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Abstract

For any point P in the Euclidean plane of a triangle ∆, the six parallelians of P lie on a single
conic, which shall be called parallelian conic of P with respect to ∆. We shall give synthetic and
an analytic proof of this fact. Then, we study the shape of this particular conic depending on the
choice of the pivot point P . This leads to the finding that the only circular parallelian conic is
the first Lemoine circle. Points on the Steiner inellipse produce parabolae, and those on a certain
central line yield equilateral hyperbolae. The hexagon built by the parallelians has an inconic I
and the tangents of P at the parallelians define some triangles and hexagons with several circum-
and inconics. Certain pairings of conics together with in- and circumscribed polygons give rise to
different kinds of porisms. Further, the inconics and circumconics of the triangles and hexagons
span exponential pencils of conics in which any pair of subsequent conics defines a new conic as
the polar image of the inconic with regard to the circumconic. This allows us to construct chains
of nested porisms. The trilinear representations of the centers of the appearing conics as well as
perspectors of some deduced triangles depending on the indeterminate coordinates of P define
some algebraic transformations which establish algebraic relations between well- and less-known
triangle centers. We shall complete our studies by adding a list of possible porisms between any
pair of conics we meet. Further, we describe the possible loci of pivot points so that the mentioned
conics allow for porisms of polygons with arbitrary numbers of vertices.

Keywords: parallelian, parallelian conic, porism, triangle, hexagon, triangle center, algebraic
transformation

MSC AMS (2020): 51M15, 51M04, 14E05

1 Introduction

The parallelians of a point P in the Euclidean plane of a triangle ∆ are the projections of P onto
the sides of ∆ by means of the three lines parallel to ∆’s sides. The parallelians form a hexagon,
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the parallelian hexagon, with a triple of its sides coinciding with the sides of ∆. It is more or less
well-known (see [1, 4, 6]) that these six points lie on a single conic (provided an admissible choice
of P ), the parallelian conic of P with respect to ∆, which will in the following be denoted by P.
A synthetic proof of this fact shall be given together with an analytic proof in this Section. We do
not claim that this proof is new, but it could not be found anywhere in the literature.

The shape of the parallelian conic P depending on various pivot points P is one of the topics of
Sec. 2. Further in Sec. 2, we find that the tangents of P at the parallelians form a hexagon whose
vertices lie on a single conic T , the tangent parallelian conic. Thus, the parallelian conic P gives
rise to a hexagonal porism interscribed between the pair of conics (T ,P). Further, there exists a
triangle porism around P as we can find two separate tangent triangles of P whose six vertices
also lie on a single conic D, which gives rise to a second hexagonal porism.

Sec. 3 is dedicated to the construction of further porisms. Naturally, these porisms allow for the
construction of chains of porisms by means of polar conics, which belong to an exponential pencil
of conics spanned by any two (subsequent) conics in the chain. Finally, in Sec 4.2, we establish
algebraic relations between the pivot point P and the centers of some conics mentioned in Sec. 2
and 3. Further, some of the triangles deduced from the parallelians constitute perspective pairs
and the corresponding perspectors also allow for the definition and construction of an algebraic
relation between them and P . We add some tables showing the thus established relations between
some triangle centers.

2 The parallelian conic and inconic

2.1 The shape of the parallelian conic

In what follows, we use homogeneous trilinear coordinates in the plane of the base triangle ∆ =
ABC. Hence, the vertices of ∆ are described by the homogeneous trilinear coordinates A = 1 : 0 : 0,
B = 0 : 1 : 0, C = 0 : 0 : 1 and the unit point equals the incenter X1 = 1 : 1 : 1. Here, and in
the following, we use C. Kimberling’s notation for triangle centers (cf. [6, 7]). In this particular
projective extension of the Euclidean plane, the ideal line (line at infinity) ω can be described by
the equation ax + by + cz = 0 or simply by its homogeneous trilinear coordinates a : b : c. Note
that a = BC, b = CA, c = AB are the lengths of ∆’s sides.

Let P = ξ : η : ζ be a point in the plane of the triangle ∆ not on any side of ∆, i.e., ξηζ 6= 0.
Then, the three lines parallel to ∆’s sides and through P

[Pbc, Pac] ‖ [A,B], [Pca, Pba] ‖ [B,C], [Pab, Pcb] ‖ [C,A],

meet the side lines in six points with the trilinear coordinates

Pab = 0 : aξ + bη : bζ, Pac = 0 : cη : cζ + aξ,

Pba = cξ : 0 : cζ + bη, Pbc = aξ + bη : 0 : aζ,
Pca = bξ : cζ + bη : 0, Pcb = cζ + aξ : aη : 0,

which are called parallelians. It is well-known (cf. [6, p. 104]) that the chords PabPcb, PbcPac, and
PbaPca are of equal length if P = X192 (Congruent Parallelians Point).
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Figure 1: Pascal’s theorem is used in order to prove the conconicity of the six points Pab, . . . , Pcb.

Although the following result appears in some internet sources, we shall give a proof that gives
some geometric insight:

Theorem 2.1. The points Pab, . . . , Pcb lie on a single conic P, provided that P is neither chosen
on a side line of ∆ nor on the Steiner circumellipse nor on the ideal line.

Proof. In order to show that the above given points are conconic, we relabel them according to
1 := Pcb, 2 := Pab, 3 := Pac, 4 := Pca, 5 := Pba, and 6 := Pbc (see Fig. 1). If these six points were
conconic, then, according to Pascal’s theorem (see [10, p. 220]), the three points U := [1, 2]∩[4, 5],
V := [2, 3] ∩ [5, 6], and W := [3, 4] ∩ [6, 1] were to be collinear.

By assumption, U = P and V =C. We only have to show that, W = [3, 4] ∩ [6, 1] is located
on [U, V ] = [C,P ]. Since [A,B] ‖ [3, 6], the triangles ∆(= ABC) and PbcPacC = 63C are similar.
Further, since [C,A] ‖ [1, 2] and [B,C] = [2, 3] ‖ [4, 5], the triangle PcbPcaP = 14P and ∆ are
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similar. Further, [6, 3] ‖ [1, 4], [3, C] ‖ [4, P ], and [C, 6] ‖ [P, 1], the latter triangles are part
of a special Desargues configuration in which the perspector serves as the center of similarity.
Consequently, the three lines [6, 1], [3, 4], and [C,P ] are concurrent.

In order to verify the exceptions made in Thm. 2.1, we compute the homogeneous trilinear
equation of the conic P on the points Pab, . . . , Pcb. This yields

P :
∑

cyclic

aηζ(bη + cζ)x2 − ξ
(
aξ(aξ + bη + cζ) + 2bcηζ

)
yz = 0, (1)

where
∑

cyclic

means that the argument function in the sum undergoes cyclic replacement a → b →

c→ a, ξ → ηζ → ξ, and x→ y → z → x twice and the three functions are summed up.
The conic P is regular if, and only if,

ξηζ(acζξ + bcζη + abξη
︸ ︷︷ ︸

=: σ

)(aξ + bη + cζ
︸ ︷︷ ︸

=: τ

)4 6= 0. (2)

The first three linear factors describe the side lines of ∆, the second factor is an equation of
Steiner’s circumellipse, and the third factor is an equation of the ideal line. Hence, P is regular if,
and only if, P is not chosen on any of the components of the cycle (2), especially on the Steiner
circumellipse.

We shall call P the parallelian conic of P with respect to ∆.
We can also describe the affine appearance of P:

Theorem 2.2. The conic P is a parabola, if and only if, P is chosen on the Steiner inellipse.

Proof. P is a parabola if it touches the ideal line ω. We can eliminate from ω’s and P’s equation
one variable, for example, z (the choice doesn’t matter), which results (besides constant non-zero
factors) in

τ2
(
aηx2 + (aξ + bη − cζ)xy + bξy2

)
.

The first factor is also constant and, since P may not be chosen on ω, it is not equal to zero.
Therefore, τ2 can be canceled. The second factor is a full square if the trilinears of P satisfy

∑

cyclic

: a2ξ2 − 2bcηζ = 0. (3)

The latter is an equation of the Steiner inellipse.
On the other hand, if P is a parabola and touches the ideal line at some point Q, we may,

without loss of generality, assume that Q = cu : cv : −au− bv (with u : v 6= 0 : 0). Since Q has to
lie on P, the coordinates of P are then subject to

τ2
(
aηu2 + (aξ + bη − cζ)uv + bξv2

)
= 0,

where the first factor can be canceled, since the choice of P ∈ ω does not lead to a regular conic.
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The contact of ω = a : b : c and C causes the linear dependency of gradP(Q) and [a, b, c], i.e.,

−cζu+ aξu+ bηu+ 2bξv = 0,
−cζv + 2aηu + aξv + bηv = 0,

acζu− bcζv − a2ξu+ abηu− abξv + b2ηv = 0.

The system of the three latter equations is solved by ξ : η : ζ = acu2 : bcv2, (au + bv)2 which is a
parametrization of the Steiner inellipse (3).

Further, we can show:

Theorem 2.3. Among the parallelian conics P, there is only one circle. It is the 1st Lemoine
circle.

Proof. The conic P is a circle if, and only if, it passes through the absolute points I and J = I of
Euclidean geometry (also called absolute circle points, cf. [10, p. 253]) with trilinear coordinates

I = c(−bc cosA+ 2iF ) : bc2 : abc cosA− 2aiF − b2c, J = I,

where F denotes the area of base triangle ∆ and

cosA =
b2 + c2 − a2

2bc
, cosB =

c2 + a2 − b2

2ca
, cosC =

a2 + b2 − c2

2ab
, (4)

are the cosines of ∆’s interior angles. Inserting the coordinates of these two points into P’s equation,
we obtain the following system of two linear and homogeneous conditions on P = ξ : η : ζ that
define the pivot P such that P becomes a circle:

(
(b2 − c2)2 − a2(b2 + c2)

)
ξ + ab(a2 − b2 + c2)η + ac(a2 + b2 − c2)ζ = 0,

(−b2 + c2)ξ + abη − acζ = 0.

The latter system of linear equations has the unique solution ξ : η : ζ = a : b : c = X6. Hence, the
equation of P simplifies to

L :
∑

cyclic

abc(b2 + c2)x2 − a
(
a2(a2 + b2 + c2) + 2b2c2

)
yz = 0,

which is centered at X182 = a
(
a2(a2 − b2 − c2)− 2b2c2

)
:: (the midpoint of the Brocard diameter).

Here, and in the following, f(a, b, c) :: means that the complete triple of trilinear coordinate
functions of a point or a line (center of central line) is obtained by cyclically replacing a, b, c and
ξ, η, ζ, and in equations, x, y, and z.

Further, we find that X1662, X1663 (first and second intersection of the Brocard axis [X3,X6]
with the 1st Lemoine circle) also lie on L. This makes clear that L is the 1st Lemoine circle.

The 1st Lemoine circle is sometimes referred to as the triplicate-ratio circle (cf. [6, 11]), since
its intersections with ∆’s sides subdivide the edges of ∆ into three segments whose lengths form
the ratios a2 : b2 : c2 (proper ordering provided).

Fig. 2 (left) shows some parabolae being the conics on the parallelians of some points on the
Steiner inellipse i. The right-hand side shows the two components of the envelope of the parabolae.

The parallelian conic P can also be an equilateral hyperbola:
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Figure 2: Left: Some parabolae 0, . . . , 5 as the parallelian conics of some pivot points 0, . . . , 5 on the

Steiner inellipse i. Right: The two components of the envelope of the parallelian parabolae.

Theorem 2.4.

1. The parallelian conic P is an equilateral hyperbola if, and only if, the pivot point P is chosen
on the central line L647,690 = [X647,X690].
2. The equilateral hyperbola becomes the repeated ideal line if P = X690.
3. The centers of the equilateral hyperbolae gather on a triangle cubic.

Proof. 1. A conic is an equilateral hyperbola if, and only if, its ideal points correspond to orthogonal
directions. The intersections of P and ω are given by

A1=2bcξ : c
(

cζ−aξ−bη+
√
δ−2σ

)

: −b
(

cζ+aξ−bη+
√
δ−2σ

)

,

A2=2bcξ : c
(

cζ−aξ−bη−
√
δ−2σ

)

: −b
(

cζ+aξ−bη−
√
δ−2σ

)

,
(5)

where δ := a2ξ2+b2η2+c2ζ2 and σ as defined in (2). The asymptotes of P are the lines a1 = [CP , A1]
and a2 = [CP , A2] with CP being the center of P (i.e., the pole of the ideal line with regard to P).
According to [6, p. 22], the lines a1 and a2 are orthogonal if, and only if, a1

⊥Ga2 = 0 with

G =





1 − cosC − cosB
− cosC 1 − cosA
− cosB − cosA 1





and a1, a2 are non-trivial multiples of either homogeneous triple given in (5). Note that for cosA,
cosB, and cosC we set the rational expressions from (4). This yields the following linear form

∑

cyclic

a(a4 − b4 + 4b2c2 − c4)x = 0,
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where ξ, η, and ζ are replaced with x, y, and z. The latter form is the homogeneous trilinear
equation of the line joining X647 and X690. (This line contains further the triangle centers X47526,
X50551, and X62568.)

On the other hand, if we choose a point on L647,690 for a pivot point and determine the
parallelian conic, we find that P becomes an equilateral hyperbola.
2. The second statement can be shown by inserting the trilinears ofX690 = bc(b2−c2)(2a2−b2−c2) ::
into (1) or follows from Thm. 2.1, since P ∈ ω.
3. Inserting a parametrization of L647,690 with X647 = a(b2 − c2)(−a2 + b2 + c2) :: into the trilinear
representation of the centers of P yields a parametrization of a cubic curve and an implicitization
shows that the cubic is a triangle cubic (i.e., it has cyclically symmetric trilinear equation).

2.2 Inconic of the parallelian hexagon

The polygon Pab . . . Pcb has an inscribed conic I with the trilinear equation

I :
∑

cyclic

a2(bη + cζ)2x2 − 2bc(cζ + aξ)(aξ + bη)yz = 0 (6)

which is regular provided that P is not chosen on the cycle

(cζ + bη)(cζ + aξ)(aξ + bη)
︸ ︷︷ ︸

=:ψ

= 0, (7)

i.e., the side lines of the anticomplementary triangle ∆a of ∆. Further, the conic I is never a
parabola (since the pivot P cannot be chosen on the ideal line and on the sides of ∆a). The conic
I shall be called parallelian inconic with respect to ∆.

The center CI of I allows for the trilinear representation

CI = bc(2aξ + bη + cζ) :: (8)

and is a triangle center if the pivot P is a center. The mapping π : P 7→ CI is linear, i.e., a
collineation. Since X2 = bc :: is a fixed point of π and ω is an axis (not just a fixed line), π is a
central similarity. All lines through X2 are fixed lines, which is especially true for the Euler line.
Further, π sends X4 to X5 (orthocenter 7→ nine-point center). This yields the similarity factor as
the characteristic cross ratio f of π (cf. [10, p. 238]), which is constant and equal to 1

4
(and thus,

independent of ∆ and P ).
As a consequence of the existence of the parallelian conics P and the parallelian inconics I, we

can state:

Theorem 2.5.

1. The pair (P,I) of conics allows for a porism of hexagons.
2. The pair (P,I) spans an exponential pencil of conics in which any pair of subsequent conics
allows for a hexagonal porism.

Proof. 1. The existence of a single hexagon interscribed between P and I guarantees the ex-
istence of the poristic family (cf. [2, 10]). Here, one interscribed hexagon is already known:
PcbPcaPacPabPbaPbc.
2. This is clear from the definition of exponential pencils (cf. [5]).
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Similar to Thm. 2.3, we can show:

Theorem 2.6. The parallelian inconic is a circle if the pivot point P equals X145 (the anticom-
plement of the Nagel point) or one of the following three points

L1 = −bc(3a+ b+ c) : ca(3b + a− c) : ab(3c+ a− b),
L2 = bc(3a+ b− c) : −ca(3b+ a+ c) : ab(3c− a+ b),
L3 = bc(3a− b+ c) : ca(3b − a+ c) : −ab(3c+ a+ b).

The circular parallelian inconics are the incircle if P = X145 and the three excircles if P coincides
with one of the points Li.

Proof. I is a circle if it passes through the absolute points of Euclidean geometry. We proceed
in the same way as in the proof of Thm. 2.3 and obtain a system of two quadratic equations in
ξ : η : ζ (equations of conics) which is solved precisely by X145 = bc(3a + b + c) :: and the three
above given points.

The last part of the theorem is shown by simply inserting the trilinears of X145 and Li into the
equation (6) of I.

3 Tangent triangles and hexagons

The tangents of P at the parallelians form a hexagon H1 = PATCPBTAPCTB , where

PA := tPab
∩ tPac

, PB := tPba
∩ tPbc

, PC := tPca
∩ tPcb

,

TA := tPbc
∩ tPcb

, TB := tPca
∩ tPac

, TC := tPab
∩ tPba

.
(9)

These six points can be arranged in two triples forming two triangles ∆P := PAPBPC and ∆T :=
TATBTC which are perspective to ∆ with the respective perspectors PP and PT . The perspectors
have the following trilinear representations

PP = ξ(2abξη + 2bcηζ + caζξ)(abξη + 2bcηζ + 2caζξ) ::,

PT = aξ2 : bη2 : cζ2.
(10)

The respective perspectrices are

pP = ηζ(2acζξ + bcηζ + abξη + b2η2)(2abξη + c2ζ2 + caζξ + bcηζ) ::,

pT = a : b : c.

Note that the latter perspectrix equals the ideal line. Since the perspector of ∆ and ∆T is a proper
point, these triangles are related in a central similarity. The similarity factor equals

s = 2σω−2

and depends on the pivot point P . Again, we see that points on the Steiner circumellipse and on
the ideal line are to be excluded, since the coordinates of the first annihilate the numerator while
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Figure 3: The triangles ∆P = PAPBPC and ∆T = TATBTC are perspective with ∆. ∆T is centrally

symmetric to ∆ with similarity center PT .

the coordinates of the latter annihilate the denominator of s, which leads in both cases to singular
affine mappings.

Fig. 3 shows the two triangles tangent to P and the respective perspectors relating ∆P and ∆T

to ∆. Finally, we note that the triangles ∆P and ∆T are perspective with respect to the point P
while the corresponding trilaterals are perspective to the line

ηζ(bη + cζ) : ζξ(cζ + aξ) : ξη(aξ + bη). (11)

We can show that all six vertices (9) of H1 lie on a single conic T with the trilinear equation

T :
∑

cyclic

abcη2ζ2(bη + cζ)(3aξ + bη + cζ)x2 =

=
∑

cyclic

aξ2
(

4b2c2η2ζ2+
∑

cyclic

(
a3bξ3η+ca3ζξ3+2a2b2ξ2η2+6a2bcξ2ηζ

)
)

yz

The conic T is regular if, and only if,

(ξηζ)2 ψ σ2 τ5 6= 0,
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i.e., as long as P is not chosen (i) on any side of ∆, (ii) on any side of ∆a (cf. (7)), (iii) on the
ideal line, or (iv) on the Steiner circumellipse.

Since there exists the hexagon H1 interscribed between T and P, and further, since there exists
the hexagon H2 := PcbPcaPacPabPbaPbc interscribed between P and I, we can state:

Theorem 3.1.

1. Each of the pairs of conics (T ,P) and (P,I) allows for a poristic family of interscribed hexagons.
2. Both pairs of conics span the same exponential pencil of conics, and therefore, they define the
same one-parameter family of nested hexagonal porisms.

Proof.
1. The first part of the theorem is clear, simply because of the existence of interscribed hexagons.
2. In order to verify that the coefficient matrices T, P, and I of the respective conics satisfy
T = λPI−1P (which is the representation of the coefficient matrix of the conic following I and P
in the (discrete) exponential pencil), one can extract the coefficient matrices from the equations.
The scalar λ depends on a, b, c (i.e., the triangle) and the pivot point P solely and turns out to
be λ = τ

4abcψ
. On the other hand, by construction, T is the polar image of I with respect to P

which is expressed algebraically by this matrix equation.

TTTTTTTTTTTTTTTTT

PPPPPPPPPPPPPPPPP IIIIIIIIIIIIIIIII

PA

PB

PC

TA
TB

TC

P

A B

C

Figure 4: The parallelian conic P, the parallelian inconic I, and the tangent conic T .
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Fig. 4 shows the three conics mentioned in Thm. 3.1 together with the hexagons of chords and
tangents.

The tangents of P give rise to further polygons circumscribed to the parallelian conic P, illus-
trated in Fig. 5. The following intersections

U1 := tPba
∩ tPac

, U2 := tPac
∩ tPcb

, U3 := tPcb
∩ tPab

,

V1 := tPca
∩ tPab

, V2 := tPca
∩ tPbc

, V3 := tPbc
∩ tPab

are the vertices of two triangles ∆U = U1U2U3 and ∆V = V1V2V3 tangent to P. We note that ∆U

and ∆V are part of a Desargues figure that is completed by the perspector P and the perspectrix
(11) which is also the perspectrix of ∆P and ∆T . Since P serves as the perspector in some of the
pairs of triangles, we see a collection of nested Desargues figures here, which are more special then
the ones described in [8].

Now, we can prove:

Theorem 3.2.

1. The vertices of ∆U and ∆V are located on a single conic D and the pair (D,P) of conics allows
for a triangle porism.
2. The pair (D,P) allows for a hexagonal porism.
3. The pair (D,P) spans an exponential pencil of conics, and thus, they define a one-parameter
family of nested hexagonal porisms.

Proof. 1. The vertices of ∆U and ∆V are

U1=−aξ2 :bη2 :ζ(2bη+cζ), U2=aξ
2 :η(2aξ+bη) :−cζ2, U3=ξ(aξ+2cζ) :−bη2 :cζ2,

V1=−aξ2 :η(bη+2cζ) :cζ2, V2=ξ(aξ+2bη) :bη2 :−cζ2, V3=aξ2 :−bη2 :ζ(cζ+2aξ),

and the conic D on these six points has the trilinear equation

D :
∑

cyclic

a2bcξη2ζ2(bη + cζ)x2 =

=
∑

cyclic

(

aξ2
(

∑

cyclic

4a2bcξ2ηζ + bcηζ(bη + cζ)2
)

− 2b2c2η2ζ2
)

yz.

The existence of at least one triangle tangent to P (either ∆U or ∆V ) and inscribed into D is
sufficient for the existence of a triangle porism.
2. The second part of the theorem is shown with the Cayley criterion for pairs of conics as given
in [10, p. 432].
3. The last part of the proof can be deduced in the same way as in the proof of Thm. 3.1.

Using the Cayley criterion for porisms [10, p. 432], we can show that the pair (P,D) allows for
a poristic family of quadrangles if, and only if, the pivot point P is chosen either on the Steiner
circumellipse or on the triangle cubic

K4 : 2abcxyz +
∑

cyclic

a2x2(bx+ cz) = 0
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Figure 5: The tangent triangles and further tangent hexagons which define further conics allowing for

more triangle and hexagon porisms.

which houses the triangle centers Xi with Kimberling indices

i = {4169, 4859, 30720, 47790, 56081, 64480,
64481, 64487, 64488, 64608, 64609, 64744}.

The cubic K4 does not show up in B. Gibert’s list [3].
Concerning the hexagon H3 := U1V2U3V1U2V3 built by the vertices of ∆U and ∆V , we can

show the following:

Theorem 3.3.

1. The hexagon H3 is tangent to a circumconic J of ∆.
2. The pair of conics (D,J ) allows for a porism of hexagons.
3. The pairs of conics (J ,I) allows for a porism of triangles.
4. The pairs of conics from 2. and 3. define chains of nested triangle and hexagon porisms.
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Proof. 1. It is easily verified that the sides of the hexagon H2 touch the conic given by the equation

J :
∑

cyclic

aξ2yz = 0. (12)

It is obvious that J passes through the vertices of ∆.
2. This is clear since H2 is a hexagon interscribed between the respective conics.
3. Since J is circumscribed to ∆ and I is inscribed into ∆, there exists a (smooth) one-parameter
family of such triangles.
4. We use the arguments from the proof of Thm. 3.1.

The pair (J ,I) allows for a quadrangle porism if P is chosen on the side lines of the anticom-
plementary triangle ∆a of ∆. The same holds true for heptagons and octagons. Poristic families
of pentagons will never occur between J and I (since P cannot be chosen on the side lines of
∆). The existence of a poristic family of hexagons is guaranteed since the star-shaped hexagon
U1U2U3V1V2V3 (the union of ∆U and ∆V ) is an interscribed (degenerate) hexagon.

4 Some algebraic transformations

In the previous sections, five conics were discovered: the parallelian conic P, the parallelian inconic
I, the parallelian tangent conic T , the conic D on the triangle vertices, and the circumconic (of
∆) J which is the inconic of H3. Any two out of them have the point P for a common pole and
the line p = ηζ(bη + cζ) :: for a common polar line. Surprisingly, not all triples of conics built
from these five are contained in the same pencil. This is only the case for D, P, and J , since the
coefficient matrices D, P, J of the respective equations fulfill D− abcξηζP = στ2J.

We also have met a collection of perspectors joining triangles in Desargues configurations. In
any case, these perspectors depend on the pivot point P (and of course on the base triangle ∆).
The same holds true for the centers of all conics we have found so far. The dependencies are
algebraic, and since we use homogeneous (trilinear) coordinates, the coordinate representations
are polynomial in the coordinates ξ, η, ζ of P . In this section, we try to study the action of the
thus induced algebraic transformations, starting with the perspectors and then, changing to the
centers. In this way, we will be able to establish relations between well- and less-known triangle
centers from the inflationarily growing Encyclopedia of Triangle Centers [7]. Recently, algebraic
transformations of higher degrees and other than Cremona transformations (as explained in [10])
have been the subject of study in [12].

4.1 Perspectors of triangles

The perspectors PP and PT given in (10) join the base triangle ∆ with the triangles ∆P and ∆T .
The homogeneous trilinear coordinates of the perspector PP are

PP = ξ(2abξη + 2bcηζ + caζξ)(abξη + 2bcηζ + 2caζξ) ::,

PT = aξ2 : bη2 : cζ2.
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The mapping P 7→ PP is quintic and not a Cremona transformation. It is undefined for points on
∆’s sides. However, it maps the triangle centers Xi to Xj according to the list given in Tab. 1.
Unfortunately, the monoidal quadratic mapping P 7→ PT is also not invertible and the side lines of

i 1 2 3 4 6 7 98 190 523

j 10013 2 64842 8801 10014 57826 4590 1016 36955
.

Table 1: Triangle centers related by the mapping P 7→ PP .

∆ form the exceptional set of the mapping. Nevertheless, it relates some triangle centers Xi and
Xj as listed in Tab. 2.

i 1 2 3 4 5 6 7 8 9

j 6 2 577 393 36412 32 279 346 220

i 10 13 14 19 20 21 22-29 30 31

j 594 11080 11085 2207 36413 7054 36414-36421 3163 1501

i 32 36 37 38 39 42 43 44 49

j 9233 52059 1500 8041 59994 7109 53145 1017 14585

i 55 56 57 63 69 74 75 76 81

j 14827 52410 1407 394 3926 40353 76 1502 593

Table 2: Triangle centers related by the quintic mapping P 7→ PT .

4.2 Centers of conics

The centers CP of the parallelian conics P given by (1) are

CP = ξ(a2ξ2 − caζξ − 2bcηζ − abξη) :: (13)

Obviously, the mapping P 7→ CP is a cubic transformation which is not defined on the sides of ∆.
The ideal line ω is mapped onto X2. It sends the following triangle centers Xi to centers Xj with
Kimberling indices i and j:

i 1 2 3 4 5 6 7 8 9 10

j 1001 2 182 10002 10003 182 10004 10005 1001 3842

i 11 13 14 20 25 36 38 54 55 68

j 10006 10217 10218 47381 42820 3842 10007 42834 42828 10008

Table 3: Some triangle centers as pivots of the parallelian conic yield some other triangle centers as

centers of the respective parallelian conic.

The centers CI of the parallelian inconics I are given in (8) and the mapping P 7→ CI is already
described in Sec. 2.2. However, this mapping relates the triangle centers Xi and Xj as listed in
Tab. 4.
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i 1 2 3 4 5 6 7 8

j 1125 2 140 5 3628 3589 142 59612

i 9 10 11-18 19 20 21 22 23

j 6666 3634 6667-6674 40530 3 6675 6676 468

i 24 25 26 27 28 29 30 31

j 16238 6677 10020 6678 52259 52260 30 6679

i 32 33-35 36 37 38-40 41 42-44

j 6680 58402-58404 6681 4698 6682-6684 31248 6685-6687

i 45 46 47 48 49 50 51 52

j 31285 58405 ? 58406 58407 ? 6688 5462

i 53 54-58 59 60 61 62 63

j 58408 6689-6693 40531 ? 6694 6695 5745

i 64 65 66 67 68 69 70 71

j 6696 3812 6697 6698 5449 141 58409 58410

i 72 73 74 75 76 77 78-81

j 5044 58411 6699 3739 3934 58412 6700-6703

i 82 83-86 87 88-90 91 92

j 5044 6704-6707 ? 58413-58415 ? 6708

i 93 94 95 96 97 98 99 100

j ? 58416 6709 ? 58417 6036 620 3035

Table 4: Triangle centers Xj as centers of parallelian inconics with pivot points Xi.

The centers CJ of the conics J given in (12) can be given by the trilinear representation

CJ = aξ2(a2ξ2 − b2η2 − c2ζ2) ::

which yields a quartic mapping P 7→ CJ that is not birational. The ideal line is mapped onto itself
pointwise. Nevertheless, a few triangle centers Xi serving as pivot points P seem to be related to
some other known triangle centers Xj (as centers of the respective conics J ) by this mapping as
can be read off from Tab. 5. The mapping P 7→ CJ fixes all points on the ideal line.

5 Conclusion and future work

The fact that the six parallelians lie on a single conic seems to be known, though proofs of this fact
are not to be found in the literature or in online sources. To the best of our knowledge, it was not
known that the hexagon built by the parallelians has an inconic. Therefore, it was surprising to see
that a poristic family of hexagons interscribed between the parallelian conic P and the parallelian
inconic I exists in any case. It is near to ask for projective generalizations, i.e., replace the ideal
line with some proper line and repeat the construction. However, this is subject of a further paper.
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i 1 2 3 4 5 6 7 8

j 3 2 1147 6523 6663 206 17113 6552

i 9 10 11 19 31 32 37 39

j 6600 4075 64440 15259 40368 40369 40607 52042

i 57 63 65 69 75

j 6609 6503 15267 6338 6374

Table 5: Triangle centers Xj occurring as centers of conics J corresponding to pivots P = Xi.

In this paper, we have not only found a single (chain of) hexagon porism(s). Since the tangent
hexagon of P can also be used to define two triangles ∆U and ∆V not only tangent to P but
also with vertices on a further conic D, there exists a second and independent (chain of) triangle
porism(s). Moreover, a certain hexagon defined by the triangle vertices has an inconic J . Here,
we observe some kind of bifurcation in the net of porisms. The hexagon porisms between the pair
of conics (T ,P) and the pair conics (J ,P) do not depend on each other and do not belong to the
same chain of porisms.

The construction of porisms from the parallelian conics works well if the ideal line is replaced
with any other line that is not incident with any vertex of ∆. At the moment, it is not clear
whether a suitable choice of the ideal line allows for Universal Porisms, i.e., such porisms that
allow for rational (and then polynomial) parametrizations. These porisms would then be well-
defined in projective (and affine) planes of various orders and characteristics (cf. [9]). The search
for universal porisms among the parallelian porisms shall be postponed to a future article.

Finally, we would like to address another open problem: We have not discussed whether it is
possible to choose the pivot point such that the porisms we were dealing with can become porisms
of n-gons other than triangles and hexagons. The loci of pivot points can be derived from the
Cayley criterion and result in algebraic curves of degrees three and six. A discussion of these loci
and the resulting porisms is by no means straight forward, since the these cubics and sextics are
elliptic.
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