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Abstract: The elementary geometric Miquel theorem concerns a triangle Δ𝐴𝐵𝐶 and 

points 𝑅, 𝑆, 𝑇 on its sides, and it states that the circles 𝑘(𝐴𝑅𝑇), 𝑘(𝐵𝑅𝑆), 𝑘(𝐶𝑆𝑇) have a 
common point 𝑀, the Miquel point to these givens. Choosing 𝑅, 𝑆, 𝑇 in special ways 
one receives the so-called beermat theorem, the Brocard theorems, and the Steiner-
Simson-Wallace theorem as special cases of Miquel’s theorem. Hereby facts 
connected with Brocard’s theorem follow from properties of Miquel’s theorem. If e.g. 
𝑅, 𝑆, 𝑇 fulfill the Ceva condition, Miquel’s construction induces a mapping of the Ceva 
point to the Miquel point. We discuss this and other mappings, which are natural 
consequences of Miquel’s theorem. Furthermore, if the points 𝑅, 𝑆, 𝑇 run through the 
sides of Δ such that e.g. the affine ratios ar(𝐴𝑅𝐵), ar(𝐵𝑆𝐶), ar(𝐶𝑇𝐴) are equal, then the 
corresponding Miquel points 𝑀 run through the circumcircle of the triangle formed by 
the Brocard points and the circumcenter of Δ. Besides these three remarkable points 

of Δ, this circle contains several other triangle centers. Even though most of the 
presented topics are well-known, their mutual connections seem to be not yet 
considered in standard references on triangle geometry and therefore might justify an 
additional treatment. 
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1    Introduction 
 
In 1838 Auguste Miquel (1816-1851) published a theorem (see [10]), which later on 

was called after him and got the meaning of an important axiom in circle geometries, 

see e.g. [2]. (In [11] it is mentioned, that this remarkable incidence was known already 

since 1804.) The elementary geometric version of Miquel’s theorem concerns a 

triangle Δ𝐴𝐵𝐶 and an inscribed triangle ∆𝑅𝑆𝑇, and it states that the circles 𝑘(𝐴𝑅𝑇), 

𝑘(𝐵𝑅𝑆), 𝑘(𝐶𝑆𝑇) have a common point 𝑀, the Miquel point to these givens, see Fig.1. 

For 𝑀 there exists a two-parametric set of possibilities, such that there is a one-

parameter family of triplets 𝑅, 𝑆, 𝑇 to a given point 𝑀. The consequences of this fact 

are properties of the Miquel configuration and Miquel mappings, which seemingly are 

not yet considered. This will be treated in Chapter 2.  
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Fig.1: Elementary geometric version of Miquel’s theorem 

 
Obviously, when choosing 𝑅, 𝑆, 𝑇 dependent (e.g. collinear or infinitesimally close to 

the vertices 𝐴, 𝐵, 𝐶), the corresponding Miquel point 𝑀 will get special meanings and 

connect Miquel’s theorem to e.g. that of Steiner and Simson-Wallace resp. to Brocard’s 

theorems. The well-known beermat theorem and it's reverse, the three circle theorem, 

is a relative of Miquel’s theorem, too. We dedicate Chapter 3 to these rather well-known 

2-dimensional cases. 

If the points 𝑅, 𝑆, 𝑇 run through the sides of Δ such that e.g. the affine ratios ar(𝐴𝑅𝐵),

ar(𝐵𝑆𝑇), ar(𝐶𝑇𝐴) are equal, then the corresponding Miquel points 𝑀 run through the 

circumcircle of the triangle formed by the Brocard points and the circumcenter of Δ. 

Besides these three remarkable points of Δ, this circle contains several other triangle 

centers. This will be the content of Chapter 4. Here, we refrain from presenting further 

generalizations, as, for example, using congruent point series on the sides of Δ or cross 

ratios instead of the affine ratios. This will be treated at another occasion.   

Finally, it is well-known that the theorem of Miquel holds in classical circle geometries, 

but it also holds in affine normed planes, while it is not true in an elliptic or hyperbolic 

plane. We show some examples in Chapter 5. 

 

 

2   Properties of elementary geometric Miquel figures 

 

2.1  Miquel stars to a given triangle 

 

To an arbitrarily chosen point 𝑀, we construct the feet 𝑅, 𝑆, 𝑇  on the sides of ΔABC. 

The Miquel circles 𝑘(𝐴𝑅𝑇), 𝑘(𝐵𝑅𝑆), 𝑘(𝐶𝑆𝑇) then are the Thales circles over 

segments [𝑀𝐴], [𝑀𝐵], [𝑀𝐶], and 𝑀 is indeed their common intersection. Therewith, 

as the lines  𝑅𝑀, 𝑆𝑀, 𝑇𝑀  are parallel to the altitudes of Δ𝐴𝐵𝐶, they include angles 

∠𝑅𝑀𝑇 = 𝜋 − 𝛼, ∠𝑅𝑀𝑆 = 𝜋 − 𝛽, ∠𝑆𝑀𝑇 = 𝜋 − 𝛾 , see Fig. 2. Choosing another point 

𝑅’ ∈ 𝐴𝐵 leads to Miquel circles 𝑘(𝐴𝑅′𝑀), 𝑘(𝐵𝑅′𝑀), which intersect 𝐵𝐶 in 𝑆’ and 𝐶𝐴 in 

𝑇’, see Fig.2.  



 
Fig.2: The triples (𝑅, 𝑆, 𝑇), (𝑅′, 𝑆′, 𝑇′) belonging to a 

fixed Miquel point 𝑀 define congruent Miquel stars. 

 

For quadrangles inscribed into these circles, opposite angles must sum up to 𝜋, and 

therefore ∢𝑅𝑀𝑅′ = ∢𝑆𝑀𝑆′ = ∢𝑇𝑀𝑇′. In the following we use 

 

Definition 1: Let 𝑀 be the Miquel point of a triangle ∆𝐴𝐵𝐶 to 𝑅′, 𝑆′, 𝑇′. The triplet of 

half-lines (𝑀𝑅’, 𝑀𝑆’, 𝑀𝑇’) is called the Miquel star associated with the point 𝑀.  

 

For Miquel stars the following holds 

 

Theorem 1: If 𝑅’ runs through 𝐴𝐵, the Miquel star rotates about 𝑀 with angle 𝜀. The 

Miquel stars to different Miquel points are congruent, i.e. the angles enclosed by any 

pair of half-lines are equal. 

 

The content of Theorem 1 relates to generalizations of Wallace’s theorem, see [11]. 
The vertex triplets 𝑅‘, 𝑆‘, 𝑇‘ , belonging to a given Miquel-point 𝑀, form triangles, the 

sides of which envelop three parabolas with common focus 𝑀. (This follows from the 
projectivity between e.g. 𝑅′ ∈ 𝐴𝐵 ↦ 𝑆′ ∈ 𝐵𝐶 .) The trilateral of vertex-tangents of the 
parabolas has the pedal points 𝑅, 𝑆, 𝑇  of 𝑀 for its vertices, and the directrices pass 

through the reflection images 𝑅“, 𝑆", 𝑇“ of 𝑀 in the sides of ∆𝐴𝐵𝐶, see Fig. 3. Therewith 
follows 
 

Theorem 2: Let 𝑀 be given and let 𝑅′ run through 𝐴𝐵. Then the sides of Δ𝑅′𝑆′𝑇′ 

envelop three parabolas with common focus 𝑀. Their common chords form a complete 

quadrangle consisting of the incenter 𝐼 and the excenters of Δ𝑅"𝑆"𝑇". (𝑅", 𝑆", 𝑇" are the 

images of reflections of 𝑀 in the sides of ΔABC, and Δ𝑅"𝑆"𝑇" consists of the directrix 

lines of the above mentioned parabolas.) 

 



 
 

Fig. 3: The sides of Δ𝑅′𝑆′𝑇′ envelop three parabolas with common focus 𝑀. 

Their common cords form a complete quadrangle. 

 

2.2    A first Miquel mapping 

 

The chords through the real intersection points of pairs of parabolas turn out to be the 

interior angle bisectors of triangle 𝑅“𝑆"𝑇“. Therefore, the common intersection point 𝐼 

of the three cords is the incenter of 𝑅“𝑆"𝑇“.  As two parabolas intersect (in algebraic 

sense) in 4 points, there must exist, for our three parabolas, a complete quadrangle 

formed by six chords, see Fig. 3. It is near laying that the outer chords then must be 

the second angle bisectors of 𝑅“𝑆"𝑇“ and deliver the excenters. It makes sense to 

define a first Miquel mapping: 

 

Definition 2: Given a triangle Δ𝐴𝐵𝐶 and an arbitrarily given point 𝑀. Reflecting 𝑀 in 

the sides of Δ𝐴𝐵𝐶 delivers a triangle 𝑅“𝑆“𝑇“ =: Δ".  The first Miquel mapping 𝜇1 to 

Δ𝐴𝐵𝐶 maps the point 𝑀 to the incenter  𝐼 of the reflection triangle  Δ" of 𝑀.  

Remark 1: When we choose 𝑅, 𝑆, 𝑇 as (collinear) ideal points, then the three 

degenerate Miquel circles consist of a side of ∆𝐴𝐵𝐶 together with the ideal line. The 

ideal line is therefore a common one-dimensional component and a Miquel point 𝑀 is 

not defined. But when we choose an ideal point as Miquel point, points 𝑅", S", 𝑇" are 

constructible, as reflections, extended to ideal points, act as harmonic homologies. 

Incenter and excenters to this degenerate ideal triangle ∆" are not defined. The 

triangle ∆“ collapses, too, if 𝑀 is a point of the circumcircle 𝑐 of ∆𝐴𝐵𝐶. Let 𝑀 ∈ 𝑐 ∖

{𝐴, 𝐵, 𝐶}, then 𝑅“ ≠ 𝑆" ≠ 𝑇“ ≠ 𝑅" are collinear and define a segment bounded by two 

of the points {𝑅“, 𝑆", 𝑇“}, while the third, inner point, can act as limit of the incenter 𝐼 of  

∆“. (The limits of the excenters 𝐸𝑖 are the other two vertices plus the ideal point of the 

direction orthogonal to line 𝑅"𝑆". Therefore, the exceptional set for the first Miquel 

mapping 𝜇1 consist of {𝐴, 𝐵, 𝐶} alone. 



Without calculation, by arguments of elementary geometry and chains of 

projectivities, we find that  

-  the orthocenter 𝑂 and the vertices 𝐴, 𝐵, 𝐶 are fixed points of the first Miquel 

   mapping 𝜇1,  

-  a point 𝑀 at the circumcircle 𝑐 of Δ is mapped to a point 𝐼 on one of the circular 

   arcs (𝐴𝑂𝐵), (𝐵𝑂𝐶), (𝐶𝑂𝐴) of circles congruent to 𝑐, (obviously, the triangles Δ" then 

   collapse to lines through 𝑂), see Fig. 4, 

-  if 𝑀 traverses through a side of Δ, e.g. through 𝐴𝐶, then 𝐼 runs along conic arcs 

   through 𝐴 and 𝐶, see Fig 5a. Here 𝐼 and one excenter 𝐸𝑖 swap their meaning for 

   inner resp. outer points 𝑀 of the segment [𝐴, 𝐶]. The pairs (𝐼, 𝐸1), (𝐸2, 𝐸3) run 

   through two conics. 

 

Fig. 4: The first Miquel-mapping 𝜇1 maps a point 𝑀 on the circumcircle 𝑐  

to a point 𝐼 on one of the circular arcs 𝐴𝑂𝐵, 𝐵𝑂𝐶, 𝐶𝑂𝐴 of circles congruent to 𝑐.  

The “excenters” trace the remaining arcs of these circles plus the ideal line. 

The orthocenter 𝑂 and 𝐴, 𝐵, 𝐶 are mapped to themselves. 

 

 
Fig.5a: If 𝑀 runs through a side of Δ𝐴𝐵𝐶, e.g. through 𝐴𝐶, then the incenters and  

excenters of ∆" run through a pair of conics through 𝐴 and 𝐶. The line 𝑅"𝑆"  

envelops a parabola 𝑝 with focus 𝐵 and touching the altitudes of Δ𝐴𝐵𝐶 through 𝐴, 𝐶. 

 



The following figures Fig. 5b and Fig. 5c show general cases of the mapping 𝜇1. It 

seems that, when 𝑀 traces a line 𝑙,  the orbits of 𝐼 and 𝐸𝑖 are parts of one algebraic 

curve. 

 
Fig.5b: If 𝑀 runs through a line 𝑙 through 𝐴, then 𝐼 and 𝐸𝑖 to ∆" run in pairs  

through two parts of an algebraic curve. 

 

Fig.5c: If 𝑀 runs through a line 𝑙 not passing through a vertex of Δ𝐴𝐵𝐶, then 𝐼 and 𝐸𝑖 trace 

four distinct parts of an algebraic curve, such that the mapping 𝜇1: 𝑀 ⟼ 𝐼 is independent of  

𝐸𝑖. In the presented case, 𝐼 traces even a closed curve.  

For an analytic description of 𝜇1 it seems adequate to connect a Cartesian frame with the 

triangle ∆𝐴𝐵𝐶 with origine 𝐴 and unit point 𝐵 on the 𝑥-axis. Thus, ∆𝐴𝐵𝐶 as also ∆𝐴𝑀𝐵 can be 

described by the angles 𝛼 and 𝛽 (fixed) resp. 𝜉 and 𝜂 (variable), see Fig. 6. With these 

angles the side lengths a, b are  

𝑎 =
sin 𝛼

sin(𝛼 + 𝛽)
,   𝑏 =

sin 𝛽

sin(𝛼 + 𝛽)
,   𝑐 = 1                                                        (1) 

|𝐴𝑀| =
sin 𝜂

sin(𝜉 + 𝜂)
,   |𝐵𝑀| =

sin 𝜉

sin(𝜉 + 𝜂)
 ,   |𝐶𝑀| =

sin(𝛼 − 𝜉) sin 𝛽

sin(𝜉 + 𝜂) sin ∡𝐴𝑀𝐶
 ,                        (2) 



( cot ∡𝐴𝑀𝐶 =
sin 𝛼 sin(𝛽 − 𝜂) + cos(𝜉 + 𝜂) sin 𝛽 sin(𝛼 − 𝜉)

sin 𝛽 sin(𝛼 − 𝜉) sin(𝜉 + 𝜂)
  ), 

|𝑅"𝑇"| = 2|𝐴𝑀| sin 𝛼 ,   |𝑅"𝑆"| = 2|𝐵𝑀| sin 𝛽,      |𝑆"𝑇"| = 2|𝐶𝑀| sin(𝛼 + 𝛽),            (3) 

𝑅"=|AM| (
cos ξ
- sin ξ

) , 𝑇"=|𝐴𝑀| (
cos(2𝛼 − 𝜉)

sin(2𝛼 − 𝜉)
) , 𝑆" = |𝐵𝑀| (

1 − cos(2𝛽 − 𝜂)

sin(2𝛽 − 𝜂)
).           (4) 

 

Fig. 6: Labeling used for calculating the analytic representation 

 of the first Miquel mapping 𝜇1.  

 

When iterating 𝜇1: 𝑀 ⟼ 𝐼 =: 𝑀1 ⟼ 𝐼1 =: 𝑀2 → ⋯, we might suppose the following 
 
Conjecture: The orthocenter 𝑂 of ∆𝐴𝐵𝐶 is an attractor of 𝜇1

𝑛, (𝑛 → ∞). 
 
Remark 2: Obviously, one could extend the first Miquel mapping to the quadrangle 
consisting of 𝐼 and the excenters 𝐸𝑖 of Δ′′. If 𝑀 traces a line 𝑙, then each of the excenters 

traces a curve 𝑙𝐸𝑖. Thereby, dependent on the line 𝑙 and similar as in Fig. 5b,  the 
centers 𝐸𝑖 can change their roles. The combination of  these four orbits 𝑙𝐸𝑖 , 𝑙𝐼 seems to 
form a single algebraic curve. 
 
2.3    Miquel circles and their midpoints 
 
In the following we consider the triangle formed by the centers of the Miquel circles  
𝑚𝐴 = 𝑘(𝐴𝑅′𝑇′), 𝑚𝐵 = 𝑘(𝐵𝑅′𝑆′), 𝑚𝐶 = 𝑘(𝐶𝑆′𝑇′). Independent of the chosen points 

𝑅′, 𝑆′, 𝑇′ we find a property of the centers of 𝑚𝐴, 𝑚𝐵, 𝑚𝐶, (see Fig. 2 and 7, and [16]), 
which we formulate as 
 
Theorem 3: Given a triangle Δ𝐴𝐵𝐶 and a triangle Δ𝑅′𝑆′𝑇′ arbitrarily inscribed to it. The 
centers 𝑀𝐴, 𝑀𝐵, 𝑀𝐶 of the three Miquel circles 𝑚𝐴, 𝑚𝐵, 𝑚𝐶 form a triangle similar to Δ𝐴𝐵𝐶 
. The similarity factor is 1 2 cos 𝜀 .⁄  
 



A proof of Theorem 3 can be read from Fig. 2. It follows that the sides of  ∆𝑀𝐴𝑀𝐵𝑀𝐶 

enclose a fixed angle with the sides Δ𝐴𝐵𝐶. We shall make use of Theorem 3 in the 
next chapters. 
 

 
Fig.7: The triangle of the  Miquel circle centers is similar to the given triangle ∆𝐴𝐵𝐶. 

 
2.4    A second Miquel mapping 

 

The circumcircle 𝑐′ of triangle ∆𝑅𝑆𝑇 intersects the sides of the initial triangle ∆𝐴𝐵𝐶 in 

additional points �̅�, 𝑆̅, �̅�, see Fig. 8. This new triangle ∆�̅�𝑆̅�̅� =: ∆̅ gives rise to a new 

Miquel point �̅�, such that one can give:  

 

Definition 3: Given a triangle Δ𝐴𝐵𝐶 and arbitrarily chosen non collinear points 𝑅, 𝑆, 𝑇 

defining the Miquel point 𝑀. Let further �̅�, 𝑆̅, �̅� be the remaining intersections of the 

circumcircle c’ of Δ𝑅𝑆𝑇 with the sides of Δ𝐴𝐵𝐶, which define a new Miquel point �̅�, 

then we define the mapping 𝜇2: 𝑀 ↦ �̅� as the second Miquel mapping. 

 

Fig. 8: Visualization of the second Miquel mapping 𝜇2: 𝑀 ⟼ �̅�. 



If we consider the contact points 𝑅 = �̅�, 𝑆 = 𝑆̅, 𝑇 = 𝑇 ̅ of in- and excircles of ∆𝐴𝐵𝐶 then 

it becomes obvious that the incenter and the excenters of ∆𝐴𝐵𝐶  are fixed points of 

the second Miquel mapping 𝜇2.  

We collect some properties of 𝜇2, leaving the elementary but lengthy calculations to 

the reader. 

If we consider the contact points 𝑅 = �̅�, 𝑆 = 𝑆̅, 𝑇 = 𝑇 ̅ of in- and excircles of ∆𝐴𝐵𝐶, then 

it becomes obvious that the incenter and the excenters of ∆𝐴𝐵𝐶  are fixed points of the 

2nd Miquel mapping 𝜇2. A less obvious property, see Fig. 9, shall be formulated as  

Theorem 4: Let the triangles Δ𝑅𝑆𝑇, ∆�̅�𝑆̅�̅�, both inscribed to ∆𝐴𝐵𝐶, have the same 

circumcircle 𝑐’. Thtouchinge midpoint triangles ∆𝑀≔ ∆𝑀𝐴𝑀𝐵𝑀𝐶 and ∆�̅�≔ ∆�̅�𝐴�̅�𝐵�̅�𝐶 of 
the therewith defined two triplets of Miquel circles are directly congruent with rotation 
center  𝑍2 and they are similar to the initial triangle ∆𝐴𝐵𝐶. Furthermore, the two Miquel 

points  𝑀, �̅� are equidistant to 𝑍2 and the angle ∢𝑀𝑍2�̅� is twice the rotation angle 

𝑀𝐴 → �̅�𝐴. 
 

 
 

Fig.9: The midpoint triangles ∆𝑀 and ∆�̅� are directly congruent (rotation center  
𝑍2) and similar to the initial triangle ∆𝐴𝐵𝐶.  

 
When we start with a fixed (but arbitrarily chosen) Miquel point 𝑀 and consider the 
one-parameter family of triangles, (in Fig. 10 represented by Δ𝑅𝑆𝑇, Δ𝑅′𝑆′𝑇′), then we 

find the centers of their circumcircles on a line 𝑢, although these circles dot form a 
pencil. They intersect the sides of ∆𝐴𝐵𝐶 in an additional family of triangles of type 

∆�̅�𝑆̅�̅�, ∆𝑅′̅𝑆′̅𝑇′̅, which define a fixed Miquel point �̅�.  
 



 
Fig.10: To a fixed Miquel point 𝑀 belongs a set of triangles Δ𝑅𝑆𝑇 and, 

 via their circumcircles, a set of triangles ∆�̅�𝑆̅�̅�, which again define  

a fixed Miquel point �̅�, such that 𝜇2: 𝑀 ⟼ �̅� is involutive. 
 

Remark 3: For points 𝑀 on the circumcircle 𝑐 = 𝑘(𝐴𝐵𝐶) the points 𝑅, 𝑆, 𝑇 are collinear 

and their circumcircle degenerates and splits to the line 𝑅𝑆 plus the ideal line 𝜔, which 

defines the collinear triple �̅�, 𝑆̅, �̅�. Therefore, as the circumcircles 𝑘(𝐴�̅��̅�),  
𝑘(𝐵�̅�𝑆̅), 𝑘(𝐶𝑆̅�̅�) are not defined, 𝑐 is an exceptional set of points 𝑀. 
 
We can therefore conclude 
 

Theorem 5: The second Miquel mapping 𝜇2: 𝑀 ⟼ �̅� is involutoric. The in- and 

excenters of ∆𝐴𝐵𝐶 are fixed points of 𝜇2, the circumcenter 𝑐 of ∆𝐴𝐵𝐶 is an exceptional 
set of points 𝑀. 
 
 
 
3    Special cases of Miquel’s theorem 
 
3.1  The Theorems of Brocard 
  
       The French mathematician Henri Brocard (1845-1922) stated that the three circles 
passing through a pair of vertices of a triangle Δ𝐴𝐵𝐶 and touching one of its sides have 

a common point. Due to the two possible orientations of Δ there are two triples of 
circles, and therefore two such points, which are called first and second Brocard point 
𝐵1, 𝐵2, see e.g. [10]. They have many interesting properties and give rise to additional 
concepts, c.f. [7]. There is an interpretation in the sense of Miquel, if we choose 𝑅, 𝑆, 𝑇 
infinitely close to 𝐴, 𝐵, 𝐶. Then the Miquel circles will touch the sides of Δ at its vertices 
and become Brocard-Miquel circles see Fig. 11. The two possible Miquel points 
become the first and second Brocard point 𝐵1, 𝐵2. For these points, the Miquel stars 

pass through all three vertices of Δ. Fig. 12 shows the situation for one of the Brocard 
points, but also for the altitude star. 
 



  
   

Fig. 11: Brocard-Miquel circles and Brocard points of a triangle,  
as limit cases of Miquel points. 

  

 
Fig. 12: The Miquel-star through the three vertices of a triangle Δ 

to Brocard point  𝐵1 and to the orthocenter 𝑂. 
 

As the sides of each Miquel star intersect the sides of a triangle at equal angles (see 
Fig. 2), the theorem concerning the so-called fixed Brocard-angle follows as a trivial 
corollary.  
As for one limit triangle ∆𝑅𝑆𝑇 its circumcircle c’ coincides with the circumcircle c of ∆, 

we get the triangle ∆�̅�𝑆̅�̅� mentioned in Chapter 2.2 as the 2nd limit triangle, such that 
the Miquel points 𝐵1 and 𝐵2 correspond in the second Miquel mapping 𝜇2. We 
formulate this as  
 
Theorem 6: The Brocard points 𝐵1 and 𝐵2 of a triangle ∆𝐴𝐵𝐶 correspond in the 
involutive Miquel mapping 𝜇2 of ∆𝐴𝐵𝐶. 
 

We consider now the midpoints of the two triads of Brocard-Miquel circles 𝑏𝑖
𝐴, 𝑏𝑖

𝐵, 𝑏𝑖
𝐶 ,

(𝑖 = 1,2), which intersect in the Brocard points 𝐵𝑖. As a consequence of Theorem 4 
and by arguments of congruent angles, see Fig. 13 and 14, we can formulate 
 

Theorem 7:  The centers 𝑍𝑖
𝑋 , (𝑖 = 1,2;   𝑋 = 𝐴, 𝐵, 𝐶), of the two triplets of Brocard-

Miquel circles 𝑏𝑖
𝑋 form two congruent triangles ∆1, ∆2, which are similar to the given 

triangle Δ𝐴𝐵𝐶. They are in Desargues-position with the circumcenter  𝑈 of Δ as 
perspector and the bisector of the segment [𝐵1, 𝐵2] as perspectrix (passing through 𝑈). 



The centers 𝑍𝑖
𝑋 of the 6 Brocard-Miquel circles 𝑏𝑖

𝑋 lay in pairs on circles, which are 

concentric with the circumcircle 𝑧 of the isosceles triangle Δ𝐵1𝑈𝐵2. 
 
The proof of Theorem 7 can be performed by straight forward calculation similar to that 
of the first and second Miquel mappings. The similarity statement is a consequence of 
Theorem 3. 

 
Fig. 13: The midpoints of the two triplets of Brocard-Miquel circles form  

two congruent triangles of a Desargues configuration.  
They are similar to the initial triangle. 

 

 
 

Fig. 14: The midpoints of the two triads of Brocard-Miquel circles are  
in pairs on concentric circles. Their common center is  

the center 𝑍 of the circumcircle 𝑧 of Δ𝐵1𝑈𝐵2. 
 

Remark 4: It turns out that the similarity factor 𝜎 for the midpoint triangles ∆𝑖
′= Δ𝑍𝑖

𝐴𝑍𝑖
𝐵𝑍𝑖

𝐶 

with respect to ∆ becomes  𝜎 =  𝑈𝐵1
̅̅ ̅̅ ̅: 𝐵1𝐵2

̅̅ ̅̅ ̅̅ ̅.  Consequently, one could construct the 
Brocard points for these triangles, and we must receive Brocard triangles similar to  
Δ𝐵1𝑈𝐵2. Fig. 15 shows the situation for the midpoint triangle ∆1

′ , which is directly similar 

to Δ. Taking Δ𝐴𝐵𝐶 = Δ𝐴0𝐵0𝐶0 and Δ𝐵1𝑈𝐵2 = Δ𝐵1
0𝑈0𝐵2

2 as the initial situation, the next 

step delivers 𝐵1
1 = 𝑈0, 𝐵2

1 = 𝐵2
0, and we get a chain of similar triangles with common 



vertex 𝐵2
0 = ⋯ = 𝐵2

𝑛. Constructing the Brocard points for both midpoint triangles at 
each stage gives a kind of a fractal structure based on a bifurcation process. 

 

 
Fig. 15: The midpoint triangles ∆1, ∆2 are similar to the given triangle  

The similarity factor 𝜎  turns out to be the ratio 𝑈𝐵1
̅̅ ̅̅ ̅: 𝐵1𝐵2

̅̅ ̅̅ ̅̅ ̅. 
 
Remark 5: As a triangle Δ needs three parameters to be described, while Δ𝐵1𝑈𝐵2 is 
isosceles, there must be a one-parameter family of triangles to a given triangle Δ𝐵1𝑈𝐵2. 
We formulate the result when keeping the vertices 𝐴 and 𝐵 fixed and 𝐶 movable such 
that the corresponding triangles Δ𝐵1𝑈𝐵2 are similar, see Fig. 16:  
 

 
Fig.16: Vertices 𝐶 moving along circles of a hyperbolic pencil of circles, 

 together with fixed vertices 𝐴, 𝐵, form triangles with similar triangles Δ𝐵1𝑈𝐵2. 

 

Theorem 8: The vertices 𝐶 to fixed vertices 𝐴, 𝐵 move along two circles symmetric to 
the line 𝐴𝐵 if we demand that the corresponding triangles Δ𝐵1𝑈𝐵2 shall be similar. The 

circles 𝑐(𝜑) to different angles 𝜑 = ∢𝐵1𝑈𝐵2 belong to a hyperbolic pencil of circles, the 



degenerate circles of which are the two possible vertices 𝐶 forming equilateral triangles 

Δ𝐴𝐵𝐶 over the segment [𝐴𝐵]. 
 
We omit the proof, which is straight forward calculation similar to that for 𝜇1 and 𝜇2.  
A consequence of Theorem 8 is that 0° < 𝜑 < 60°. Therefore, only for equilateral 
triangles Δ the triangles ∆1, ∆2  coincide and are congruent to Δ. 
 
 
3.2  The points 𝑅, 𝑆, 𝑇 fulfil the Menelaos condition 
 
As a second special case we choose collinear points 𝑅, 𝑆, 𝑇. In other words, 𝑅, 𝑆, 𝑇 fulfil 

Menelaos’s condition. Now, Δ𝑅𝑆𝑇 =: ∆′ is degenerate and the, in general, three 
parabolas (Fig. 3) coincide in a single one with the Miguel point 𝑀 as focus, see Fig. 

17.  J. Steiner interpreted the line 𝑅𝑆 as the fourth line of a quadrilateral and stated 
that the four circumcircles of its four partial triangles intersect in one point, namely the 
focus of the single parabola 𝑝 touching all four lines. In the sense of Miquel, all possible 
Miquel triangles  Δ𝑅′𝑆′𝑇′ to 𝑀 must be degenerate and 𝑀 is a point of the circumcircle 
of Δ. The pedal points of 𝑀 at the sides of Δ𝐴𝐵𝐶 are therefore collinear with the vertex 

tangent of the parabola 𝑝, which means that the theorem of Simson-Wallace (see [4]) 
becomes an obvious consequence. As the Miquel points are restricted to the 
circumcenter of  ∆ , i.e. a one-parameter set, while for the line 𝑅𝑆 there is a two-
parameter set of possibilities, there must be a one-parameter set of lines belonging to 
the same Miquel point 𝑀. Indeed, this set consists of the tangents of the single 
parabola mentioned above. Of course, one again could define a kind of whatMiquel 
mapping 𝜇⋆: 𝑔 → 𝑀, which now is singular with image img(𝜇∗) = 𝑢 and the tangent sets 
of parabolas as fibers. 
 

 
Fig. 17: Collinearly chosen points 𝑅, 𝑆, 𝑇 lead to the theorems  

of Steiner and Simson-Wallace and of Kantor. 
 
Remark 6: It seems worth mentioning a theorem by S. Kantor [9], which states that 
the centers 𝑈, 𝑈1, 𝑈2, 𝑈3 of the four circumcircles of the partial triangles of a 
quadrilateral and their common intersection, (the Miquel point 𝑀) are concyclic. In 
Fig. 17 the center of this Kantor circle is labelled by 𝐾. Kantor considered the five 
partial quadrilaterals of a five-lateral and states that the centers of the five Kantor 
circles are again concyclic, delivering a new center. K. Hirano [6] considers these 



new centers of a six-lateral and found that they again are concyclic. Finally, Ch. J. 
Hsu [17] extended these results step by step to 𝑛-laterals, stating that concyclicity 
prevails in each step. Furthermore, a connection of Steiner’s and Miquel’s theorems 
is applied in [11] to define so-called Steiner-Miquel mappings.  
 
 
3.3  The points 𝑅, 𝑆, 𝑇 fulfil Ceva’s condition 
 
Now, we choose 𝑅, 𝑆, 𝑇 such that 𝑅𝐶, 𝑆𝐴, and 𝑇𝐵 meet at a point 𝑋, which means that 
they fulfill the “Ceva condition”. Even though this case looks somehow dual to the 
former case and can be related to it via the triangle polarity to Δ𝐴𝐵𝐶, it has quite 

different properties. Now, a mapping of some point 𝑋 to the Miquel point 𝑀 =: 𝑋′ is 
induced in a natural way which is algebraic of degree 6. In the following, we give a 
description of what shall be called third Miquel-mapping 𝜇3: 𝑋 ↦ 𝑋′. It turns out that 
points on the sides of ∆𝐴𝐵𝐶 are mapped to points of the circumcircle of this triangle ∆, 
see Fig.18a. 
 

 
Fig. 18a: The 2nd Miquel-mapping 𝜇2: 𝑋 ↦ 𝑋′ maps a line 𝑔  

to a curve 𝑔’ of  degree 6. If 𝑔 coincides with a side of ∆,  
then its 𝜇2-locus is the circumcircle 𝑢 of ∆𝐴𝐵𝐶. 

 
In the view of circle geometry, which usually considers both lines and circles as Möbius 
circles within a projective line over complex numbers, and which is modeled as the 
Gauss plane 𝜋  and/or the Riemannian sphere, we present here a slight modification 
of this approach: We replace the Riemannian sphere by a paraboloid of revolution and 
an axis normal to the plane of the triangle ∆. The standard stereographic  projection of 
the Riemann sphere becomes then the orthogonal projection onto what shall be called 
Riemann paraboloid Ψ described by the Cartesian equation 
 

Ψ:     𝑥2 + 𝑦2 = 𝑧 .                             (5) 
 

For a convenient calculation, we embed the Euclidean space into its projective closure 
and use homogeneous coordinates (𝑥, 𝑦, 𝑧) ↦ (𝑥0; 𝑥1, 𝑥2, 𝑥3)ℝ. Let the Euclidean 
planar coordinate representation of the vertices of triangle ∆ and of the points 𝑅, 𝑆, 𝑇  
be 𝐴 ≔ (0,0), 𝐵: = (1,0), 𝐶: = (𝑢, 𝑣), 𝑅: = (𝑟, 0), 𝑆 ≔ (1 + (𝑢 − 1)𝑠, 𝑣𝑠)), 𝑇 ≔ (𝑢𝑡, 𝑣𝑡). 



They are mapped by the inverse stereographic projection 𝑝: 𝜋 → Ψ  to points 

𝐴𝑝, … , 𝑇𝑝 ∈ Ψ. The representation in homogeneous coordinates of these image points 
reads therefore as  
 

𝐴𝑝 = (1,0,0,0)ℝ 𝐵𝑝 = (1,1,0,1)ℝ 𝐶𝑝 = (1, 𝑢, 𝑣, 𝑢2 + 𝑣2)ℝ 

𝑅𝑝 = (1, 𝑟, 0, 𝑟2)ℝ 𝑇𝑝 = (1, 𝑢𝑡, 𝑣𝑡, (𝑢2 + 𝑣2)𝑡2)ℝ                              (6) 

𝑆𝑝 = (1,1 + 𝑢−1𝑠, 𝑣𝑠, (1 + 𝑢−1𝑠)2 + 𝑣2𝑠2)ℝ, (𝑢−1 ≔ 𝑢 − 1). 
 
The planes 𝐴𝑝𝑅𝑝𝑇𝑝, 𝐵𝑝𝑆𝑝𝑅𝑝, 𝐶𝑝𝑇𝑝𝑆𝑝 represent the three Miquel circles, and, 
because of Miquel’s theorem, their intersection point 𝑀𝑝 must be a point of Ψ. 
 
As there is a one-parameter family of triplets 𝑅, 𝑆, 𝑇 to a given Miquel point X’, we can 
expect, that at least one of those triples fulfills Ceva’s condition, such that it is 

possible to define the inverse mapping 𝜇2
−1: 𝑋′ → 𝑋 in a geometric way, see Fig. 18b.   

Starting with an arbitrarily given triple 𝑅′, 𝑆′, 𝑇′,  we construct a Ceva trilateral with 

sides  𝐴𝑆′, 𝐵𝑇′, 𝐶𝑅′ and its vertices 𝑈’, 𝑉’, 𝑊’. When rotating the Miquel star (Fig. 2), 
these vertices trace conics with a common point 𝑋, the Ceva point of 𝑋’. 
 

 
 

Fig. 18b: Reconstruction of the Ceva point 𝑋 to a given Miquel point 𝑋’. 
 

Theorem 9: The Ceva-Miquel mapping 𝜇3: 𝑋 ↦ 𝑋′  maps a Ceva point to a Miquel 
point. It is invertible and has the orthocenter of ∆𝐴𝐵𝐶 as fixed point. 
 
 
4   Orbits of Miquel points for special sets of Miquel triangles 𝚫𝑹𝑺𝑻 
 
In the earlier chapter 3.3, Fig.15,  we considered a special kind of dependencies of the 
point triples (𝑅, 𝑆, 𝑇) caused by the fact that the corresponding Ceva points 𝑋 are bound 
to a line 𝑔. In this chapter, we shall look for other and simpler kind of dependencies. 
As there are too many quite interesting cases, they shall be treated in a separate paper. 
Here, we restrict ourselves to present the case of 𝑅, 𝑆, 𝑇 running through similar point 

series on the sides of ∆𝐴𝐵𝐶, see Fig. 19. This shall mean that the ratios, in cyclic order, 
are equal, i.e. ar(𝐴𝑅𝐵) = ar(𝐵𝑆𝐶) = ar(𝐶𝑇𝐴) =: 𝑡 ∈ ℝ. We formulate  
 



Theorem 10: The Miquel points 𝑀 to triplets (𝑅, 𝑆, 𝑇) at sides of a triangle ∆𝐴𝐵𝐶 

fulfilling the ratio equality ar(𝐴𝑅𝐵) = ar(𝐵𝑆𝐶) = ar(𝐶𝑇𝐴) =: 𝑡 ∈ ℝ trace the 1st Brocard 
circle, which is the circumcircle of the triangle formed by the circumcenter 𝑈 and the 
two Brocard points  𝐵1, 𝐵2 of ∆. 
 
It turns out that this Brocard circle contains the triangle centers 𝑋𝑖  with the following 

Kimberling numbers 𝑖  (see [10]):  
i ∈ {3, 6, 1083, 1316, 1670, 1671, 2555, 2556, 2557, 32481, 32482, 5091, 5108, 6232, 
6322, 6795, 8429,9129, 11650, 13414, 13415, 13511, 13515, 13516, 14685,18332, 
18338, 24279, 35901, 43765, 46407, 46410, 53719, 59781, 59782, 59783, 59784, 
59785, 59786, 59787, 59788, 59789, 59790, 59791, 59792, 59793,  59794, 59795, 
59796}. 
 

 
Fig. 19: The set of triplets 𝑅, 𝑆, 𝑇 with ar(𝐴𝑅𝐵) = ar(𝐵𝑆𝐶) = ar(𝐶𝑇𝐴) =: 𝑡 ∈ ℝ  

has its Miquel points on the Brocard circle of ∆𝐴𝐵𝐶. 
 
In addition we found (see Fig. 20)  
 
Theorem 11: The cases of dependencies of 𝑅, 𝑆, 𝑇, with ar(𝐴𝑅𝐵) = 𝑡 ∈ ℝ, and 

ar(𝐵𝑆𝐶) = 𝑓𝑆(𝑡), ar(𝐶𝑇𝐴) = 𝑓𝑇(𝑡), where the linear functions 𝑓𝑆(𝑡), 𝑓𝑇(𝑡) lead to 
circles as loci of Miquel points. 

 
Fig. 20: The set of triples 𝑅, 𝑆, 𝑇 with ar(𝐴𝑅𝐵) = 𝑡, ar(𝐵𝑆𝐶) = 𝑓𝑆(𝑡), ar(𝐶𝑇𝐴) = 𝑓𝑇(𝑡), 

where  𝑓𝑆(𝑡), 𝑓𝑇(𝑡) are linear functions, causes the Miquel points to lie on a circle. 
 



 
5   Miquel's theorem in circle geometries and Minkowski planes 
 
5.1  It is near to consider the classical version of the Theorem of Miquel in the Möbius-
Gauss plane and use it as an axiom for certain ring geometries, see [2]. There is an 
interpretation as a (64, 83)-configuration of 6 Möbius circles, each containing four 
points, and eight Möbius points, each on three Möbius circles. Via stereographic 
projection onto the Riemann sphere, these eight points can be seen as the vertices of 
a right prism, e.g., a cube, while its six faces act as the planes of the circumcircles of 
face rectangles, see Fig. 21a.  
Similarly, the four (congruent) circles of the so-called beermat theorem (Fig. 21b, left), 
in some sense also a relative to Miquel's configuration,  form a (43, 43)-configuration 
and can be interpreted as an image of a tetrahedron, see Fig. 21b. The beermat 
theorem states that, if one marks three points 𝐴, 𝐵, 𝐶 on a circle 𝑐 and draws congruent 
circles 𝑐1, 𝑐2, 𝑐3 through any pair of these points, then these three circles have a 
common point which turns out to be the orthocenter of ∆𝐴𝐵𝐶.  

 

 
Fig. 21a: The (64, 83)-configuration 
 of a Miquel figure is interpreted as 

vertices and faces of a cube. 

 
Fig. 21b: The (43, 43)-configuration  

of a beermat figure can be interpreted 
as vertices and faces of a tetrahedron. 

Remark 7: If we choose 𝑅, 𝑆, 𝑇 as the feet of the altitudes of ∆𝐴𝐵𝐶, then the orthocenter 
𝑂 becomes the corresponding Miquel point. We can say that this combines somehow 
the beermat configuration with Miquel's configuration. In addition to the altitudes 𝑟, 𝑠, 𝑡, 
which now contain 4 points, also the Thales circles over [𝐴𝐵], [𝐵𝐶] and [𝐶𝐴] pass 

through 4 points, see Fig. 22. This gives rise to a (124, 86)-configuration which allows 
an interpretation as the 8 vertices of a cube, its 6 faces and 6 diagonal planes. In Fig. 
22 the altitudes 𝑟, 𝑠, 𝑡  are mapped to diagonal planes 𝜌, 𝜎, 𝜏 through the vertex labelled 
as ∞. This shows that the standard interpretation of Miquel's configuration by a cube 
can only be a metaphor, as the cube automatically has additional planes through four 
vertices, and this would mean six additional Möbius circles containing four points also 
in the general Miquel figure.  
 

 



 
Fig. 22: The (124, 86)-configuration of the special Miquel figure with  

the orthocenter as Miquel point can be interpreted as vertices and faces  
and diagonal planes of a cube. 

 
 
 
Steiner's configuration with its 4 straight Möbius circles and 4 Miquel-Möbius circles is 
therefore an (84, 84)-configuration. Here, no proper interpretation of a polyhedron in 3-
space with quadrangular faces / diagonal planes is possible. One could still use a cube 
and 8 tetrahedra, the four vertices of which symbolizing concyclic point quadruples, 
see Fig. 23a.  
 

 

 
Fig. 23a: The (84, 84)-configuration of the 

Steiner figure could be interpreted as the 8 
vertices of a cube with 8 partial tetrahedra, 

the vertices of which correspond to concyclic 
point quadruples.  

 

 
Fig. 23b: “Limit situation“ for one of the 
Brocard figures. It is no longer a con-
figuration, it can be interpreted as a  
3-sided double-pyramid.  

 

Each of the two Brocard figures Fig. 11 show a degenerate situation, where three 
points, the vertices of ∆𝐴𝐵𝐶, count twice (and lead to parabolic pencils of circles), while 
two points are always distinct. In this case we can no longer speak of a configuration. 
We get six Möbius circles and five points, and a 3D-interpretation could be the six 
planes and five points of a three-sided double pyramid, see Fig. 23b.  
 
 
5.2  Affine planes with a norm are called Minkowski planes. Here, a centrally symmetric 
and convex curve or polygon acts as unit circle 𝑢 with radius of length 1 and all circles 

are centric similar or translates to 𝑢, see e.g. [1] and [15]. Therewith, the question 
arises, if there are analogs to the classical figure of Miquel and its relatives, see e.g. 
[1] and [14]. Note that the norm depends on an additionally given (affine) coordinate 
frame, see Fig. 24, while the (geometric) distance measure is already well-defined by 
𝑢 alone. 



 
 

Fig. 24: Miquel figure for a parallelogram as unit circle 𝑢. Dependent  
on the affine coordinate frame, it allows an interpretation  
in a plane with maximum norm or with Manhattan norm. 

 
For  the beermat theorem to remain valid, central symmetry of 𝑢 is a sufficient 
condition. For some triples 𝑅, 𝑆, 𝑇, one of the three beermats through 𝑅, 𝑆 or 𝑆, 𝑇 or 𝑇, 𝑅 

is identical with the basic beermat 𝑢. Fig.25a and 25b show this for beermats being 
regular hexagons, decagons, and pentagons.  

  
Fig. 25a:  The beermat theorem is valid in Minkowski planes. 

 
Fig. 25b: If the beermats are not centrally symmetric, the three congruent  

beermats through 𝑅, 𝑆, 𝑇 ∈ 𝑢 have, in general, no common point, but  
there exist triplets 𝑅, 𝑆, 𝑇 such that they can have a common point 𝑀. 

 
It turns out that there is, in general, no analogon for the Steiner-Wallace-Simson figure 
in Minkowski planes with a unit circle 𝑢 different from an ellipse. The same is true also 
for Brocard's theorem. To translate a Brocard figure into a Minkowski plane the unit 
circle 𝑢 should be strictly convex and smooth, such that e.g. the left-orthogonality of 
Birkhoff [3] becomes a (1,1)-relation. In general, the three Brocard-Miquel circles to a 
given triangle ∆𝐴𝐵𝐶 have no common point, see Fig. 26a, but there are triangles ∆𝐴𝐵𝐶 
and unit circles u, such that they can be concurrent, see Fig. 26b. 



        
 
5.3 Finally, we shortly point to some classical Cayley-Klein planes, thus generalizing 
the Euclidean case in an obvious direction. As long as we deal with pseudo-Euclidean 
and isotropic planes the place of action is a projectively extended affine plane and we 
can expect that Miquel’s theorem and its relatives remain valid. For example, the 
isotropic case of a Miquel figure is shown in Fig. 27a, while Fig. 27b shows an isotropic 
version of the Steiner-Wallace-Simpson figure. 

 

In an elliptic or hyperbolic plane a triangle has four circumcircles. A Miquel figure in 
such a plane consists of the triangle  ∆𝐴𝐵𝐶, the triplet 𝑅, 𝑆, 𝑇 on its sides, and the four 
times three circumcircles of partial triangles. It is well-known that there are, in general, 
no common points for triplets of such circles, such that Miquel's Theorem is not true in 
such planes.  
Also the beermat theorem, dealing with congrtuent circles, is not true in elliptic or 
hyperbolic planes, as can be seen in Fig. 28: The three congruent circles through 𝑅, 𝑆 

resp. 𝑆, 𝑇 resp. 𝑇𝑅, (𝑅 ≠ 𝑆 ≠ 𝑇 arbitrarily chosen points of a fixed circle 𝑐),  have no 
common point, and they do not pass through the orthocentre 𝑂 of ∆𝑅𝑆𝑇, 

 

 
Fig. 26a: A general case for a Brocard 

figure in a Minkowski plane with unit circle 
𝑢. The three Brocard-Miquel circles have 

no common point. 

 

 
 

Fig 26b: A special case of a Brocard 
 figure, where the three Brocard-Miquel  

circles pass through one point M .  

 

 
 

Fig. 27a: A  Miquel figure in an isotropic 
plane. 

 
 

Fig 27b: A “Steiner figure“ with collinear 
points 𝑅, 𝑆, 𝑇.  

 



 
Fig. 28: Four hyperbolic congruent circles 𝑐𝑖 forming a beermat figure  

visualized in the Klein model of a hyperbolic plane with absolute conic 𝜔. 
 

6. Final remarks 
 
Some of the material treated here is more or less common knowledge. However, we 
shall emphasize the connections between several elementary geometric theorems, 
and their interpretation as special cases of Miquel's Theorem. This leads, on one hand, 
to some Miquel mappings, which are seemingly new, and on the other to a more 
detailed understanding of those standard theorems. 
The figures in this paper are generated with the graphics freeware Cinderella [5], an 
effective tool for planar geometry in Euclidean, hyperbolic and elliptic geometry. 
 
The authors thank the reviewers for valuable comments and proposed improvements. 
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