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Abstract

The usual Poncelet porisms deal with polygons which are inscribed
into one conic and circumscribed to another conic. A more general
form of Poncelet porisms considers polygons whose sides are tangent
to more than one conic of a pencil of conics. We shall study the
case of poristic triangles inscribed into a circle c1 with sides tangent
to two further circles c2, c3 and all three circles shall be contained
in a hyperbolic pencil of circles. In order to allow poristic triangle
families, the radii and central distances of the circles are subject to
certain algebraic relations. The main contribution of this article is
to derive these relations for two special cases: In the first case, only
proper circles are involved, while in the second case, we allow one circle
to shrink to a point. We also pay attention to traces of triangle centers
of the poristic families. Finally, we also provide closing conditions for
three more types of circle pencils.

Keywords: Poncelet transverse, hyperbolic pencil of circles, closing condition,
point orbit, 3-periodic billiard.

Subject Classification AMS 2020: 51M04, 51D30.

1 Introduction

The incircle and the circumcircle of a triangle define a poristic family of
triangles. To put it in another way: A triangle determines a poristic familiy
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of triangles sharing the incircle and the circumcircle (cf. [10]). On the other
hand, two circles cannot be chosen independently in order to determine a
poristic family. The inradius r, the circumradius R, and the central distance
d have to satisfy the equation

1

R− d
+

1

R + d
=

1

r
(1)

which is usually ascribed to L. Euler (who published this result in 1765),
but it was given in 1746 by W. Chapple (cf. [2]). Therefore, these kinds of
porisms are frequently referred to as Chapple’s porisms.
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Figure 1: The tree of polygons interscribed to four circles of a hyperbolic
pencil. Since there are two tangents from each point to each circle, the
polygons spread out from P1 and close after a given number of steps if the
radii are subject to a certain relation.

The Euler triangle formula (1) is just a special case of the many closing
conditions for bicentric polygons. For some n ∈ N \ {0, 1, 2, 3}, one may
find these polynomial conditions on the radii R, r, and the central distance
d in [5]. All the cases treated in [5] deal with bicentric n-gons, i.e., n-sided
polygons inscribed into one circle and circumscribed to another.

In the original version of Poncelet’s porism (cf. [1]), the poristic families
of bicentric n-gons appear to be a very special case described in one Lemma.
Poncelet even showed that it is possible to find one-parameter families of
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interscribed n-gons to a (finite) sequence of conics in a pencil: Assume that
ci (with i ∈ {1, . . . , N}) are conics of a pencil.1 Let now P1 be a point on c1.
A tangent from P1 to c2 may intersect c1 in a point P2, from which a tangent
to c3 is drawn and intersects c1 in a point P3 6= P1, . . . . This results in a
sequence of points Pi ∈ c1 and lines [PiPi+1] tangent to ci+1 and a last point
PN+1, see Fig. 1.

In the case of an n-gon, we shall not forget that the polygon is not unique
whether it closes (i.e., P1 = PN+1) or not.

Poncelet’s most general result states:
If the polygon P1 . . . PN+1 closes for one particular choice of P1, then it closes
for any choice of P1.

In fact, the polygon closes anyhow: Poncelet also showed that the line
[P1, PN+1] envelopes a conic which belongs to the pencil.

Poncelet’s general result contains the very special (and by no means
trivial) configuration of a triangle with its incircle and circumcircle (Chap-

ple’s porism) in two ways: On one hand, any triangle is interscribed between
its incircle and its circumcircle, and on the other hand, the incircle and the
circumcircle span a hyperbolic pencil of circles (which are of course conics).

In the following, we shall study triangles interscribed between three cir-
cles of a hyperbolic pencil. There are two cases to be distinguished:

(i) no circle is of radius zero,
(ii) exactly one circle is a zero circle.

These two cases have to be treated separately, at least in the algebraic ap-
proach. As is the case with Chapple’s porisms, the choice of circles is not
free if we want the polygons to close without introducing a further circle.

Therefore, and motivated by the many experimental results given in [3],
we determine conditions on the radii or central distances of the involved
circles. It is sufficient to have a condition on the radii of the circles since
the radii and the distances of the centers of the circles in the hyperbolic
pencil determine each other mutually. Further, it means no restriction to
construct triangles in a normal form of the hyperbolic pencil (with the zero
circles placed at (±1, 0)), since each hyperbolic pencil can be mapped to
the standard pencil via a similarity transformation. In Sec. 2, we deal with
the case of three circles none of which is allowed to be a zero circle. We
first determine the closing condition, and then, we sketch how to derive the
algebraic equations of the paths of the centroid and the orthocenter. We will
not write down the algebraic equations of these traces due to their complexity.

It turns out that the algebraic approach delivers more than we expected

1The type of pencil does not matter. From the projective point of view there are five
different types, cf. [4].
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in the beginning. Besides the path of a particular triangle center of the
moving triangle (principal triangle), we find the path of the same center
of the opportunistic triangles which occur with the principal triangle since
we can draw two tangents from an exterior point to a circle. The latter
fact causes the interscribed polygons to spread (as is illustrated in Fig. 1).
Motivated by numerical experiments (cf. [3]), we shall have a closer look at
the traces of incenters and excenters. In some special cases, these traces
contain (parts of) circles.

Sec. 3 treats the case with one zero circle. At least from the constructive
point of view, this seems to be a simpler case. However, from the algebraic
stand point it is not. In Sec. 4, we shall add the closing conditions for triangle
porisms in a hyperbolic pencil with four circles. The techniques used for that
purpose do not differ from those in the beginning and so we do not lay down
all the details. Further, the four circle case is not a case on its own right
since the interscribed polygons do close in any case according to Poncelet’s
most general form of his theorem. Finally, we give the closing conditions for
poristic families in some elliptic and parabolic pencils of circles. We shall not
treat the very elementary case of pencils of concentric circles in detail.

2 Three proper circles

2.1 The closing condition

Following [4, p. 323], the equations of the circles of a hyperbolic pencil can
be parametrized by one real parameter t ∈ R

⋆ := R \ {−1, 0,+1} as

c(t) : x2 − 2tx+ y2 + 1 = 0. (2)

The values t = ±1 change (2) into (x± 1)2 + y2 = (x± 1− iy)(x± 1− iy) =
0, and thus, they correspond to pairs of isotropic lines through the points
N1,2 = (±1, 0) (the null circles in the pencil). The circle c(0) : x2+y2+1 = 0
carries no real point. The centers C and radii r of the circles in the pencil
are

C(t) = (t, 0) and r(t) =
√
t2 − 1. (3)

The following symbolic computations are simplified by trying to write down
everything in terms of polynomials or rational functions and by avoiding
square roots whenever possible. This not only in the sense of rational trigonom-
etry (cf. [11]), it could also be a new approach in the area of porisms resulting
not necessarily in smooth triangle families, but rational or discrete ones.
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Therefore, we reparametrize the family of circles (2) by

t → 1 + u2

2u
with u ∈ R

⋆, (4)

and thus, the centers and radii become

C(u) =

(

1 + u2

2u
, 0

)

and r(u) =
u2 − 1

2u
. (5)

We assume that the vertices P1, P2, P3 of the triangles ∆ of the poristic
family lie on the circle c1 (defined by setting t = t1 in (2)). Since the
circumcircle c1 of ∆ admits the rational parametrization

c1(τ) =

(

r1
1− τ 2

1 + τ 2
+m1, r1

2τ

1 + τ 2

)

with τ ∈ R, (6)

we can assume that P1 = c1(T ), P2 = c1(U), and P3 = c1(V ) with pairwise
different real parameters T , U , and V . In (6), the radius r1 and the coordinate
m1 of the circumcenter are to be replaced by their rational equivalents (5)
depending on the parameter u1 ∈ R

⋆.
The equations of the three side lines of the triangle are

[P1, P2] : u1(1− TU)x+ u1(T + U)y + TU − u2
1 = 0, (7)

where the equations of [P2, P3] and [P3, P1] are obtained from (7) by replacing
first T → U , U → V and then U → V , V → T . Note that T , U , V have to
be pairwise different in order to define pairwise different points P1, P2, and
P3 on the circle c1. Therefore, the linear forms

T − U, U − V, V − T

are not zero and can be canceled whenever they occur as factors.
In order to obtain a poristic family of triangles, the sides [P1, P2] and

[P2, P3] are tangent to c2, while [P3, P1] touches the circle c3. The fact that
[P3, P1] is tangent to c3 causes a loss of symmetry in the geometry as well as
in the computations, but the polygon has to close.

However, we could also demand that the third side has to touch a fourth
circle. Then, the computational complexity would increase dramatically. The
closing condition for this case is given in Sec. 4.

It is a rather elementary task to determine the tangency condition for
[P1, P2] and c2. For that purpose, we compute the resultant of the respective
equations with respect to y and determine the discriminant of the resulting
quadratic equation. It makes no difference if we compute the discriminant of
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the resultant with respect to x. Thus, the tangency between [P1, P2], [P2, P3]
and c2 is ruled by

#([P1, P2] ∩ c2)=1 ⇐⇒ C(T, U) : 4u2(u1−u2)(u1u2−1)(T 2U2+u2
1)+

+2u1(u1u
2
2+u1−2u2)(2u1u2−u2

2−1)TU−u2
1(u

2
2−1)2(T 2+U2)=0,

#([P2, P3] ∩ c2)=1 ⇐⇒ C(U, V ) : 4u2(u1−u2)(u1u2−1)(U2V 2+u2
1)+

+2u1(u1u
2
2+u1−2u2)(2u1u2−u2

2 − 1)UV −u2
1(u

2
2−1)2(U2+V 2)=0,

(8)

while the contact between [P3, P1] and c3 is described by

#([P3, P1] ∩ c3)=1 ⇐⇒ C(T, V ) : 4u3(u1−u3)(u1u3−1)(T 2V 2+u2
1)+

+2u1(u1u
2
3+u1−2u3)(2u1u3−u2

3−1)TV −u2
1(u

2
3−1)2(T 2+V 2) = 0.

(9)

Note that all three conditions (8) and (9) depend on u1, since all vertices of
the triangle lie on the circle c1. The contact condition (9) depends further
on u3, because [P1, P2] touches c3; while both of the two equations (8) also
depend on u2, for they describe the contact with c2.

In order to derive conditions on the radii ri and the central distances mi

(coordinates of the centers) such that the three circles ci allow for a Poncelet
porism, we determine conditions on the parameters ui. The latter can be
transformed into conditions on the parameters ti in the hyperbolic pencil of
circles.

For that purpose, we eliminate two of the point parameters T , U , V , for
example U and V from the contact conditions (8) and (9). (The choice of
the variables to be eliminated does not change the result.)

From the first resultant

R1 := res (C(U, V ), C(T, V ), V ),

we can cut out the factor u4
1, since u1 is not allowed to be zero.

The final resultant

R := res (R1, C(T, U), U) = 28
8
∏

i=1

fi.

factors into 8 polynomials, some of which depend on T . We shall see that
only a few factors yield a condition on ui such that the thus defined three
circles allow a poristic family of triangles. The factors f1 = (u3T

2+u1)
2 and

f2 = (T 2 + u1u3)
2 are dispensable, since they would only allow a closing of
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one particular triangle for a specific T depending on the circles c1, c3. The
biquadratic factors

f3 =
(

4u2
2u3(u

2
1 + 1) + ((u2

2 − 1)2 − 4u2u3(u
2
2 + 1))u1

)2
T 4+

+2u1

(

4u1u2(u
2
2 − 1)2(u1u2 − 1)(u2 − u1)(u

2
3 + 1) + (8u2

2(u
4
2 + 1)(u4

1 + 1)−
−8u2(u

2
2 + 1)3u1(u

2
1 + 1) + (u8

2 + 28u6
2 + 38u4

2 + 28u2
2 + 1)u2

1)u3

)

T 2+

+u2
1

(

u1(u
2
2 − 1)2u3 + 4u2(u1u2 − 1)(u1 − u2)

)2

and

f4 =
(

4u2
2(u

2
1 + 1) + (u4

2u3 − 4u3
2 − 2u2

2u3 − 4u2 + u3)u1

)2
T 4+

+2u1

(

8u2
2u3(u

4
2+1)(u4

1+1)−4u2(u2(u
2
2−1)2(u2

3+1)+2(u2
2+1)3u3)u1(u

2
1+1)+

+(4u2(u
2
2 + 1)(u2

2 − 1)2(u2
3 + 1) + (u8

2 + 28u6
2 + 38u4

2 + 28u2
2 + 1)u3)u

2
1

)

T 2+

+u2
1

(

4u2
1u

2
2u3 + ((u2

2 − 1)2 − 4u2u3(u
2
2 + 1))u1 + 4u2

2u3

)2

can be considered as polynomials in T and vanish identically (for all T ) if,
and only if, all their coefficients vanish simultaneously. For the factor f3 this
is the case if, and only if, u1 = u2 = −1, 0, 1. This would imply that at least
one of the circles c1 or c2 becomes either a zero circle or x2+y2+1 = 0 which
carries no real points. All other trivial solutions like ui = 0 and ui = uj (with
i, j ∈ {1, 2, 3} and i 6= j) are ruled out in each step of the computation. The
same holds true for f4.

The factor f5 = (u1−u3)
2 vanishes if, and only if, u1 = u3 implying c1 = c3

which is not allowed. Further, we have to discuss the factor f6 = (u1u3−1)2.
From u1u3 = 1 we infer that these values are each others reciprocals. Since
the rational expression (4) for ti remains unchanged if we replace u with u−1,
u1 = 1/u3 implies that t1 = t3 and r1 = r3, i.e., the circles c1 and c3 are
identic. So far we have discussed six factors of R.

The last two factors depend on ui exclusively:

f7 = (u1(2u1u2 − u2
2 − 1)2u3 − (u1u

2
2 + u1 − 2u2)

2)2,

f8 = (u1(2u1u2 − u2
2 − 1)2 − (u1u

2
2 + u1 − 2u2)

2u3)
2.

(10)

Both factors (although of multiplicity 2) depend linearly on u3. Setting them
equal to zero yields a condition on ui such that the circles c1, c2, c3 allow a
one-parameter family of interscribed triangles. The two conditions (10) can
then be solved for u3 which gives

u3 =
(u1u

2
2 + u1 − 2u2)

2

u1(2u1u2 − u2
2 − 1)2

and u3 =
u1(2u1u2 − u2

2 − 1)2

(u1u2
2 + u1 − 2u2)2

, (11)

which are, obviously, each others reciprocals.
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In order to find a condition on the pencil parameters ti, we eliminate ui

from f7 and f8 in (10). This is done by using the inverse of (4) although
this mapping is not birational. Cutting out the constant factor 232, f7 and
f8 become the same factor with multiplicity 8:

(2t1t2 − t22 − 1)2t3 − 4t31 + 8t21t2 − t1(t
4
2 + 6t22 − 3) + 4t2(t

2
2 − 1). (12)

This is due to the fact that f7 and f8 can be transformed into each other by
the algebraic substitution u2 → u2, u1 → u−1

1 , and u3 → u−1
3 .

Setting the latter polynomial equal to zero, we find an analog to the
Euler formula (1) relating the circumradius R, the inradius r, and the central
distance of the circum- and the incircle of a triangle. It allows to express t3
in terms of a rational function depending on t1, t2 as

t3 =
4t31 − 8t21t2 + (t42 + 6t22 − 3)t1 − 4t2(t

2
2 − 1)

(2t1t2 − t22 − 1)2
.

Finally, we can derive a condition on the radii ri in order to allow a
poristic family of the above described type. We use (5) in order to eliminate
ui from (10) and arrive at

(

(4r21r
2
2 − r42 + 4r21)

2r23 + 2r1(4r
2
1r

2
2 + r42 + 4r21)(4r

2
1 − 4r22 − r42)r3+

+r21(r
8
2 − 8r21r

4
2 − 8r62 + 16r41 − 32r21r

2
2)
)

·
·
(

(4r21r
2
2 − r42 + 4r21)

2r23 − 2r1(4r
2
1r

2
2 + r42 + 4r21)(4r

2
1 − 4r22 − r42)r3+

+r21(r
8
2 − 8r21r

4
2 − 8r62 + 16r41 − 32r21r

2
2)
)

= 0.

(13)

We shall summarize our results in

Theorem 1. Let c1, c2, c3 be three circles of a hyperbolic pencil given by the
equations (2). These circles allow a poristic one-parameter family of inter-
scribed triangles P1P2P3 such that c1 is the common circumcircle, [P1, P2],
[P2, P3] are tangent to c2 while [P3, P1] is tangent to c3 if their center coordi-
nates ti satisfy (12).

The fact that the condition (13) on the radii splits into two factors mirrors
the fact that the involved circles are not necessarily nested, i.e., they may
lie on different sides of the straight circle x = 0 (corresponding to t = ∞) in
the hyperbolic pencil.
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P5

c1

c2

c3

C2

C′

2
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Figure 2: A triangle P1P2P3 (dark orange) with sides tangent to c2 and c3
together with two opportunistic triangles P1P2P4 (light orange) and P1P3P4

(yellow). The trace of the centroid consists of two curves (red, violet).

2.1.1 Computing point paths

Now, we have derived the condition on the radii of the circles defining the
poristic triangle family. In order to compute the equations of the traces
of at least some simple (rational) triangle centers, we assume that u3 is
related to u1 and u2 via one of the relations in (11). From (8) and (9)
(which are now dependent because of a suitable choice of ui) we cannot easily
extract expressions for U and V as functions depending on T . Therefore, it
is not possible to parametrize the families of triangles traversing the various
Poncelet families.

For some centers (like the centroid or the orthocenter), we can go the
following way: We compute the centroid

X2 =
1

3
(P1 + P2 + P3)
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and the orthocenter X4 of the triangles P1P2P3 (labeling of triangle centers
according to [6, 7]) using the initial representations of the points Pi as points
on c1 depending on T , U , and V . This yields paramatrizations of X2 and
X4 depending in the parameters T , U , V . Since the center X4 is a linear
combination of the fixed point X3 and the (moving) point X2, the trace of
X4 is similar to that of X2 with X3 as the center of similarity and scaling
factor 3. Analogous results hold true for all other triangle centers on the
Euler line L2,3 = [X2, X3].

We first eliminate U from

X2[1]− x = 0 and X2[2]− y = 0

using the first equation of (8). (Here and in the following, X2[i] means the ith

component of the coordinate vector X2.) Subsequently, we use (9) (where we
have inserted one of the values for u3 chosen from (11)) in order to eliminate
V . In the third step, T is eliminated from both polynomials related to either
coordinate function of X2.

P1

P2

P3

P4
P5

X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)X2(345)

X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)

X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)X2(134)

c1

c2

c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3
C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2

C′

2

Figure 3: One circle, say c2, may lie on the other side of the straight circle
in the pencil (second axis of symmetry): The centroid traces a sextic C2 and
the degree 12 curve C′

2 is the locus of all centroids of opportunistic triangles.

In the case of the centroid, we find a polynomial P2 of degree 128 (in the
variables x and y) which factors into 8 different polynomials

P2 =

8
∏

i=1

pµi

i .
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The degrees di and the multiplicities µi of pi are

d = (16, 16, 20, 12, 12, 20, 16, 16) and µ = (1, 1, 1, 2, 1, 1, 1, 1).

The sextic factor (i.e., the fourth factor) with multiplicity two turns out to
be the equation of a part of the trace C2 of X2 as shown in Fig. 2. This can
also be checked by inserting the parametrization X2(T, U, V ) of the centroid
and subsequent simplification using the conditions (8), (9), and u3 from (11).

Surprisingly, a second factor of P2 is annihilated by the parametrization
of the centroid. It is a factor of degree 12 which describes a curve C′

2 of
genus 1 having 6-fold points at the absolute points of Euclidean geometry.
It is the trace of centroids of opportunistic triangles, i.e., triangles which are
also results of the construction (computation) and whose sides also fulfill the
contact conditions.

As can be seen in Fig. 2, the triangle P1P2P3 can be viewed as a prin-
cipal solution and traverses one family. The triangles P2P1P4 and P3P1P5

are opportunistic: They come along with the principal solution and satisfy
closing and tangency conditions. The existence of opportunistic triangles is
caused by the fact that there exist two tangents from P1 to c2 and from each
intersection of these tangents with the circumcircle c1 there exist two further
tangents to c3. The curve C′

2 houses the traces of centroids of opportunistic
triangles.

A triple of circles from a hyperbolic pencil may not necessarily be a triple
of mutually nested circles. As shown in Fig. 3, the appearance of the sextic
trace C2 of the centroid may change its shape. Nevertheless, the algebraic
properties remain unchanged even if one circle lies not in the interior of c1,
i.e., it lies on the the other side.

Finally, we note that the trace C4 of the orthocenter X4 is the image of C2
under the central similarity with the midpoint of c1 (common circumcenter
X3 of the poristic triangles) as the center, since X2, X3, and X4 are collinear

for all triangles. The factor of similarity equals X4X2 ·X3X2
−1

= −2.

2.1.2 Experiments

The incenter of a triangle is the first in C. Kimberling’s exhaustive list,
see [6, 7]. This is probably caused by its very simple representation

X1 = 1 : 1 : 1

in terms of trilinear coordinates. However, it is doubtful if X1 deserves this
prominent position. (In terms of barycentric coordinates, the centroid X2

would be in the first place.) The computation as well as the construction
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of the incenter bear on non-rational operations, such as the normalization of
vectors, or equivalently, the construction of angle bisectors. Moreover, the
incenter as the center of a tritangent circle of a triangle is only one of four
such points which is even true in a projective setting (see [9]) and in rational
trigonometry or universal geometry (cf. [11]).

Numerical experiments have shown that the incenter of the triangle ∆ =
P1P2P3 traces at least an oval curve C1 (cf. [3]). Moreover, this trace was so
close to circles in almost all cases that it was near to suggest that C1 is a
circle. As we shall see, in some special cases, we are able to show that C1 is
really a circle.

P l
1

P l
2

P l
3

P r
1

P r
2

P r
3

c1

c2

c3

∆l

∆r

C1

Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1 Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1Xr
1

Figure 4: The circular trace of the incenter X1 for nested circles c1, c2, c3.

Fig. 4 does not only illustrate the results of numerical experiments which
showed that the incenter X1 of P1P2P3 moves on a curve that looks like a
circle C1. It is not at all obvious that C1 is a circle and at least for the case
where two sides of P1P2P3 are tangent to the same circle, say c2, in the pencil
we can give the equation of this circle and state:

Theorem 2. Let c1, c2, c3 be three nested circles from a hyperbolic pencil of
circles which allow a one-parameter family of poristic triangles ∆ = P1P2P3

such that c1 is the common circumcircle and the sides [P1, P2] and [P3, P1] are
tangent to c2 while [P2, P3] is tangent to c3. Then, the trace C1 of the incenter
X1 of the triangles ∆ is a circle which is not contained in the hyperbolic
pencil.

12



Proof. The assumption that [P1, P2] and [P3, P1] are tangent to c2 guarantees
that there exist two poses of the triangle P1P2P3 which are symmetric with
respect to the axis a of the circle pencil (cf. Fig. 4):

(i) ∆l = P l
1P

l
2P

l
3 with P l

1 being the left point of a ∩ c1 and
(ii) ∆r = P r

1P
r
2P

r
3 with P r

1 being the right point of a ∩ c1 .
Without loss of generality, we may at first assume that ui > 1 (for

i ∈ {1, 2, 3}) hold. Secondly, the assumptions u1 > u2 and u1 > u3 shall
guarantee that the circle c1 is the largest one, and therefore, the points P2

and P3 are always real. Then, we have P l
1 = (u−1

1 , 0) and P r
1 = (u1, 0).

Further, P l
2,3 = (u−1

3 ,±yl) and P r
2,3 = (u3,∓yr) with u3 being one of (11) and

yl =
2(u2

1 − 1)(u2
2 − 1)

√

u2(u1u2 − 1)(u1 − u2)

(u1u2
2 + u1 − 2u2)2

and yr = ylu3.

In order to find the incenter of ∆l and ∆r, it is sufficient to intersect the
interior angle bisector at P l

2 and P r
2 (or P l

3 and P r
3 ) with a : y = 0. This

yields the surprisingly simple coordinate representations of the left and right
incenter X l

1 = (ξl, 0) and Xr
1 = (ξr, 0) with

ξl =
2u2

1 − 2u1u2 + u2
2 − 1

u1u2
2 + u1 − 2u2

and ξr =
u2
1 − u2

1u
2
2 + 2u1u2 − 2

u1(2u1u2 − u2
2 − 1)

.

(Note that only the substitution u1 → u−1
1 yields ξl → ξr.) Since ξl and ξr

are not each other’s reciprocals, the points X l
1 and Xr

1 cannot be joined by
a circle from the underlying hyperbolic pencil. Now, we compute the Thales
circle C1 on the segment X l

1X
r
1 and find the circle

C1 : u1(2u1u2 − u2
2 − 1)(u1u

2
2 + u1 − 2u2)(x

2 + y2)+

+(u3
1u

4
2− 4u4

1u2+ 6u3
1u

2
2− 8u2

1u
3
2+ u1u

4
2+ u3

1+ 6u1u
2
2+ u1− 4u2)x−

−(u2
1u

2
2 − u2

1 − 2u1u2 + 2)(2u2
1 − 2u1u2 + u2

2 − 1) = 0

(14)

with the radius

ρ =
1

2

(u1u
4
2 + 4u2

1u2 − 6u1u
2
2 − 3u1 + 4u2)(u

2
1 − 1)

u1(2u1u2 − u2
2 − 1)(u1u2

2 + u1 − 2u2)
.

In order to verify that the equation of C1 is the equation of the trace of X1,
we can compute a parametrization and show that it annihilates the circle
equation which definitely needs a CAS.

The circle C1 with the equation (14) is only a part of the complete picture
shown in Fig. 5. The excenters ot the triangle ∆ move on a more complicated

13



c1

c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2

c3
X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1

P2

P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

P3

A1

A3

A2

Figure 5: The trace of the centers of the triangles’ tritangent circles in the
case of a nested circle triple.

curve that contains one circle and two further closed loops. In comparison
with Chapple’s porism (where the three excenters of a triangle ∆ move on
a single circle, cf. [10, Thm. 3.2]), the poristic trace is broken up into three
components since the tangency of ∆’s sides to the unique incircle is replaced
by tangencies to different circles. In Thm. 3 we shall give the equations of
the two circles in the case of non-nested circles c1, c2, c3.

Until now we have assumed ui > 0 (i ∈ {1, 2, 3}). Now, we shall discuss
the effect of other choices of ui. For ui 6= 0 we observe that u−1

i leads to
the same circle ci since (4) does not change under the substitution ui → u−i

1 .
This holds also true for negative ui. If now one of the values ui is negative,

14



say u2 < 0, then c2 is no longer in the interior of c1. Such a case is illustrated
in Fig. 6. The curves shown in Fig. 6 are determined numerically and the

c1

c2

c3

X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1

P2

P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3

A1

A3

A2

Figure 6: A circle configuration with c2 outside: The centers of some of the
tritangent circles run on a circle as long as these centers are incenters, even
if the initial circles are not nested as long as there exist symmetry poses of
the triangles.

coloring of the different parts of the curves correspond to different triangle
shapes. Whenever a triangle collapses, its incenter happens to lie on the
common circumcircle c1. As long as the center of the interior tritangent
circle remains in the interior of c1, the path of the center is drawn black.
The red, orange, and yellow parts are the traces of centers of tritangent
circles of ∆ if these centers are excenters. The transition from an incenter to
an excenter happens precisely at the cusps of the black curve. The cusps are
located at the contact points of the common tangents of c1 and c2. Fig. 6
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also indicates that the orbit of the centers of the four tritangent circles of ∆
move on two circles and two a additional closed curves and all four branches
belong to the same algebraic curve. Situations like these are a good reason
to make no difference between the incenter and the excenter of a triangle
and to simply speak about the four tritangent circles of a triad of lines as
indicated in [8, 9].

We are able to give the equations of the circular paths of the centers of
∆’s tritangent circles if the three circles from the hyperbolic pencil are not
nested:

Theorem 3. Let c1, c2, c3 be three circles of a hyperbolic pencil of circles.
Assume that c2 lies not in the interior of c1 and the triple of circles allows
a poristic family of triangles ∆ = P1P2P3 such that [P1, P2] and [P2, P3] are
tangent to c2 while [P2, P3] Then, the trace C1 of the centers of tritangent
circles of the contains the two circles

K1 : u1u3

(

√

u1(u
2
1 − 1) + u1

√
u1 − u3

)

(x2 + y2)−
−√

u1u3

(

(

(u1u3 + 1)
√
u3 − (u1 − u3)

√
u1

)
√

u2
1 − 1−

−
(

u2
1 − 2

√
u1u3 − 1

)√
u1 − u3

)

x+

+u3

(

1− (u2
1 − 1)

√
u1u3

)√
u1 − u3+

+
√
u3

(

u3 + u3
√
u1u3 − u1

)
√

u2
1 − 1 = 0,

K2 : u1u3(u
2
1 − 1)

(

√

u3(u
2
1 − 1) +

√
u1 − u3

)

(x2 + y2)−
−√

u1u3(1−u2
1)
(

(2u1
√
u1u3+u3(u

2
1−1))

√
u1−u3

)

+

+(
√
u1(1+u1u3)+

√
u3(u1−u3))

√

u2
1−1

)

x+

+
√
u1u3(u

2
1 − 1)

(

u1

√

u1(u2
1 − 1)+

+
√
u1 − u3

(

u1
√
u1u3 + u2

1 − 1
))

= 0

(15)

centered at the points

C1,2 =

√
u3

2u1u3

(

u3(u
2
1 + 1)± (

√
u1u3 + 1)

√

(u1 − u3)(u2
1 − 1), 0

)

.

Proof. Due to symmetry reasons, the circular parts K1 and K2 of the curve
C are centered on the axis of the hyperbolic circle pencil. Both are Thaloids
of segments on the axis bounded by the interior and exterior angle bisectors
of two triangles ∆l = P l

1P
l
2P

l
3 (the left one) and ∆r = P r

1P
r
2P

r
3 (the right one)

in symmetry pose, cf. Fig. 7. Thus, we may assume that the vertices of the
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2
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Figure 7: The construction of the circular parts of the paths of X1.

triangles are

P l
1 =

(

u−1
1 , 0

)

, P l
2,3 =

(

u3,±
√

(u1u3−1)(u1−u3)
u1

)

,

P r
1 = (u1, 0) , P

r
2,3 =

(

u−1
3 ,∓

√

(u1u3−1)(u1−u3)
u1u

2

3

)

. (16)

Note that u2 does not show up in the above representations of triangle ver-
tices. However, this is not necessary as long as ui fulfill (11).

Now, we can compute the centers of the tritangent circles of the left
and right triangle ∆l = P l

1P
l
2P

l
3 and ∆r = P r

1P
r
2P

r
3 which simplifies to the

computation of the intersection of a pair of bisectors with the symmetry axis
y = 0 of the circle pencil. The Thaloids on the respective intersection points
are the circles given in (15) and its is elementary to verify that the above
given points C1,2 are their centers.

We can also confirm that the contact points of the four common tangents
lie in pairs on the circles K1 and K2.

If the triangles interscribed to the circles of the hyperbolic pencil do not
share symmetries with the circles, the trace C1 of the incenter also looses its
symmetries. This would be the case if one of the two lines which are tangent
to c2 would touch a further circle, say c4 6= c2, c3.

Moreover, as we can observe in Fig. 8, the trace of the incenter X1 be-
comes a cusped curve. This is also true for the traces of the incenters of the
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opportunistic triangles. The cusps (singularities) of C1 correspond to degen-
erate triangles: Such triangles lie in common tangents of the involved circles
and will not become entirely real if all three circles are nested. If one circle,
say c2, lies outside c1 (and c3), then there exist 8 real common tangents of
which four lead directly to the cusps of C1. The cusps are located on c1.
The traces of incenters of the opportunistic triangles share some cusps which
correspond to degenerate triangles that belong to different (combinatorial)
types of opportunistic triangles.

Fig. 8 shows three more cusped curves which are the traces of incenters
of opportunistic triangles. The cusped curves are the traces of true incenters.
Whenever an incenter changes to an excenter (this happens at the cusps),
its path is no longer in the interior of c1. The fourth circle c4 which is the
envelope of the third triangle side is not displayed as well as the exterior
branches of C, C′, C′′, and C′′′.

c1

c2

c3

C1

C′

1

C′′

1

C′′′

1

Figure 8: The curve C1 of incenters of the principal triangle and the curves
C′

1, C′′

1 , C′′′

1 of the opportunistic triangles: Cusps are incenters of degenerate
triangles.

3 One zero circle

3.1 The closure condition

Again, we assume that the we deal with circles in a hyperbolic pencil of circles
with equations (2). Like in the previous case, c1 shall be the circumcircle
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of the triangles in the poristic family. The line [P1, P2] shall pass through
the zero circle c0 = [1, 0] (the right one). Further, the line [P2, P3] shall be
tangent to the circle c2 and the terminal segment [P3, P1] shall touch the
circle c3.

We start with the point P1 which can be parametrized by

P1 =

(

T 2 + u2
1

u1(1 + T 2)
,
(u2

1 − 1)T

u1(1 + T 2)

)

with T ∈ R (17)

according to (6).
The line [P1, c0] = [P1, P2] intersects the circumcircle c1 at P2 which there-

fore obtains the parametrization

P2 =

(

u1(1 + T 2)

T 2 + u2
1

,
T (1− u2

1)

T 2 + u2
1

)

with T ∈ R. (18)

For the point P3 ∈ c1 there exists a parameter U 6= T ∈ R such that

P3 =

(

U2 + u2
1

u1(1 + U2)
,
(u2

1 − 1)U

u1(U2 + 1)

)

with U ∈ R (19)

Now, U is to be determined such that the lines [P2, P3] and [P3, P1] touch c2
and c3. For that purpose, we first determine the equations of the latter lines
and find

[P2, P3] : (u1U + T )x+ (TU − u1)y − u1T − U = 0,

[P3, P1] : u1(TU − 1)x− u1(T + U)y + u2
1 − TU = 0.

Secondly, we derive the contact conditions of these lines with the circles c2 and
c3, i.e., we compute the resultants of the linear equations and the equations
of the respective circles, and subsequently, we determine the discriminants
of the resulting quadratic equations. This yields

C23 : (T 2U2 + u2
1)(u

2
2 − 1)2 + 4u2(u1 − u2)(1− u1u2)(T

2 + U2)+

+ 2(u1u
2
2 + u1 − 2u2)(2u1u2 − u2

2 − 1)TU = 0,

C31 : 4(T 2U2 + u2
1)u3(u1u3−1)(u3−u1)+u2

1(u
2
3 − 1)2(T 2 + U2)−

− 2u1(u1u
2
3 + u1 − 2u3)(2u1u3 − u2

3 − 1)TU = 0.

(20)

The two equations (20) have to be fulfilled by infinitely many pairs of
(T, U), and therefore, they have to be linearly dependent. Thus, the resultant
of R = res (C23, C31, U) with respect to one circle parameter, say U , has to
be fulfilled by all T in R. (It is also possible to eliminate T and discuss the
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resulting polynomial in U . This leads to the same closing condition.) We
compute

R = res (C23, C31, U)

and observe that R = ϕ2
1 · ϕ2, i.e., it factors into two polynomials with

ϕ1 = 4u2u3(u
2
1 + 1)− u1((u3 + 1)2(u2

2 + 1) + 2u2(u3 − 1)2) (21)

and the nearly symmetric polynomial

ϕ2 =
4

∑

i=0

c2iu
4−i
1 T 2i with c2i = c8−2i for i = 0, 1, 2, 3, 4.

Herein, the coefficients c2i are

c8 = (4(u2
1 + 1)u2u3 + ((u3 − 1)2(u2

2 + 1)− 2(u3 + 1)2u2)u1)
2,

c6 = 4(2u3(u
2
2 + 1)(u2

1 + 1)− ((u2
2 + 1)(u3 + 1)2 − 2u2(u3 − 1)2)u1)·

· (2u2(u
2
3 + 1)(u2

1 + 1)− ((u2
2 + 1)(u3 − 1)2 + 2u2(u3 + 1)2)u1),

c4 = 2(8(u4
1 + 1)(u2

2u
2
3(u

2
2 + u2

3 + 2) + u2
2 + u2

3)− 8u1(u
2
1 + 1)(u4

2 + 1)(u3 + 1)2

+ u2(u
2
2 + 1)(u2

3 − u3 + 1)(u3 − 1)2 + 2u2
2(u

2
3 + 1)(u3 + 1)2).

It turns out that the polynomial ϕ2 is independent of T if, and only if, all co-
efficient vanish simultaneously. This is only the case if ui = ±1 which implies
ti = ±1 (for all i ∈ {1, 2, 3}) which is excluded by assumption (otherwise ci
are only zero circles).

Therefore, the only relevant part of R is the factor ϕ1 from (21). With
(4), we can rewrite (21) in terms of ti which yields the surprisingly simple
relation

t2t3 − 2t1 + t2 + t3 − 1 = 0. (22)

Assuming that u3 = c = const. and c 6= 0,±1, then ϕ1(u1, u2, c) = 0 from
(21) describes a cubic curve in the [u1, u2]-plane. Independent of u3 = c,
the cubic curve has a singularity at (−1,−1), and thus, it admits a rational
parametrization

(

(c+ 1)2(τ + 1)τ

(c+ 1)2τ + (c− 1)2
,

4cτ

(τ + 1)((c+ 1)2τ + (c− 1)2)

)

, with τ ∈ R.

From (21), we can derive a condition on the radii of the circles c1, c2, and
c3 to allow for a porism. For that purpose, we eliminate ui using (5) and find

r82r
8
3 − 16r43(r

2
1r

2
3 + 2r21 + 3r23 + 4)r62+

+25(3r41r
4
3 − r21r

6
3 + 8r41r

2
3 − 4r21r

4
3 − 2r63 + 8r41 − 8r21r

2
3)r

4
2−

−28r21(r
2
1 − r23)(r

2
1r

2
3 + 2r21 − r23)r

2
2 + 28r41(r

2
1 − r23)

2 = 0.
(23)

Collecting our results, we can formulate in analogy to Thm. 1 the follow-
ing:
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Theorem 4. Let c1, c2, c3 be three circles of a hyperbolic pencil given by the
equations (2) with the (right) zero circle c0 = (1, 0). These circles allow a
poristic one-parameter family of interscribed triangles P1P2P3 such that c1 is
the common circumcircle, [P2, P3] is tangent to c2, [P3, P1] is tangent to c3,
and [P1, P2] passes through c0 if their center coordinates ti satisfy (22), which
implies that their radii satisfy (23).

c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0

c1
c2

c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3c3 C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2

c′0

c1

c2

c3

C1

C4

Figure 9: Circles c1, c2, c3 from a hyperbolic pencil including a zero circle:
poristic trace C2 of the centroid (left), poristic trace C1 and C4 of the incenter
and the orthocenter (right).

3.2 The other zero circle

In the previous subsection, we have chosen the zero circle c0 = (1, 0) (on the
right side). If we replace c0 with c′0 = (−1, 0), i.e., the left zero circle, then
the equation equivalent to (21) relating the pencil parameters ui of the three
circles reads

4u2u3(u
2
1 + 1) + u1((u3 − 1)2(u2

2 + 1)− 2u2(u3 + 1)2) = 0 (24)

and is a planar cubic curve for fixed u3 = c = const. with c 6= 0,±1 with an
isolated double point at (1, 1). Therefore, the totality of circle triples allowing
a Poncelet porism in the above mentioned sense can be parametrized by

( −(c− 1)2(t+ 1)t

(t(c− 1)2 + (c+ 1)2
,

4tc

(t + 1)(t(c− 1)2 + (c + 1)2)

)

.
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Eliminating ui with (4) from (24) we obtain the analog to (22) for the Pon-
celet variant with the left zero circle

t2t3 + 2t1 − t2 − t3 − 1 = 0. (25)

Similar to 4, we can summarize our results in:

Theorem 5. Let c1, c2, c3 be three circles of a hyperbolic pencil given by the
equations (2) with the (left) zero circle c′0 = (−1, 0). These circles allow a
poristic one-parameter family of interscribed triangles P1P2P3 such that c1 is
the common circumcircle, [P2, P3] is tangent to c2, [P3, P1] is tangent to c3,
and [P1, P2] passes through c0 if their center coordinates ti satisfy (25), which
implies that their radii satisfy (23).

Surprisingly, the condition on the radii of the circles ci mentioned in Thm.
5 equals the condition in Thm. 4, i.e., the choice of the zero circle does not
effect the condition on the radii.

Fig. 9 shows the two different versions of Poncelet porisms with three
proper circles an a zero circle c0. The left-hand side of Fig. 9 shows the
variant with the right zero circle c0. The trace C2 of the centroid is also
displayed. The right-hand side of Fig. 9 displays a porism with the left zero
circle c′0 and a circle c3 encircling the point c′0. The traces C1 (black) and
C4 (violet) of the incenter and the orthocenter are also shown. The locus C1
of the incenter has six cusps (two are two-fold) which stem from degenerate
triangles in the poristic family.

In any case, the loci of the centers X1, X2, X4 (and most probably of
many others) consist of two branches and can, therefore, never be rational
curves.

Surprisingly, the limits of the orthocenters of the flat triangles are proper
points, and thus, the curve C4 shown in Fig. 9 (right) has no real points at
infinity.

3.3 Equations of point orbits

In the present case (with one zero circle), it is possible to parametrize the
traces of the triangle vertices explicitly in terms of one real parameter T . By
virtue of (17) and (18), this is obvious for the points P1 and P2. Assuming
that ui are chosen such that the equations (20) are dependent, then we can
solve (for example) the first equation with respect to the parameter U and
find

U=(u1u
2
2+u1−2u2)(2u1u2−u2

2−1)T ± 2(u2

2
−1)

√
u2(u1u2−1)(u1−u2)(T 2+1)(T 2+u2

1
)

T 2(u2

2
−1)2−4u2(u1u2−1)(u1−u2)

.
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Note that C23 and C31 given in (20) are elliptic quartic curves with their only
singularities (ordinary double points) at the points 0 : 1 : 0 and 0 : 0 : 1 in
the projectively closed [T, U ]-plane.

With the presence of algebraic parametrizations of the triangle vertices
P1, P2, P3 it is possible to parametrize the trace of any triangle center. The
crucial point is the implicitization (which cannot be done automatically, even
with Maple) and it is not so easy to prove that the degree of the curves C2
and C4 equals 12.

4 Further closing conditions

In this section, we give the closing condition for poristic triangles interscribed
between four circles in a hyperbolic pencil. Further, we deliver two closing
conditions for parabolic pencils of circles. This list is far from being complete.

It is not necessary to write down the computation of these conditions in
detail, since the techniques used for that purpose do not differ very much
from those used in Sec. 2 and Sec. 3.

4.1 Four circles of a hyperbolic pencil

As we have promised earlier, we also give the closing condition for four dif-
ferent circles of a hyperbolic pencil. The four circles ci (i ∈ {1, 2, 3, 4}) with
centers (ti, 0) and radii ri =

√

t2i − 1 of the hyperbolic standard pencil allow
a one-parameter family of interscribed triangles if ti are subject to

4t41 − 4(σ+π)t31 + (ω2+6ω − 3)t21 − 2(ω−1)(σ+π)t1 + (π+σ)2−4ω = 0,

where we have used the abbreviations

σ = t2 + t3 + t4, ω = t2t3 + t3t3 + ttt2, π = t2t3t4.

Again, we have assumed that c1 is the circumcircle of P1P2P3 and the each
other circle is tangent to exactly one line of the triangle. A condition on the
four radii can also be computed by eliminating ti from the latter equation
with (4). It turns out to be of degree 24.

4.2 Some simple examples from parabolic pencils

The following examples of closing conditions were just bycatch and yield
comparably simple relations between circle parameters (in the pencil) or
radii of the circles.
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4.2.1 Four generic circles

The circles c1 of a parabolic pencil can be given by their equations as

ci : x2 − 2tix+ y2 = 0

with ti ∈ R \ {0} and i ∈ {1, 2, 3, 4} (see [4]). Again c1 is assumed to be the
common circumcircle of the triangles. In this case, the circles ci are centered
at (ti, 0) and have the radii ti. Poristic families of triangles P1P2P3 whose
sides [P1, P2], [P2, P3], [P3, P1] are tangent to the circles c2, c3, c4 show up if
the four radii satisfy

4δt31 − σ2t21 + 2δσt1 − δ2 = 0,

where δ = t2t3t4 and σ = t2t3 + t2t4 + t3t4.

4.2.2 Concentric circles

Let c1 be the circumcircle with radius r1 and the concentric circles ci with
radii ri and i ∈ {2, 3, 4}. Then, it is obvious that the sides of the triangle
P1P2P3 inscribed into c1 with sides [P1, P2], [P2, P3], [P3, P1] tangent to the
circles c2, c3, c4 has the following side lengths: P1Pi = 2

√

r21 − r2i for all
i ∈ {2, 3, 4}. Therefore, the triangles of the poristic family are of equal size
and perform a pure rotation about X3 (the center of c1). Consequently, all
centers (except X3) of the triangle P1P2P3 move on circles while the triangle
traverses the poristic family.

The well-known formula 4RF = abc (relating the three side lengths a, b,
c with the area F and the circumradius of a triangle) yields the relation

(r31 − r1r
2
2 − r1r

2
3 − r1r

2
4 − 2r2r3r4)(r

3
1 − r1r

2
2 − r1r

2
3 − r1r

2
4 + 2r2r3r4) = 0

between the four radii in order to allow a poristic family.

4.2.3 Final remarks

There are still many metric special types of pencils of conics left to discus and
to look for closing conditions for poristic triangles and n-gons with arbitrary
numbers of vertices. The computational approach towards these conditions
shown so far may cause troubles for sufficiently high n. It is also questionable
whether our approach is an efficient one. For low n, we are at least able to
give closing conditions, and in some simple or special cases, we can derive
equations of poristic traces of triangle centers. We cannot expect that the
traces and their computation are as simple as it is for the Chapple porism in
[10]. At least from the number theoretic point of view, an entirely rational
approach and a search for entirely rational solutions (families of poristic n-
gons) may be interesting. However, this could be done in a future paper.
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