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Abstract

Each complete quadrilateral has three
Miquel-Steiner points. Any triangle to-
gether with an arbitrarily chosen point not
on a triangle side also defines a complete
quadrilateral, and thus, this pivot point de-
fines three Miquel-Steiner points. These
three Miquel points form a triangle which
is perspective with the base triangle. The
mapping that assigns to the pivot point the
uniquely defined perspector is a quadratic
and not involutive Cremona transformation
and shall be called Miquel-Steiner transfor-
mation. We shall study the action of the
Miquel-Steiner transformation and its in-
verse.

Sačetak

Svaki potpuni četverokut ima tri Miquel-
Steinerove točke. Bilo koji trokut zajedno
s proizvoljno odabranom točkom koja nije
na strani trokuta također definira potpuni
četverokut, pa stoga ova točka zakretanja
definira tri Miquel-Steinerove točke. Ove
tri Miquelove točke tvore trokut koji je per-
spektivan s osnovnim trokutom. Preslika-
vanje koje točki stožera dodjeljuje jedin-
stveno definirani perspektivor je kvadratna,
a ne involutivna Cremona transformacija
i zvat će se Miquel-Steinerova transforma-
cija. Proučavat ćemo djelovanje Miquel-
Steinerove transformacije i njen inverz.
Noch ein wenig Text.
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1 Introduction

There are several theorems in geometry
that are ascribed to the French geometer
Auguste Miquel (1816-1851). The most
common of his results (originally published
in [9]) may be the following (see Figure 1):
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Figure 1: Miquel’s theorem as a theorem in
triangle geometry.

Let A, B, C be the vertices of a triangle
and let A′, B′, C ′ be arbitrary points (dif-
ferent from A, B, C and not collinear) on
the sides lines [B,C], [C,A], [A,B]. Then,
the three circles kAB′C′, kA′BC′ , kA′B′C have
a common point M , the Miquel point. Here
and in the following, kXY Z denotes the cir-
cle on the (non-collinear) points X, Y , and
Z. Sometimes, this theorem is also called
the Pivot Theorem (see [4]).

There are other results on geometric con-
figurations ascribed to Miquel:
(i) Miquel’s Five Circles Theorem (cf. Fig-
ure 2, top) states that consecutive circum-
circles of the spikes of a pentagonal star in-
tersect in five concyclic points (see [2, pp.
151–152]).

(ii) Miquel’s Six Circles Theorem (cf. Fig-
ure 2, bottom) states that if five circles meet
four times in three points, then the remain-
ing four common points are concyclic. This
circle configuration can be viewed as an im-
age of the stereographic projection of all cir-
cumcircles of the faces of a cube under a
Möbius transformation. (cf. [1, 10]).

Figure 2: Top: Miquel’s Five Circles The-
orem. Bottom: Miquel’s Six Circles The-
orem.

In this article, we make use of the Miquel-
Steiner Quadrilateral Theorem: We assume
that Q = ABCD is a quadrilateral, i.e., no
three of these points are collinear. The to-
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tality of the six lines [A,B], . . . , [C,D] join-
ing these points forms a complete quadrilat-
eral. The points

D1 := [A,B] ∩ [C,D],
D2 := [B,C] ∩ [D,A],
D3 := [C,A] ∩ [B,D],

are usually referred to as the diagonal
points of Q. In the complete quadrilateral
built on Q, we can find the following three
quadruples of subtriangles

ABD3, CDD3, ACD1, BDD1;
ADD1, BCD1, ABD2, CDD2;
ACD2, BDD2, ADD3, BCD3;

each of which defining its own circumcircle.
Then, the Miquel-Steiner Theorem reads:

Theorem 1.1. The following quadruples of
circumcircles of subtriangles in a complete
quadrilateral share a single point:

kABD3∩kCDD3∩kACD1∩kBDD1 =:M1,
kADD1∩kBCD1∩kABD2∩kCDD2=:M2,
kACD2∩kBDD2∩kADD3∩kBCD3 =:M3.

(1)

The quadruple points

M1, M2, M3

are called the Miquel-Steiner points of Q,
see [11, 12]. Figure 3 illustrates the con-
tents of Thm. 1.1. (It is well-known, but
nonetheless surprising that the four centers
of the circles defining a Miquel point are
concyclic, cf. [12].)

As outlined in [11], the triangle ∆M =
M1M2M3 of Miquel points is perspective
to the triangle ∆D = D1D2D3 of diagonal
points. Further, ∆M is also perspective to
∆ = ABC (see Figure 4). The perspector P

of the triangles ∆ and ∆M shall be called
Miquel perspector. Later, we shall replace
the point D by an arbitrarily chosen point Z
and consider the mapping µ : Z 7→ P which
shall be called the Miquel-Steiner transfor-
mation.
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Figure 3: The triple of Miquel points of a
quadrilateral.
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Figure 4: Miquel points of a point Z with
respect to a triangle ∆ = ABC and the
Miquel perspector P .

In the following, we derive an analytical
description of the Miquel-Steiner transfor-
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mation µ. This will allow us to study its
properties (cf. Section 2). Further, we de-
rive the inverse which turns out to be differ-
ent from the initial mapping. The Miquel-
Steiner transformation is one of the rare ex-
amples of quadratic Cremona transforma-
tion that is not involutive as we shall see in
Section 3. This is a good reason to have a
closer look onto its properties and its action
on objects which are occurring frequently in
triangle geometry. In Section 3.3, we shall
also investigate the six-parameter manifold
of triangle cubics attached to the base tri-
angle ∆ which is left fixed as a whole under
the Miquel-Steiner transformation. Besides
that, we want to give a geometric meaning
to at least some known triangle centers that
show up in the inflationarily increasing En-
cyclopedia of Triangle Centers (cf. [7]).

2 A quadratic Miquel-

Steiner transformation

Let us now assume that we are given a trian-
gle ∆ = ABC in the Euclidean plane. Any
point Z that does not lie on a side line of
∆ gives rise to a quadrilateral Q = ABCZ,
i.e., in comparison to Sec. 1, we have re-
placed D by Z, and the diagonal points are
as defined above. Hence, the Miquel points
are the quadruple points given in (1). Pro-
vided that Z is a triangle center (in the
sense of [7, 8]), the Miquel perspector P is
also a triangle center.

In order to study the mapping µ : Z →
P , we shall derive an analytic description.
For that purpose, we use homogeneous tri-
linear coordinates in the plane of ∆. The

side lengths of ∆ are

c := AB, a := BC, b := CA.

We use the vertices of the triangle ∆ =
ABC as the base points of the projective
frame and the incenter X1 as the unit point.
(Here and in the following, we use C. Kim-

berling’s notation for triangle centers, cf.
[7, 8]). Thus, we have

A = 1 : 0 : 0, B = 0 : 1 : 0,

C = 0 : 0 : 1, X1 = 1 : 1 : 1.

With this coordinatization, the line at in-
finity (ideal line) ω is given by the homo-
geneous equation a ξ + b η + c ζ = 0, or in
terms of homogeneous trilinear line coordi-
nates, as a : b : c.

We may assume that the fourth point Z
has the homogeneous trilinear coordinates

ξ : η : ζ 6= 0 : 0 : 0.

It is rather elementary to compute the
three Miquel points M1, M2, M3 as the in-
tersections of the circumcircles mentioned
in (1) and we find

M1 := a(−a2+b2+c2)ξ2−b(a2−b2)ξη
−abcηζ + c(c2−a2)ζξ :
: b(aξ+bη)(aξ+bη+cζ) :
: c(cζ+aξ)(aξ+bη+cζ),

M2 := a(aξ+bη)(aξ+bη+cζ) :
: a(a2−b2)ξη + b(a2−b2+c2)η2

−abcζξ + c(c2−b2)ηζ :
: c(bη+cζ)(aξ+bη+cζ),

M3 := a(cζ+aξ)(aξ+bη+cζ) :
: b(bη+cζ)(aξ+bη+cζ) :

: c(a2+b2−c2)ζ2+a(a2−c2)ζξ
+b(b2−c2)ηζ − abcξη.
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With this it is easily verified that the tri-
angles ∆ and ∆M = M1M2M3 are perspec-
tive. The Miquel perspector can be given
in terms of trilinear coordinates

P = a(aξ+bη)(aξ+cζ) ::=
1

bc(bη+cζ)
::, (2)

where the :: indicates that the subsequent
coordinate functions are obtained by cycli-
cally replacing all variables, i.e., a → b →
c → a and ξ → η → ζ → ξ.

The cyclic symmetry of the coordinate
functions of the Miquel perspector indicates
that the Miquel perspector assigned to a tri-
angle center is also a triangle center (in the
sense of C. Kimberling, see [7, 8]).

We can state:

Theorem 2.1. The mapping µ : Z 7→ P /∈
∆a that assigns to each point Z = ξ : η :
ζ which does not lie on a side line of ∆’s
anticomplementary triangle ∆a the Miquel
perspector P as given in (2) is a quadratic
Cremona transformation. The orthocenter
X4 of ∆ is fixed under µ.

Proof. The fact that µ from (2) is quadratic
is obvious. We have to show that this map-
ping meets the requirements of a quadratic
mapping to be invertible, i.e., the (not nec-
essarily regular) base conics defined by the
three (homogeneous) quadratic coordinate
functions (set equal to zero) share three
points (cf. [3, 13]).

For that end, we look at the polynomial
representation of µ given in (2) (in the mid-
dle). The two linear factors set equal to zero
yield the equations of two straight lines:
a ξ+ b η = 0 is parallel to [A,B] and passes
through C, while a ξ + c ζ = 0 is parallel
to [C,A] and passes through B. The lat-
ter lines meet in Aa = −bc : ca : ab. By

virtue of the cyclic symmetry of µ’s coordi-
nate functions, we see that the exceptional
set of µ consists of the lines

a ξ + b η = 0, b η + c ζ = 0, c ζ + a ξ = 0

which meet in the points

Aa = −bc : ca : ab,
Ba = bc : −ca : ab,
Ca = bc : ca : −ab.

The latter lines and points are the side lines
and vertices of the anticomplementary tri-
angle ∆a of ∆. (Sometimes, ∆a is called the
antimedial triangle, see, e.g., [6]).

The fact that µ(X4) = X4 can easily be
shown by inserting the orthocenters trilin-
ear representation into (2).

It is clear that no further point (differ-
ent from X4) can be fixed under µ. The
Miquel-Steiner image of a point X can be
found as the isogonal conjugate (with re-
spect to ∆) of a collinear image of X (see
Thm. 2.2). Under the isogonal conjugation
ι, ∆’s incenter X1 is the only fixed point.

The base conics of the quadratic mapping
µ are singular as is the case with the base
conics in the isogonal and isotomic conju-
gation (cf. [8, 13]), and in the case of any
inversion in a conic (see [13]).

According to Thm. 2.1, µ is a quadratic
Cremona transformation, and as such, it is
invertible. However, µ differs from the well-
known quadratic Cremona transformations
that occur frequently in triangle geometry.
So, we state and prove:

Theorem 2.2. The Miquel-Steiner trans-
formation µ is not involutive. Its inverse
is not defined on the side lines of ∆. The
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Miquel-Steiner transformation is the com-
position of the isogonal conjugation ι with
respect to ∆ and the central similarity α
with ∆’s centroid X2 as the center and the
scaling factor 2, i.e., µ = ι ◦ α. ∆’s ortho-
center is also fixed under µ−1.

Proof. The mapping µ is not involutive,
since µ2 6= id as can easily be verified.

By virtue of the right-hand side of (2),
we set

ρx =
1

bc(b η + c ζ)
,

ρy =
1

ca(c ζ + a ξ)
,

ρz =
1

ab(a ξ + b η)
,

where ρ 6= 0 (is the complex but con-
stant homogenizing factor). By applying
the isogonal conjugation ι, we can rewrite
the latter equations in the form

ρ−1x−1 = bc(b η + c ζ),

ρ−1y−1 = ca(c ζ + a ξ),

ρ−1z−1 = ab(a ξ + b η).

Finally, we have to solve this system of three
linear equations in the three unknowns ξ, η,
ζ . By replacing x, y, z with ξ, η, ζ , we find

µ−1(ξ, η, ζ)=bc(−a ηζ+b ζξ+c ξη) :: . (3)

The inverse of µ is not defined on the side
lines of the base triangle. The coordinate
functions of µ−1 describe three independent
regular conics in the plane of ∆ which share
∆’s vertices.

The coordinate representation (2) of µ
shows that µ can be considered as the
composition of the isogonal transformation
ι : (ξ, η, ζ) 7→ (ξ−1, η−1, ζ−1) with respect
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Figure 5: The centers Hi of the three base
conics bi of µ−1 form a triangle perspective
with ∆. X25 serves as the perspector, L66

is the perspectrix.

to the base triangle ∆ and a collineation α
with the transformation matrix

T =





0 b2c bc2

a2c 0 ac2

a2b ab2 0



 .

The collineation α has ∆’s centroid X2 =
bc :: as fixed point and the ideal line ω = a ::
of the projectively closed Euclidean plane
of the initial triangle ∆ is an axis of α. In
order to show that α is a central similarity
with the scaling factor −2, we compute the
characteristic crossratio. For that end, we
impose a projective frame on a fixed line
(different from the axis, passing through the
center X2) and assign the coordinates 1 :
0 to the center X2 and 0 : 1 to a generic
point Q 6= X2 and Q /∈ ω. We assume that
the generic point Q has the homogeneous
trilinear coordinates

m : n : o 6= 0 : 0 : 0

with respect to ∆. Then, the homogeneous
coordinates of α(Q) and U = [Q,α(Q)] ∩
ω with respect to the frame on [X2, Q] are
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equal to

am+bn+co : −abc and am+bn+co : −3abc.

Hence, we have

cr(X2, U,Q, α(Q)) = −2.

The orthocenter of ∆ is fixed under µ−1.

Further, we can show what is illustrated
in Figure 5:

Theorem 2.3. The triangle of the centers
of the three base conics of µ−1 is perspec-
tive with ∆. The perspector is the center
triangle center X25 (of ∆).

Proof. The centers H1, H2, H3 of the conics
given in (3) are found by multiplying the
inverses of their coefficient matrices with a
coordinate vector of the ideal line, i.e., for
example with (a, b, c). This yields

H1 = σ : 2b2 cosC : 2c2 cosB,

H2 = 2a2 cosC : σ : 2c2 cosA,

H3 = 2a2 cosB : 2b2 cosA : σ,

where
σ := a2 + b2 + c2

and

cosA =
b2 + c2 − a2

2bc
(cyclic)

is the cosine of ∆’s interior angle at A
(cyclic). The perspector between ∆ and
∆H = H1H2H3 has the trilinear center func-
tion

a(−a2 + b2 + c2)−1

which belongs to the triangle center X25 in
Kimberling’s list (cf. [7, 8]). It is the ho-
mothetic center of the orthic triangle and
the tangential triangle of ∆.

The perspectrix p of ∆ and ∆H is the
line carrying the triangle centers X8673 ∈ ω
as well as the proper centers X2485, X14396,
X52950, i.e., p = [X2485, X8673] = L66 (after
canonical identification of line coordinates
with point coordinates).

2.1 The square of µ

Since µ is not involutive, the square of
the Miquel-Steiner transformation is a non-
trivial and quartic Cremona transforma-
tion. It is obvious that µ2 is a Cremona
transformation, i.e., it is invertible, since
(µ−1)2 ◦ µ2 = id. In terms of trilinear coor-
dinates the square of µ reads

µ2(ξ, η, ζ) =

=
(

bc(bη+cζ)(a(b2+c2)ξ+b3η+c3ζ)
)

−1
:: .

The mapping µ2 is not defined on the sides
of the excentral triangle ∆a of ∆ and on the
sides of further triangle ∆f which is per-
spective with ∆. Here, X4 (of ∆) serves
as the perspector, while the perspectrix be-
tween ∆ and ∆f is the line with homoge-
neous coordinates a3 : b3 : c3. The canon-
ical identification of point and line coor-
dinates assigns the perspectrix to the 3rd

power point X32 (cf. [7, 8]).

3 Action of µ and µ−1

Since µ is a quadratic mapping, it sends
algebraic curves c of degree n to algebraic
curves of degree 2n. Degree reductions oc-
cur if c passes through a base point of the
transformation. The same holds true for
its inverse. In what follows, we shall have
a look at the µ-images and µ−1-images of
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some geometric objects related to the base
triangle.

In order to increase the readability of
equations, we shall write the coordinates ξ,
η, ζ with bold characters.

3.1 Images of straight lines

We restrict ourselves to the µ-images and
µ−1-images of some very special lines re-
lated to a triangle. It is clear that images
and pre-images of straight lines under the
Miquel-Steiner transformations are conics
in general, and straight lines only if the lines
under consideration pass through at most
one base point of the transformation.
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CaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCaCa

L1

µ−1(L1)

X7

µ(L1)

X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100X100

Figure 6: Image and pre-image of the an-
tiorthic axis L1.

3.1.1 Antiorthic axis

The antiorthic axis L1 = 1 : 1 : 1 is the har-
monic conjugate of X1 with respect to the
base triangle ∆. Its µ-image is the central
conic

µ(L1) :
∑

cyclic

c (bc+ ca− ab) ξη = 0

AaBa

Ca

A B

C

X20
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L647
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Figure 7: The Euler line and its µ-image
and µ−1-image.

passing through the triangle centers Xi with

i ∈ {100, 34071, 52923}.

The center of the conic µ(L1) is the yet
unnamed, and thus, unlabelled triangle cen-
ter defined by the homogeneous trilinear
center function

a(ab+ ac− bc)·
·
(

a3(b+c)− a2bc− a(b+c)(b−c)2

−bc(b2+c2)
)

.

The µ-pre-image of the antiorthic axis is
again a conic and has the trilinear equation

µ−1(L1) :
∑

cyclic

a3ξ2 + ab(a+b+c)ξη = 0.

It is centered at the Gergonne point X7 and
houses the centers

i ∈ {149, 4440, 20355, 20533, 21220,
21221, 30578, 37781}.

Figure 6 shows a triangle with its antiorthic
axis L1 the conics µ(L1) and µ−1(L1).
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3.1.2 Euler line

The µ-pre-image of the Euler line (see Fig-
ure 7)

L647=[X2, X3]=a(b2−c2)(a2−b2−c2) ::

is the central conic with the trilinear equa-
tion

µ−1(L647) :
∑

cyclic

a4(b2−c2)(a2−b2−c2)ξ2=

=2
∏

cyclic

(a2−b2)
∑

cyclic

ab ξη

centered at X110, the focus of the Kiepert
parabola.

The conic µ−1(L647) passes through the
proper triangle centers Xi with the Kim-
berling indices

i ∈ {4, 20, 69, 146, 193, 2888, 2889, 2892,
3868, 3869, 5596, 6193, 6225, 10340,
11061, 11271, 11469, 12383, 17220,
18387, 22647, 32354, 37889, 39355}

and carries also the centers X2574 and X2575

located on the line at infinity.

The µ-image of the Euler line is the conic

µ(L647) :
∑

cyclic

c(a2−b2)(a2+b2−c2) ξη=0

centered at X125 which is the center of the
Jeřabek hyperbola. The latter conic carries
272 known triangle center of which X2574

and X2575 are points at infinity while the

proper points have the Kimberling indices

i ∈ {3, 4, 6, 54, 64− 74, 248, 265, 290, 695,
879, 895, 1173, 1175− 1177, 1242− 1246,
1439, 1798, 1903, 1942, 1987, 2213, 2435,
3426, 3431, 3519, 3521, 3527, 3531, 3532,
3657, 4846, 5486, 5504, 5505, 5900, 6145,
6391, 8044, 8612, 8795, 8811, 8814, 9399,
9513, 10097, 10099, 10100, 10262, 10293,
10378, 10693, 11270, 11559, 11564, 11738,
11744, 12023, 13418, 13452, 13472, 13603,
13622, 13623, 14220, 14374, 14375, 14380,
14457, 14483, 14487, 14490, 14491, 14498,
14528, 14542, 14841, 14843, 14861, 15002,
15077, 15232, 15316, 15317, 15320, 15321,
15328, 15453, 15460, 15461, 15740, 15749,
16000, 16540, 16620, 16623, 16665, 16774,
16835, 16867, 17040, 17505, 17711, 18123,
18124, 18125, 18296, 18363, 18368, 18434,
18532, 18550, 19151, 19222, 20029, 20421,

21400, 22334, 22336, 22466, 26861,
28786− 28788, 30496, 31366, 31371, 32533,

33565, 34207, 34221, 34222, 34259,
34435− 34440, 34483, 34567, 34800− 34802,
34817, 35364, 35373, 35512, 35909, 36214,
37142, 38005, 38006, 38257, 38260, 38263,
38264, 38433, 38436, 38439, 38442, 38443,
38445, 38447, 38449, 38534, 38535, 38955,
39372, 39379, 39665, 39666, 40048, 40441,
41433, 41435, 41518, 41519, 42016, 42021,
42059, 42299, 43689− 43727, 43834, 43891,
43892, 43908, 43918, 43949, 44207, 44718,
44750, 44835, 44836, 45011, 45088, 45302,
45733, 45736, 45788, 45835, 45972, 46765,
46848, 46851, 47060, 48362, 51223, 51480,
52222, 52390, 52391, 52518, 52559, 52560,

52561, 54124, 54125}.

The two conics µ(L647) and µ−1(L647) are
both passing through the circumcenter X3

and the orthocenter X4. Further, µ−1(L647)
is a circumconic of ∆a and contains the de
Longchamp point X20 of ∆. Since X20 is
at the same time the orthocenter of ∆a, we
can summarize and state:

Theorem 3.1. The µ-image and the µ-
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pre-image of the Euler line are equilateral
hyperbolae with the same ideal points (and
hence, parallel asymptotes). The first is
centered at X125, the second is centered at
X110.

3.1.3 Brocard axis

The Brocard axis L523 = [X3, X6] with tri-
linear coordinates bc(b2−c2) :: is sent to the
conic with the equation

µ−1(L523) :
∑

cyclic

a2(b2−c2)ξ2=0

via the inverse of the Steiner-Miquel trans-
formation. This conic is centered at X99

(Steiner point) and contains the triangle
centers Xi with Kimberling indices

i ∈ {1, 2, 20, 63, 147, 194, 487, 488, 616,
617, 627, 628, 1670, 1671, 1764, 2128,
2582, 2583, 2896, 3413, 3414, 6194,
6462, 6463, 7616, 8591, 8782, 9742,
10336, 11148, 13174, 13678, 13798,
16552, 16563, 17147, 18301, 18596,
20371, 21378, 30562, 30564, 30579,
33404, 33405, 33608, 33609, 33610,
33611, 33612, 33613, 36857, 41914,
41923, 41930, 44010, 45029, 46625,
46717, 46944, 51860, 51952, 51953,

52025, 52676, 53856},

where X3413 and X3414 are real points on
the line at infinity. Hence, µ−1(L523) is a
hyperbola.

On the other hand, µ sends the Brocard
axis to the central conic

µ(L523) :
∑

cyclic

c(a2 − b2)·

·
(

a2(b2 + c2) + c2(b2 − c2)
)

ξη = 0

centered at the yet unnamed triangle center
with the trilinear center function

a(b2 − c2)2(a4 − a2b2 − a2c2 − b2c2)·
·
(

a6 − 2a4(b2 + c2) + a2(b4 − b2c2 + c4)
−b2c2(b2 + c2)

)

.

Finally, we shall note that the triangle cen-
ters Xi with Kimberling numbers

i ∈ {54, 98, 251, 1078, 1179, 1342, 1343,
1629, 3453, 5012, 5481, 10312, 11816,

38826, 39396, 42346}

are located on the conic µ(L523).

3.2 Images of conics

Again, the huge variety of conics makes it
necessary to pick out some special repre-
sentatives. It is clear that conics only map
to conics if they are circumscribed to the
triangle of base points, i.e., the anticomple-
mentary triangle ∆a. The Miquel-Steiner
transforms of circumconics of the initial tri-
angle ∆ are quartic curves in general.

3.2.1 Steiner circumellipse

Degeneracies of the image curves can only
be expected if the circumconics of ∆ touch
the anticomplementary triangle. This hap-
pens escpecially in the following case:

Theorem 3.2. The Miquel-Steiner pre-
image of the Steiner circumellipse is the
central line L3051 = [X316, X512].

Proof. We insert (2) into the equation

s : bcηζ + ca ζξ + ab ξη = 0

of the Steiner ellipse and find

µ−1(s) :
∑

cyclic

a3(b2 + c2) ξ = 0.

10



Now, it is an elementary task to verify that
µ−1(s) is spanned by X316 (Droussent pivot)
and X512 ∈ ω. The canonical identification
of the trilinear coordinates of µ−1(s) with
the coordinates results in a center with the
trilinear center function a3(b2+ c2) which is
that of X3051 (cf. [7, 8]).

Furthermore, the following triangle cen-
ters Xi with Kimberling indices

i ∈ {316, 850, 3766, 3978, 11450,
14957, 14962, 17995, 20022, 20295,
20352, 20556, 21282, 21301, 21302,
21303, 33873, 44445, 47128, 52618,

53331, 53365, 54263}

are located on µ−1(s).

X
512

X316

X4

AaBa

Ca

A B

C

s

µ −
1
(s)

µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)µ(s)
X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6

Figure 8: Steiner-Miquel image and pre-
image of the Steiner circumellipse.

The µ-image of s is a quartic with three
cusps at the vertices of ∆ passing through
the centers Xi with

i ∈ {249, 1016, 1252, 1262, 2226, 6185,
10630, 23586, 23592, 23964, 23984,
34536, 34537, 34538, 34539, 40384}.

The tangents at the cusps concur in the
Symmedian point X6 = a : b : c. Figure
8 shows the Steiner-Miquel image and pre-
image of the Steiner circumellipse s of ∆.

3.2.2 Circumcircle

The µ-pre-image of the circumcircle

u : aηζ + b ζξ + c ξη = 0

is the ideal line

ω : a ξ + bη + c ζ = 0.

The circumcircle is mapped under the
Miquel-Steiner transformation to the quar-
tic curve

µ(u) :
∑

cyclic

a2(−a2+b2+c2)η2ζ2 =

= 2abc ξηζ(a ξ + bη + c ζ)
(4)

housing the triangle centers Xi with

i ∈ {59, 249, 250, 2065, 10419,
15378− 15388, 15395− 15397,
15401− 15407, 15460, 15461,

41511, 44174}.

A B

C AaBa

Ca

µ(u)
u

X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3X3

X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6

Figure 9: The Miquel-Steiner transform of
the circumcircle u is a quartic with three
ordinary double points at the vertices of
∆. The tangents at the double points are
the joins with the circumcenter X3 and the
Symmedian point X6.

The vertices of ∆ are ordinary double
points of µ(u). The tangents at the double
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points are the Cevians through the circum-
center X3 and the Symmedian point X6,
cf. Figure 9. This can easily be verified
by extracting the coefficients of ξ2, η2, and
ζ2 from (4) and showing that the resulting
quadratic forms factor and split into two
linear factors which (if set equal to zero)
yield the equations of the tangents at the
double points. For example, the coefficient
of ξ2 equals

(b ζ−cη)
(

b(a2−b2 + c2)ζ−c(a2+b2−c2)η
)

.

The first factor describes the Cevian
through X6, the second that through X3.

By virtue of (4), it is clear that µ(u) de-
generates if ∆ is a right triangle. Let (for
example) the right angle be at C. Then,
a2 + b2 = c2, the term ξ2η2 vanishes, and
the right-hand side becomes

2a2b2ζ2(ξ2 + η2).

Thus, the side [A,B] (opposite to the vertex
C) splits off from µ(u).

u

Figure 10: A sequence of right triangles
with ratios of cathetus’s lengths 1:1, 20:21,
3:4, 5:12, 9:40, 19:180, 41:840 and the cor-
responding cubic curves as µ-images of the
circumcircle u.

For an equilateral triangle ∆, i.e., a =
b = c 6= 0, the curve µ(u) becomes a Steiner
hypocycloid.

3.2.3 Incircle

The µ-pre-image of the incircle

i :
∑

cyclic

a2(a−b−c)2ξ2=

=
∑

cyclic

2ab(a−b+c)(−a+b+c) ξη

is the quartic curve

µ−1(i) :
∑

cyclic

a9bc(a+ b+ c)(a− b− c)2ξ4

−2a5
(

b(b−c)a6−(b3−2b2c−bc2+c3)a5

−(2b4 − b3c− 2bc3 − c4)a4

+(2b5−3b4c−b3c2−7b2c3−bc4+2c5)a3

+(b6+2b4c2+2b3c3+3b2c4−2bc5−2c6)a2

−(b−c)(b6+2b4c2+b3c3+2b2c4−bc5−c6)a
c3(b− c)2(b+ c)3

)

ξ3(bη + c ζ)
−a2b2

(

b(4b−c)a8−(b−c)(4b2−bc−2c2)a7

−(8b4 − b3c+ 6b2c2 − 3bc3 − 2c4)a6

+(8b5−9b4c+7b3c2−15b2c3−bc4+4c5)a5

+(4b6−b5c+10b4c2+2b3c3+8b2c4−5bc5−4c6)a4

−(4b7−5b6c+15b5c2−6b4c3−5b2c5−bc6+2c7)a3

c(b5+2b3c2+10b2c3+7bc4+2c5)(b−c)2a2

−bc(b−c)2(b+c)(b4−2b3c−2b2c2+c4)a
+2b3c2(b+c)2(b−c)3

)

ξ2η2

−2a2bc
(

b(3b−2c)a8−(3b3−5b2c−2bc2+3c3)a7

−(6b4−2b3c+2b2c2−5bc3−3c4)a6

+(6b5−8b4c+2b3c2−18b2c3−2bc4+6c5)a5

+(3b6−b5c+8b4c2+4b3c3+9b2c4−7bc5−6c6)a4

−(3b7−4b6c+13b5c2−3b4c3−b3c4−6b2c5−bc6+3c7)a3

c(b− c)2(b5 + 3b3c2 + 13b2c3 + 10bc4 + 3c5)a2

−bc(b+ c)(b− c)2(b4 − 2b3c− 2b2c2 + c4)a
+2b3c2(b+c)2(b−c)3

)

ξ2ηζ = 0.

This quartic curve has three cusps at the
vertices of the anticomplementary triangle
∆a of ∆. Therefore, they map to a conic
that touches the three sides lines of the
exceptional triangle of the mapping µ−1

(which is ∆). In the case of an equilateral
triangle ∆ (and thus also ∆a), the curve
µ−1(i) is a Steiner hypocycloid (cf. Figure
11).
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A B

C AaBa

Ca

A B

C AaBa

Ca

A B

C AaBa

Ca

A B

C AaBa

Ca

Figure 11: Miquel-Steiner transforms and
the (cusped) inverses of the incircle for an
equilateral, an acute, a right, and an obtuse
triangle.

The µ-image of the incircle is the quartic

µ(i) :
∑

cyclic

c2
(

(2a6−4a5(b−c)−3a4(2b2+bc−2c2)

+a3(8b3 − b2c− bc2 − 8c3)
+a2(6b4 − 9b3c+ 2b2c2 + 7bc3 + 6c4)

−a(4b5 − b4c+ b3c2 + b2c3 + 7bc4 − 4c5)
−2(b2 + c2)(b2 − c2)2

)

ξ2η2

+2b2c
(

2a5+a4(2b−c)−a3(b+ c)(4b−7c)
−a2(4b3 − 7b2c− 2bc2 + c3)

+a(b+ c)(2b3 − b2c− 8bc2 + 3c3)
+2(b+ c)2(b− c)3

)

ξ2ηζ = 0.

The vertices of ∆ are isolated double points
on the µ-images of i since the incircle of
∆ always lies completely in the interior of
the anticomplementary triangle ∆a. Fig-

ure 11 shows the Miquel-Steiner image and
pre-image of the incircle for four triangles
(obtuse, right, acute, equilateral).

3.2.4 Nine-Point Circle

A B

C AaBa

Ca

A B

C

AaBa

Ca

A B

C AaBa

Ca

A B

C AaBa

Ca

Figure 12: Images and pre-images of the
nine-point circle of an acute, an obtuse, a
right, and an equilateral triangle.
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The nine-point circle n can be described
by the homogeneous trilinear equation

n :
∑

cyclic

a2(−a2 + b2 + c2) ξ2 =

= 2abc(aηζ + b ζξ + c ξη).

The nine-point-circle is mapped under µ−1

to the quartic curve

µ−1(n) :
∑

cyclic

a8(a2 − b2 − c2) ξ4+

2a5b
(

a4 − a2(b2 + c2) + 2b2c2
)

ξ3η

−2ab5
(

a2(b2 − 2c2)− b2(b2 − c2)
)

ξη3

+a2b2
(

a6−a4(b2+c2)−a2(b4−8b2c2+c4)
+(b2 + c2)(b2 − c2)2

)

ξ2η2 =

= −2abc ξηζ
∑

cyclic

a(2a6−2a4(b2+c2)

−a2(b2 + c2)(b2 − c2)2) ξ.

On it we can find the centers X35258, X47785,
and X54280.

The µ-image of n is also a quartic curve
with the trilinear equation

µ(n) :
∑

cyclic

c2(c2−3a2−3b2) ξ2η2=

=2 ξηζ
∑

cyclic

bc(−5a2+b2+c2) ξ.

Surprisingly, there are only two labelled tri-
angle centers on µ(n): X18771 (the Miquel-
Steiner image of the Feuerbach point X11)
and X46426. Depending on the shape of the
triangle ∆, the curve µ(n) may have three
cusps (equilateral triangle) or two double
points and one cusp (isosceles triangle). For
a right triangle ∆, µ(n) splits into a cubic
and a straight line. If the right angle is at
the vertex C, the linear component is given
by a ξ + b η = 0 and the cusps lies in the
vertex Ca of the anticomplementary trian-
gle ∆a, i.e., ∆a’s vertex opposite to C.
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Figure 13: The cubic K254, its µ-image K379,
and its µ−1 image together with the centers
on it.

3.3 Triangle cubics

It is clear that the 6-parameter family of
triangle cubics

C
6 :

∑

cyclic

a
2

c2
q102 ξ

3
−
∑

cyclic

q210 ξ
2η−q111

∑

cyclic

a
2

bc
ξ3

+ 1
a2b2c2

(

a4c2q120 ξ
3+b4a2q012 η

3+c4b2q201 ζ
3
)

−(q120 ξη
2+q012 ηζ

2+q201 ζξ
2)+q111 ξηζ=0

(5)
that pass through the vertices of ∆a are
mapped to cubics under µ (since the side
lines of ∆a split off from the image curve).
According to Thms. 2.1 and 2.2, the or-
thocenter X4 of ∆ is fixed under µ and
µ−1. If a triangle cubic C contains X4, then
X4 ∈ µ(C) and X4 ∈ µ−1(C).

Among the triangle cubics listed in B.

Gibert’s Catalogue of Triangle Cubics (see
[6]), we find the following cubics Ki with in-
dices

i ∈ {7, 8, 45, 80, 92, 133, 141, 142, 144,
146, 154, 170, 211, 240, 242, 254, 279,
311, 347, 355, 371, 380, 449, 455, 548,
605, 611, 617, 659, 753, 860, 985, 1000,

1002, 1004, 1053a, b, 1078, 1131}
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which are also contained in the 6-parameter
family (5).

For some of the cubics in B. Gibert’s
list, their µ-images are also contained in the
catalogue of cubics, see Tab. 1.

Ki 7 8 80 141 170
Kj 2 273 361 644 233

Ki 254 311 355 449 611
Kj 379 454 380 447 1172

Ki 617 753 1000 1002 1037
Kj 28 73 354 135 1013

Ki 1053a,b 1131
Kj 1145a,b 1134

Table 1: Triangle cubics Ki with µ-images
Kj both contained in B. Gibert’s cata-
logue [6].

The images of some other cubics are not
contained in Gibert’s catalogue, but nev-
ertheless, well defined solely by the triangle
centers contained in them, see Tab. 2.

As can be seen in Tab. 1, the Lucas cubic
K007 is mapped to the Thomson cubic K002.
The image of the Droussent cubic K008 is
mapped to the a pivotal isocubic K273. Fig-
ure 13 shows the cubic K254 with some tri-
angle centers on it. The µ-image K379 as
well as the µ−1-image of K254 is shown.

4 Final remarks

As mentioned earlier (and also in [11]),
there exists a perspector R for the triangles
∆M and ∆D. In terms of trilinear coordi-
nates and depending on Z = ξ : η : ζ, the

Ki Xj ∈ µ(Ki)
45 2, 4, 6, 54, 275, 1993, 8882, 34756

240 6, 69, 316, 512, 3448, 14360,
53365

242 6, 69, 316, 3448, 14360, 53365
279 2, 4, 6, 30, 323, 2986, 5504,

10419, 14910, 15262
380 4, 6, 251, 1976, 2065
455 1, 6, 35, 37, 1126, 1171, 1255,

21353, 33635
605 6, 58, 63, 81, 284, 2287, 7123,

40403
659 6, 32, 83, 251, 51951
860 6, 15, 16, 74, 40384
985 6, 58, 81, 291, 1922, 2311, 7132,

24479, 38810, 38813
1078 1, 6, 56, 57, 266, 289, 1743

Table 2: Triangle cubics Ki (from Gib-

ert’s) catalogue whose images are defined
by triangle centers Xj (from Kimberling’s
encyclopedia).

perspector R reads

R =
(

a(a2−b2−c2)ξ2 + b(a2−b2)ξη
+c(a2−c2)ζξ + abcηζ

)

(

a(bη + cζ)ηζ − bcξ(η2+ζ2)
+(2a2−b2−c2)ξηζ

)

:: .

The mapping Z 7→ R is quintic and by no
means involutive.

The Miquel-Steiner transformation is not
involutive. We can give some chains of tri-
angles centers, where each triangle center in
the chain is the Miquel-Steiner transforma-
tion of its predecessor (see Tab. 4).

It is possible to define some more al-
gebraic transformations based on Miquel’s
theorem (the triangle related theorem illus-
trated in Figure 1). For example, the as-
sumption that the three points A′, B′, C ′
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µ−3 µ−2 µ−1 µ0 µ1 µ2

3436 8 1 58 3453

1370 69 2 6 251

6225 20 3 54 1166

4

2888 5 1173

6 ↑ 2

3434 7 57 3451

8 ↑ 1

329 9 1174

1330 10 1126

17035 51

52 1179

54 ↑ 3

144 55 3449

42020 56 3450

57 ↑ 7

58 ↑ 1

149 513 100 59

2975 60

146 30 74 10419

146 66 18018 40404

6327 75 81 1169

147 511 98 2065

148 512 99 249

100 ↑ 59

150 514 101 15378

151 515 102 15379

152 516 103 15380

153 517 104 15381

20344 518 105 15382

21290 519 106 15383

34186 520 107 15384

34188 521 108 15385

33650 522 109 15386

3448 523 110 250

14360 524 111 15387

13219 525 112 15388

Table 3: Some centers and the repeated µ-
images. 6 ↑ 2 indicates that the center with
Kimberling index 6 already shows up in the
chain defined by center with Kimberling in-
dex 2.

be collinear yields a quartic transformation
that sends lines to to points. Unfortunately,

this transformation is not invertible. If the
points A′, B′, C ′ are the vertices of the Ce-
vian triangle of a point P , then the mapping
that sends P to the respective Miquel point
(as illustrated in Figure 1) is sextic. In this
case it has to be clarified under which cir-
cumstances this mapping is invertible.
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