS OF DE-

SARGUES CONFIGURATIONS
Equation [(b) allows us to determine special =
affine versions of closed Desargues’ chains. A
perspector®;, is an ideal point, if it is contained
in the ideal line with the equation

Lo aX+bxg +Cx =0. (6) s 664

If we fix one center, say, then the locus of

points Z such thaty ¢ Z is an ideal point is a

conic sectiorky. Thisisimmedeately seen, ifwe Figure 9: Special affine appearance of Desar-
derive the incidence condition f¢Y ©Z) € Z. gues configurationX, & Xg71 = Xs24 Which is
We insert Equatiori (5) into Equatidn (6) and find an ideal point.

ky Z aéono(é2n1+¢&1n2) =0, (7) Is it possible to find Desarguesian configura-
cyclic tions with three perspectors on the ideal line?
which is a homogeneous and quadratic equatiorf '€ answer to this question is: yes. The con-
in n; for fixedY = (& : &1 : &). We observe that d!tlon for P, andP; to lie on the ideal line%, is
ky is a circumconic of\, i.e, ky passes through 9iven by

A’s vertices. lq: Z ao€1non2 =0
Figure[8 shows; with some centers on it. cyclic
The perspector of\; andA; is the ideal point and (8)
Xs13. In Figure[® we have simplified the nota- I a&o&anony =0
tion in order to save space, only the Kimberling Cy%ic ’
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where we have inserted the coordinateBadnd

P, as given in Equatiori{4) into the Equatidn (6)
of Z.. For afixed centeY = (§p: &1 : &2) Equa-
tions (8) are the equations of two conic sections.
Both pass through the verticAsB, C of the base
triangle and thus they have only one further com-
mon point. This yields:

Theorem 5.1. To any fixed center Y there exists
exactly one center Z such that the perspectors
Pi, B, and R» lie on the ideal line.

Proof. We only have to show th&t andl, have
precisely one center in common. Obviously,

three common points fall into the vertices®f  Figure 10: All three perspectors are ideal points
It is elementary and straightforward to find the for a suitable choice & (precisely that of Equa-
fourth intersection: tion (3)) depending oN.
Z = (&(&70? — &péoca) (E2c? — &péqab)
 (£1(83¢% — &1&pab) (E8a? — &1&5b0) :
 (&x(E8a% — E81be) (E2b% — &:80cq)),

of Py, from Equation[(b) and we have

do: &ono(é2n1+é&1n2) = 0O,
du: &1n1(éonz+é&no) = 0O, (10)

which is obviously a center . O d2: §2n2(&1o+éon1) = O.
Figure[10 illustrates the contents of TheoremObviously these are three pairs of lines, each
withY = X;. The resulting center containing a side line oA and a further line
passing through the harmonic conjugaiés
Z = ((b®—ca)(c® —ab) : Y4, Y. of the vertices ofY’s Cevian triangle
: (¢?— ab)(a— bo) : 9) (Ya, Ys, Yc) with respect ta\'s vertices,i.e, the

pairs of lines are

Jo = [B,C] U [A7YA]7
which is qot ygt named., yields trianglés and @ = [CAU[B,YY,
A, as defined in Equation](1), such that all the _ .
three perspectoi®,, P,, andP;, are ideal points. G = [ABJUICY].
6. A QUADRATIC TRANSFORMATION Note that the harmonic conjugat¥g, Y5, Y2
The coordinates d?, given in Equation[(5) are gather on the trilinear polar line 8fwith respect
quadratic iné andn;. to the base trianglA. Figure[11 shows the base

AssumeY = (&p: &1: &2) is an arbitrary point  points and exceptional lines gffor an arbitrary
in A’s plane, not necessarily a center. Tligsa  pointY.
guadratic mapping iA’s plane. The base points It is a well-known result from algebraic geo-
of g are the vertices oA. The associated net metry thatq is birational,i.e., its inverse is also
of conic spanned by three pairs of lines whoserational, for it has three base points, which ap-
equations are given by the coordinate functionspear as the intersections of the three degenerate
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with (A : u) # (0: 0) is a parametrization aj.
We substitute this parametrization infd (5) and
obtain a parametrization which is obviously ho-
mogeneous and quadratic(ih : ). Thus it de-
scribes a conic section. We keep in mind that
are fixed values for a fixed centér By elimi-
natingA andu we arrive at Equatiori(11). O

Figure[12 shows thg-image of the Euler-line
ewith Y = X;. The quadratic mappingis also
applied to some of the triangle centersen

Figure 11: Base points and exceptional lines of
g for an arbitrary poiny'.

conic sectiong}; defined by the three coordinate A 5 a
functions [(10) ofg, cf. [2]. K20

Since Equation[(5) can be rewritten in the X,
form

O nNonu nNonz §182 Figure 12: The quadratic mappiggand the im-
Po=|non O mne | | && |, age of the Euler-linewith Y = X; together with
some centers oeand theirg-images.
nonz mnz2 0O éoé1

we can conclude that is a composition of the ~ Any conic section through the base points of
isogonal conjugation and a collinear transforma-d is mapped to a straight line. This is shown in
tion that depends owi. Figure[13, where&y = X5. A’s circumcircleu is

The mapp|ng‘1 transforms central lines to cen- mapped to aline. In this case the line at |nf|n|ty
tral conics. We show that the image of a centraliS mapped to the Steiner inellipse.

line is given by the following conic section: The determinant of the hessian bf(11) equals
(2non1n2)°dog102. So the conic section is sin-

Theorem 6.1. Assume thatg-(Jo:91:G2)isa@  gular (splits off into two lines) ifY lies on one
central line,i.e, its coordinate functionsicare  sjde line ofA. This is the case for example for a
cyclic symmetric in a, b, ¢ an¥l¢ycic X090 =0 right angled triangle and = X3 or evenY = Xu.
is its equation. Further let ¥= (1o : n1:n2) be  |n general neitheg; = 0, for g is a central line.
a fixed triangle center foA. Then qg) has the  Exceptions occur for special triangles.
equation In Figure[14 the action af onA’s incriclei is
2 2 2 illustrated. We have chosen four different cen-
N1N2(Goo — G111~ 92112) %5 tersY as pivot forg, namelyX; (incenter),X,
cyclic (11) . k
—29008’0102X1X2 —0. (centroid), X3 (cwcum_center), aniXy (prthocen-
ter). The four quartic curves showing up as as
Proof. Assumeg= (gop: 01 :02) isacentralline. the four differentg-images ofi are labelled ac-
Theng(A: ) =A(02:0:—0go)+H(01:—0o:0)  cording toY. Note that each of these quartics has



Steiner inellipse = g(-%)

Figure 13: The quadratic mappiagvithY =X,  Figure 15: Four differeng-images of the nine-
shows the Steiner inellipse as the image of thepoint circlen.
ideal line.

7.CONCLUSION
three ordinary cusps in points on the exceptionalThe study of mixed intersections of Cevians of
lines. The cusps are tligimages of the contact triangle centers of a triangla led directly to
points ofi with A’s side lines. closed chains of Desarguesi&h0s,103) con-
figurations. These chains consist of three such
configurations and it is still an open question, if
there are such chains involving more then three
Desargues figures. However, these chains where
byproducts.

The circumcircleu of A is only one promi-
nent example of conic sections circumscribed to
A. 1t is more or less an easy task to find the
g-images with arbitrary center as a pivot that
mapu or other circumscribed conic sections to
well-known central lines. We have skipped this
lengthy and less fruitful enumeration and tried to
give an example.

The quadratic mapping appears with pivots
X1 and Xy. Any center can serve as a pivot of
Figure 14: Four differeng-images of the incir-  the transformation. Any conic section, whether
clei. it is circumscribed or inscribed #, any central

conic can be transformed via a certajn All

Figure[15 shows the image of the ninepointthe image curves are rational. Therefore none of
circlenof A under the same four quadratic trans- the well-known triangle cubics (see for example
formations. Here we observe ordinary nodes on[1]) can be obtained as somgemage of a certain
the image curves corresponding to the two dif-conic section, for all these are elliptic. If a line
ferent transversal intersection ofwith the ex-  splits off from theg-image of a conic section,
ceptional lines of. then there remains at most a rational cubic curve.

A
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