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Abstract

We study a new class of minimal surfaces which are in line contact with a
special cubic surface. It turns out that these minimal surfaces admit ra-
tional parametrizations and carry a one-parameter family of higher order
harmonic oscillation curves. Each of these minimal surfaces defines its
own one-parameter family of associated minimal surfaces which in turn
are all algebraic. Moreover, they also admit rational parametrizations.

Keywords: minimal surface, algebraic surface, rational parametrization, poly-
nomial parametrization, Björling formula.
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1 Introduction

Algebraic and especially rationally parametrizable minimal surfaces gained less
attention in the last years. Though the advantages of rational parametriza-
tions for applications in CAD and CAGD are clearly visible, high degrees and
the highly complicated generation of such minimal surfaces may be a reason
for the absence of research in this field. Only older literature provides some
general results on algebraic minimal surfaces, see [3, 5, 10, 13]. Recently,
this topic was picked up in [6] where a rational minimal Möbius strip was
studied. In [7], some further new classes of algebraic minimal surfaces were
discovered. These surfaces allow rational parametrization, are of relatively
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low degree, and the a huge variety of algebraic properties which were at least
known to S. Lie and H.A. Schwarz (see [3, 10]) could be verified.

Rational or even polynomial parametrizations of minimal surfaces can be found
with help of the various Weierstraß-representaions or the Björling formula
(also due to Weierstraß), see [1, 2, 5, 8, 13]. In the following, we will use the
Björling formula in order to construct rational minimal surfaces on scrolls. The
initial (boundary) data shall be taken from a special cubic surface. Until now,
useful initial data that yields rational parametrizations of minimal surfaces is
found just by chance.
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Figure 1.1: Left: Müller’s surface with its circles and hyperbolae. Right:
Eellipses on Müller’s surface.

The cubic surfaces that deliver the initial data in the present case are spheres
in some sence. Together with the planes in the projectively and complex
extended Euclidean three-space they form a set of surfaces that is invariant
under a group of transformations generated by special birational cubic trans-
formations, called axial inversions. In [4], such inversions transforming points
with coordinates (x, y , z) to points with coordinates (x ′, y ′, z ′) were studied
in the projective extension of Euclidean three-space. A special version reads

x ′ =
x

x2 + y 2
, y ′ =

y

x2 + y 2
, z ′ = z

and maps planes ax + by + cz + d = 0 with a, b, c, d ∈ R and a : b : c 6= 0 :
0 : 0 to a special kind of cubic surfaces with the equations

ax + by + (cz + d)(x2 + y 2) = 0,
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and vice versa. (For the sake of simplicity, we have written x , y , and z instead
of x ′, y ′, and z ′.) These cubics carry three one-parameter families of conics
which are the intersections with the planes in the pencils λ(ax+by)+µ(cz+
d) = 0, λz + µ = 0, and λx + µy = 0 with (λ, µ) =∈ R2 \ {(0, 0)}.

The contour lines (horizontal curves on the surface) are circles that appear as
the members of a parabolic pencil of circles in a top-view, i.e., in an orthogonal
projection in the direction of the lead which is henceforth assumed to be
parallel to the z-axis of the underlying Cartesian coordinate system.

The curves of steepest ascent (with respect to the vertical lead) are upright
cubic circles, i.e., rational cubic curves on right cylinders. The top-views of
the curves of steepest ascent constitute the parabolic pencil of circles that is
complementary (and thus, orthogonal) to the one previously mentioned.

In the following, we pay our attention to the special surface that we obtain if
we let a = c = 1 and b = d = 0. This particular surface is the image of the
plane x − z = 0 under the axial inversion and has the equation

x − (x2 + y 2)z = 0 (1)

and was first studied in [12].

Obviously, this surface allows two different parametrizations over nearly the
same parameter domain D = R⋆ × [0, 2π[

(
r

2
(1+cos u),

r

2
sin u,

1

r

)
, (r, u)∈D, (2)

or a seemingly simpler version
(
q cos t, q sin t,

cos t

q

)
, (q, t) ∈ D. (3)

In (2), the parameter curves are the circles in the pencil of planes z = c
(with c ∈ R⋆) and the hyperbolae in the pencil of planes λx + µy = 0 (with
λ : µ 6= 0 : 0), see Figure 1.1 (left). In (3), the parameter curves are the
ellipses (different from circles) in the pencil of planes λx + µz = 0 (with
λ : µ 6= 0 : 0) and the previously mentioned hyperbolae (see Figure 1.1,
right). The ellipses in the pencil of planes λx + µz = 0 through the y -axis
are given by q = const. in (3).

Müller’s surface (1) has three singular points: the pair of absolute points
of Euclidean geometry in the plane z = 0 with homogeneous coordinates
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(0 : 1 : ±i : 0) and the ideal point of the z-axis with homogeneous coordinates
(0 : 0 : 0 : 1).

This particular cubic surface contains three real lines: the y -axis, the z-axis,
and the ideal line of all planes parallel to z = 0.

For any fixed q ∈ R⋆, the ellipses parametrized by (3) carry only regular
surface points. Along such an ellipse, the surface normals of the cubic surface
(1) are parallel to

ν(t) =
1√
1 + q4

(cos 2t, sin 2t, q2) (4)

and determine a regular and non-torsal algebraic ruled surface of degree six; an
example of which is shown in Fig. 1.2. For any fixed q ∈ R⋆, the parametriza-
tion (3) gives the parametrization

γ(t) =

(
q cos t, q sin t,

cos t

q

)
(5)

of an ellipse. The pair (γ, ν) defines a scroll as the envelope of the one-
parameter family of planes 〈x− γ, ν〉 = 0.
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Figure 1.2: The sextic ruled surface of normals along an ellipse.
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2 The minimal surfaces

We use the scroll (γ, ν) as the initial (boundary) data for a minimal surface.
Following [2, 3, 5, 8, 13], we can use the Björling formula in order to derive
a real parametrization of the unique real minimal surface on the scroll (γ, ν),
i.e., the uniquely determined real minimal surface through the curve γ with
normals parallel to ν along γ. For that we assume that we are given a curve
γ : I ⊂ R → R3 and a unit vector field ν : I → S2 along γ. Both are
considered to have complex continuations. Then, the Björling formula

ϕ(t) = γ(t)− i

∫
t

t0

ν × dγ (6)

yields a parametrization of an isotropic curve, i.e., a curve of constant slope
±i whose tangents are isotropic lines in Euclidean three-space. The existence
of the complex continuation of the curve and the unit normal vector field
allows us to set t = u + iv . Then, we extract the real part of the vector
function ϕ(t) and obtain a real parametrization

f(u, v) = Reϕ(t) (7)

of the uniquely defined real minimal surface on the scroll (γ, ν).

With the spine curve γ given in (5) and the unit normal vector field ν described
by (4), we can derive the parametrization(s) of the minimal surfaces tangent
to Müller’s cubic surface. We use shorthand

cx := cos x, sx := sin x, . . . ,Cx := cosh x, Sx := sinh x, . . .

together with the abbreviation p :=
√
1 + q4 and state:

Theorem 2.1. The one-parameter family of minimal surfaces touching
Müller’s surface (1) along the ellipses (3) can be parametrized over R2 by

f(u, v) =
1

6pq




6pq2cuCv − 3(p
2 + q4)cuSv + c3uS3v

6pq2suCv − 3(p
2 + q4)suSv + s3uS3v

6cu(Svq
2 + pCv )


. (8)

Proof. We insert (5) and (4) into (6) and find the parametrization of the
isotropic curve ϕ : R3 → R3

ϕ(t) =
1

6pq



6pq2ct + 3i(p

2 + q4)st − is3t

6pq2st − 3i(p
2 + q4)ct + ic3t

6(pct − iq
2st)


 (9)
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depending on the complex parameter t. Then, we replace t by u + iv and
extract the real part and obtain (8).

Figure 2.3 shows one particular minimal surface mentioned in Thm. 2.1.

e

Figure 2.3: A minimal surface tangent to Müller’s surface along the ellipse e.

The curves v = const. on the minimal surface have a very special shape:

Theorem 2.2. The u-curves (the curves with v = const.) on the minimal
surfaces (8) are harmonic oscillation curves and appear as cycloidal curves in
the top-view (orthogonal projection onto the [xy ]-plane).

Proof. We use the first and second coordinate function of f = (f1, f2, f3)
from (8) and build the complex variable w(t) = f1 + if2 which reads in full
length

w(t) = qcuCv −
1

2pq
(p2 + q4)cuSv +

1

6pq
c3uS3v+

+i
(
qsuCv −

1

2pq
(p2 + q4)suSv +

1

6pq
s3uS3v

)
.

With Euler’s formula, the latter simplifies to

w(t) =

(
qCv −

p2 + q2

2pq
Sv

)
eiu +

1

6pq
S3ve

3iu

which is a parameter representation of family of cycloidal curves according to
[14, 15], because v = const., and thus, Sv , Cv , S3v , and C3v are constant.

Since f3 = cu
(
p

q
Sv +

1

q
Cv

)
is a harmonic function as long as v = const., the

u-curves are harmonic oscillation curves as defined in [9].
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Figure 2.4: The top-views of the u-curves on the minimal surfaces are
cycloidal curves: q ∈ [0.6, 1.2] (left), only one half of the curves for
q ∈ [1.0, 1.4] (right).

Figure 2.4 shows the top-views of some of the harmonic oscillation curves on
the minimal surfaces given in (8).

According to Weierstraß, the minimal surface (8) can be generated from two
meromorphic functions A,B : D ⊂ C→ C by computing

ϕ(t) =

∫


A(1− B2)

iA(1 + B2)

2AB


 dt, (10)

see, e.g., [1, 2, 3, 5, 8, 13]. Subsequently, we let t = u + iv and extract
the real part f(u, v) = Re(ϕ) in order to obtain a real parametrization of the
thus defined real minimal surface. We can state and proof

Theorem 2.3. The meromorphic functions A,B :D⊂C→C from the repre-
sentation (10) of the minimal surfaces (8) tangent to Müller’s surface read

A=
i

4pq
((p−q2)2e−iw−e−3iw ), B=

e2iw (p−q2)−(p+q2)

(p−q2)2−e−2iw
. (11)

Proof. Following [1, 2, 3, 5, 8, 13], we compute F = (F1,F2,F3) := ∂uf−i∂v f.
Then, A = 1

2
(F1 − iF2) and B = A/2F3 and we end up with (11).

The meromorphic functions A and B given in Thm. 2.3 can be replaced by
rational functions. This is equivalent to a reparametrization of the isotropic
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curve ϕ given in (10). The parametrization of the minimal surface obtained
from the reparametrized isotropic curve will in general not be the same, but
an equivalent one. We let ω = e−iw and arrive at the following rational
equivalents to A and B:

Ã=
i

4pq

(
(p−q2)2−ω2

)
ω, B̃=

(p−q2)− (p+q2)ω2

((p−q2)2−ω2)ω2
.

A closer look at the parametrization (8) makes clear that the parameter
u appears only as argument of trigonometric functions, whereas v shows
up only as argument of hyperbolic functions. Thus, it is obvious that a
reparametrization can turn (8) into a rational parametrization. Moreover, we
can show

Theorem 2.4. The minimal surfaces (8) that touch Müller’s surface along
ellipses admit rational parametrizations and are algebraic minimal surfaces of
degree 24 and class 42.

Proof. The existence of a rational parametrization is confirmed by simply
substituting the rational equivalents

cu =
1− U2

1 + U2
, su =

2U

1 + U2
, Cv =

1 + V 2

1− V 2
, Sv =

2V

1− V 2

of the trigonometric and hyperbolic functions into (8). This yields a rational
parametrization of bi-degree (6,6) in U and V which can be rewritten in terms
of rational Bézier functions.

From the rational parametrization, the implicit algebraic equation can be
found (more or less) easily by eliminating U and V . This results in a polynomial
of degree 24.

The class of these surfaces has to be even, for these algebraic minimal surfaces
are orientable, cf. [3]. The algebraic degree of ϕ(t) equals 6 and its rank
equals r = 10. The absolute conic of Euclidean geometry is a three-fold
curve on the tangent developable of ϕ, i.e., its multiplicity on the developable
is m = 3. According to [3], the class of the minimal surface swept by ϕ and
its conjugate equals c = 2m(r −m) = 42.

The rational parametrization mentioned in Thm. 2.4 can easily be converted
into a rational Bézier representation. Figure 2.5 shows a part of a minimal
surface described in Thm. (2.1) with its control structure.
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Figure 2.5: A part of a minimal surface described in Thm. 2.1 is defined by
its control structure.

The following fact is worth to be noted and elementary to verify:

Lemma 2.1. The curves of constant Gaussian curvature on Müller’s surface
are the ellipses given in (3) with q ∈ R⋆.

Proof. From (3) we compute the Gaussian curvature function on Müller’s
surface and arive at

K(q, t) = −
4q2

(1 + q4)2

which is obviously independent of t, and thus, constant along each ellipse for
the corresponding fixed q ∈ R⋆.

As a consequence of Lemma 2.1 and Theorem 2.1, we can formulate

Theorem 2.5. The minimal surfaces (8) touching Müller’s surface (1) along
the ellipses (3) agree with the minimal surfaces that touch Müller’s surface
(1) along the curves of constant Gaussian curvature.

A similar result holds true for minimal surfaces tangent to orthogonal hy-
perbolic paraboloids, see [7]: In this case the curves of constant Gaussian
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curvature are harmonic oscillation curves and the minimal surfaces are of
algebraic degree 30, of class 10, and admit rational parametrizations.

3 The associate family

The parametrizations (8) of the minimal surfaces tangent to Müller’s surface
(1) are obtained by extracting the real part of the isotropic curve (9). The
imaginary part of ϕ(t) (with t = u + iv) is given by

f
⊥(u, v) =

1

6pq




−6pq2suSv − 3(p
2 + q4)suCv − s3uC3v

6pq2cuSv − 3(p
2 + q4)cuCv + c3uC3v

−6(q2suCv + psuSv )


 . (12)

Ofcourse, the real algebraic, and indeed rational surfaces parametrized by
(12) are minimal surfaces. They are the adjoint minimal surfaces to (8). The
family of associate minimal surface containing (8) and (12) is obtained as the
real part of the one-parameter family of isotropic curves

f(u, v , τ) = Re
(
eiτϕ(t)

)
= cτ f(u, v) + sτ f

⊥(u, v), τ ∈ S1. (13)

Now, we are able to prove the following

Theorem 3.1. For any q ∈ R⋆, the one-parameter family of associate minimal
surfaces described by (13) consists of rational minimal surfaces of algebraic
degree 24 and class 42.

Proof. Independent of the choice of q, we can say: The minimal surfaces
parametrized by (12) are rational, since the trigonometric and the hyperbolic
functions showing up in the parametrization can be replaced by their ratio-
nal equivalents. Subsequent to the reparametrization, we can eliminate the
parameters and find an algebraic equation of degree 24. The class of the
adjoint surfaces is 42 as it is the case with (8), since the isotropic curves cor-
responding to (12) has the same algebraic properties. From (13) it is clear
that the degree and the class of all surfaces in the family of associate minimal
surfaces agrees with that of f and f⊥, because for any τ ∈ S1, (13) is just a
linear combination of both.

Actually, there are two one-parameter families of rational minimal surfaces
associated to Müller’s surface (1), i.e., a one-parameter family of minimal
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surfaces related to each ellipse (from the one-parameter family of ellipses) on
Müller’s surface. It is not worth to mention that this construction of rational
minimal surfaces works well for each of the cubic surfaces mentioned in the
very beginning of the present paper. So, there is a five-parameter family of
rational minimal surfaces sharing the algebraic properties with (8).

4 Some algebraic properties

4.1 Self-intersections

x

z

1

1

self-in
tersec

tion

Figure 4.6: The self-intersection (red) of the minimal surface (with q = 4/3)
is a part of the intersection with the plane y = 0.

Since the initial data (γ, ν) is symmertic with respect to the plane y = 0,
the minimal surfaces (8) show the same symmetries. Thus, the plane y = 0
carries one part of the self-intersection of the minimal surfaces. Fig. 4.6
shows the intersection of the minimal surface (8) (with q = 4/3) with the
plane y = 0. This planar cycle is of algebraic degree 24 and consists of
a sextic (with multiplicity one, shown in blue) which is not part of the self-
intersection. The curve shown in red is of degree nine and has multiplicity two
as the planar intersection of (8). Therefore, it is part of the self-intersection
of the minimal surface. This nonic has triple-points on the x-axis and the
z-axis (at infinity) and a four-fold point at the origin. Further there are four
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ordinary cusps on the curve, two of which are located on the (non-singular)
sextic and are branch points of the minmal surface. Since the nonic is a planar
intersection of the minimal surface, it is no surprose that it is a rational curve.

In the plane x = 0, we can only find the y -axis as a part of the self-intersection
which is also contained in the plane z = 0.

4.2 The curve at infinity

The minimal surfaces (8) intersect the ideal plane along the cycle

z18(x2 + y 2)3 = 0

independent of the choice of q ∈ R⋆. This tells us that the ideal line of all
planes parallel to z = 0 is of multiplicity 18 and the pair of complex conjugate
ideal lines y = ±ix through the ideal point of the z-axis is three-fold. The fact
that the curve at infinity of these minimal surfaces degenerates completely,
i.e., it splits off into a finite number of lines, is in accordance with an old
result by Lie, see [3].

Because of the high multiplicities of the components in the plane at infinity,
these lines also contribute to the self-intersection(s).

4.3 The intersection of Müller’s surface

The intersection of Müller’s surface (1) with the minimal surfaces (8) along
its ellipses contains:

1. the six-fold y -axis (of the underlying Cartesian coordinate system),

2. the two-fold ellipse γ (3) (for any fixed q ∈ R⋆),

3. the three-fold pair of ideal lines of the complex conjugate pair of planes
x2 + y 2 = 0, and

4. the eighteen-fold ideal line of all horizontal planes (parallel to z = 0).

12



References

[1] W. Blaschke: Vorlesungen über Differential Geometrie und geometrische
Grundlagen von Einsteins Relativitätstheorie. Springer, Berlin, 1921.

[2] H. Karcher: Construction of minimal surfaces. In: Surves in Geometry,
Univ. of Tokyo, 1989, Lecture Notes No. 12, SFB 256, Bonn, 1989.

[3] S. Lie: Gesammelte Abhandlungen. Friedrich Engel, Poul Heegaard, eds.,

[4] E. Müller: Die achsiale Inversion. Dt. Math.-Ver. 25 (1916), 209–251.

[5] J.C.C. Nitsche: Vorlesungen über Minimalflächen. Springer-Verlag, 1975.

[6] B. Odehnal: A rational minimal Möbius strip. Proc. 17th Internat. Conf.
on Geometry and Graphics, August 4–8, 2016, Beijing, P.R. China, ar-
ticle no. 070.

[7] B. Odehnal: On algebraic minimal surfaces. KoG 20 (2016), 61–78.

[8] R. Osserman: A Survey of Minimal Surfaces. Dover Publications, New
York, 2nd edition, 1986.

[9] H. Pottmann: Zur Geometrie höherer Planetenumschwungbewegungen.
Mh. Math. 97 (1984), 141–156.

[10] H.A. Schwarz: Gesammelte mathematische Abhandlungen. Springer,
Berlin, 1890.

[11] K. Strubecker: Differentialgeometrie. Sammlung Göschen, Band
1180/1180a, W. de Gruyter, Berlin, 1969.

[12] H. Thieme: Über eine besondere Fläche dritter Ordnung mit vier Dop-
pelpunkten. Z. Math. Phys. 40 (1895), 362–369.

[13] K. Weierstraß Gesammelte Werke. 7 Bände, Mayer und Müller, Berlin,
1894–1927 (Nachdruck Olms, Hildesheim, 1967).

[14] W. Wunderlich: Ebene Kinematik. Bibliograph. Inst. Mannheim, 1970.

[15] W. Wunderlich: Höhere Radlinien. Österr. Ingen. Archiv 1 (1947), 277–
296.

13


