Three points related to the incenter and excenters of a triangle

B. Odehnal

Abstract

In the present paper it is shown that certain normals to the sides of a triangle Δ passing through the excenters and the incenter are concurrent. The triangle Δ_S built by these three points has the incenter of Δ for its circumcenter. The radius of the circumcircle is twice the radius of the circumcircle of Δ . Some other results concerning Δ_S are stated and proved.

Mathematics Subject Classification (2000): 51M04.

Keywords: incenter, <u>PSfrag replacements</u>ter, orthoptic triangle, FEUERBACH point, EULER line. A

 $B \\ C$

 $a \\ b$

1 Introduction

Let $\Delta := \{A, B, C\}$ be a triangle in the Euclidean plane. The side lengths of Δ shall be denoted by $c := \overline{AB}$, $b := \overline{AC}$ and $a := \overline{BC}$. The interior angles enclosed by the edges of Δ are $\beta := \angle ABC$, $\gamma := \angle BCA$ and $\alpha := \angle CAB$, see Fig. 1.

PSfrag replacements

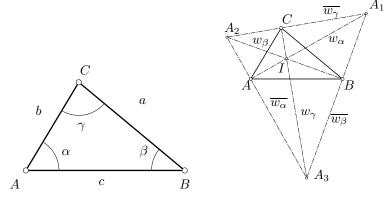


Figure 1: Notations used in the paper.

It is well-known that the bisectors w_{α} , w_{β} and w_{γ} of the interior angles of Δ are concurrent in the *incenter* I of Δ . The bisectors $\overline{w_{\beta}}$ and $\overline{w_{\gamma}}$ of the exterior angles at the vertices A and B and w_{α} are concurrent in the center A_1 of the *excircle* touching Δ along BC from the outside.

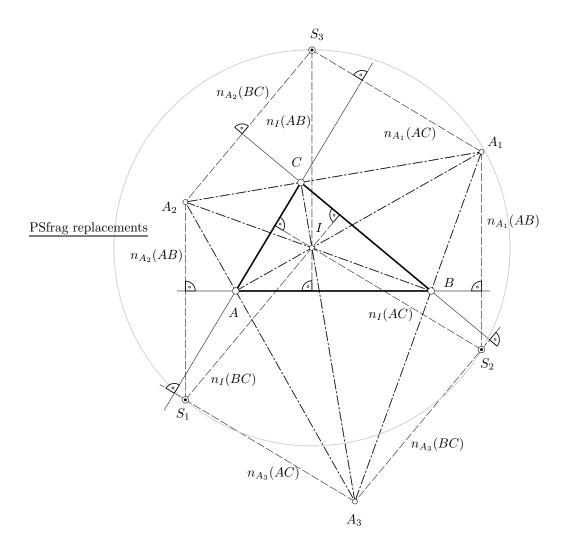


Figure 2: Three remarkable points occuring as the intersection of some normals.

Changing α , β and γ cyclically, we can find the remaining two *excenters* A_2 and A_3 . To get familiar with the notations used in this paper, see Fig. 1.

Here we remark that the base triangle Δ is the *orthoptic triangle* of the triangle built by the excenters. The ortho center of Δ is the incenter of the orthoptic triangle. Later when we give our Theorems a second interpretation we will use this facts.

2 Results and Theorems

Now we draw some normals emanating from the excenters A_i and the incenter I. We use the symbol $n_{A_1}(AC)$ to indicate that this line is perpendicular to AC and contains the point A_1 . Drawing the lines $n_{A_1}(AC)$, $n_{A_2}(BC)$ and

 $n_I(AB)$, respectively, we observe that these lines are concurrent in one point S_3 . Cyclic rearrangement of (A, B, C) and (1, 2, 3) enables us to state the following Theorem:

Theorem 2.1

The following triples of lines are concurrent:

- 1. $(n_{A_1}(AC), n_{A_2}(BC), n_I(AB)$ are concurrent in S_3 .
- 2. $(n_{A_2}(AB), n_{A_3}(AC), n_I(BC))$ are concurrent in S_1 .
- 3. $(n_{A_3}(BC), n_{A_1}(AB), n_I(AC) \text{ are concurrent in } S_2.$

Even in classical literature [3, 4] these points and the concurrencies of these normals are not mentioned. The concurrencies of the lines mentioned in Theorem 2.1 are illustrated in Fig. 2.

Moreover, we are able to prove the following result.

Theorem 2.2

- 1. The circumcenter of the triangle $\Delta_S := \{S_1, S_2, S_3\}$ is the incenter of Δ .
- 2. The circumradius of Δ_S equals twice the circumradius of Δ .

For sake of simplicity we use the abbreviation $\Delta_A := \{A_1, A_2, A_3\}$ and state:

Theorem 2.3

The triangles Δ_A and Δ_S are congruent. There exists a rotation ρ about the center of the FEUERBACH circle of Δ_S with angle $\phi = \pi$ with $\rho(\Delta_A) = \Delta_S$.

Theorem 2.4

- 1. The FEUERBACH circle of Δ_S equals the circumcircle of Δ .
- 2. The triangles Δ_A and Δ_S share the FEUERBACH circle.

Theorem 2.5

- 1. The incenter I lies on the EULER line e_{Δ_S} of Δ_S .
- 2. The triangles Δ_A and Δ_S share the EULER line.

None of the above Theorems are hitherto known. Even in [3, 4] the points S_i and Theorems dealing with them are not mentioned.

3 Proof of main Results

Proof: (Proof of Theorem 2.1.)

In order to show that the lines $n_{A_1}(AC)$, $n_{A_2}(BC)$ and $n_I(AB)$ are concurrent in S_3 we compute the length of IS_3 in two different ways and obtain equal results. $\overline{IS_3}$ can be seen as the coordinate of the intersection points $n_I(AB) \wedge n_{A_1}(AC)$ and $n_I(AB) \wedge n_{A_2}(BC)$ on $n_I(AB)$.

We look at triangles appearing in Fig. 3 and compute the length $\overline{IS_3}$. The first triangle to look at is $\Delta_1 := \{A, B, A_1\}$. The lengths of its edges are $\overline{AB} = c$,

PSfrag replacements

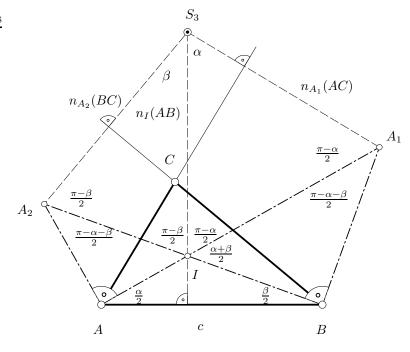


Figure 3: Computation of $\overline{IS_3}$.

 $\overline{BA_1}$ and $\overline{A_1A}$, respectively. The opposite angles have values $\frac{1}{2}(\pi - \alpha - \beta)$, $\alpha/2$ and $\frac{1}{2}(\pi + \beta)$. So we find

$$\overline{A_1B} = c \frac{\sin\frac{\alpha}{2}}{\cos\frac{\alpha+\beta}{2}}.$$
(1)

The next triangle we pay attention to is $\Delta_2 := \{B, I, A_1\}$. The lengths of edges appearing here are \overline{BI} , $\overline{IA_1}$ and $\overline{A_1B}$, respectively. The values of the angles lying opposite to these three edges are $\frac{1}{2}(\pi - \alpha - \beta)$, $\pi/2$ and $\frac{1}{2}(\alpha + \beta)$, respectively. Thus we find

$$\overline{IA_1} = 2c \frac{\sin\frac{\alpha}{2}}{\sin(\alpha + \beta)}.$$
(2)

At last we look at $\Delta_3 := \{I, A_1, S_3\}$ with edge lengths $\overline{IA_1}$, $\overline{A_1S_3}$ and $\overline{S_3I}$, respectively. The angles opposite to these edges have values α , $\frac{1}{2}(\pi - \alpha)$ and $\frac{1}{2}(\pi - \alpha)$, respectively. Finally we arrive at

$$\overline{IS_3} = \frac{c}{\sin(\alpha + \beta)}.$$
(3)

The computation of $\overline{IS_3}$ can be done in the same way with the triangles $\Delta'_1 := \{A, B, A_2\}, \Delta'_2 := \{A, I, A_2\}$ and $\Delta'_3 := \{I, A_2, S_3\}$, which leads again to (3). Thus the coordinate of $n_I(AB) \wedge n_{A_1}(AC)$ and $n_I(AB) \wedge n_{A_2}(BC)$ on $n_I(AB)$ are equal and we have $n_I(AB) \wedge n_{A_1}(AC) = n_I(AB) \wedge n_{A_2}(BC) = S_3$.

Cyclic rearrangement of indices shows that the points S_1 and S_2 mentioned in Theorem 2.1 do exist and lie on the respective three normals.

We additionally obtain:

Theorem 3.1

The point S_i is the circum center of the triangle $\{I, A_j, A_k\}$ and (i, j, k) is either (1, 2, 3) or (2, 3, 1) or (3, 1, 2).

Proof: Looking at triangles $\Delta_4 := \{I, A_1, S_3\}$ and $\Delta_5 := \{I, A_2, S_3\}$ we find

$$\angle IA_1S_3 = \angle A_1IS_3$$
 and $\angle IA_2S_3 = \angle A_2IS_3$.

So we have $\overline{IS_3} = \overline{A_2S_3} = \overline{A_1S_3}$. Rearranging the indices completes the proof.

Proof: (Proof of Theorem 2.2) Replacing (A, B, C) and (1, 2, 3) cyclically in (3) we obtain

$$\overline{IS_1} = \frac{a}{\sin(\beta + \gamma)}$$
 and $\overline{IS_2} = \frac{b}{\sin(\alpha + \gamma)}$. (4)

Since the values of the interior angles sum up to π , that is $\gamma = \pi - \alpha - \beta$, we find

$$\frac{c}{\sin(\alpha+\beta)} = \frac{c}{\sin\gamma} = 2R.$$
(5)

Further we use the well-known formulae

$$\frac{c}{\sin\gamma} = \frac{b}{\sin\beta} = \frac{a}{\sin\alpha} = 2R,\tag{6}$$

which gives a simple relation between the angles, the side lengths and the circumradius R of Δ . Thus the circumradius of $\{S_1, S_2, S_3\}$ is twice the circumradius of Δ .

Proof: (Proof of Theorem 2.3.)

In order to show that $\Delta_A \equiv \Delta_S$ we show that the lines A_1A_2 and S_1S_2 are parallel. (Equivalently we could show that A_1A_3 and S_1S_3 are parallel and also A_2A_3 and S_2S_3 are parallel. Changing the indices while keeping the cycling ordering we obtain the equivalent results for the other pairs of lines.)

By definition we have $A_1A_2 \perp w_{\gamma}$ and from Theorem 2.2 we have $\overline{IS_1} = \overline{IS_2}$. Since w_{γ} is interior bisector of AC and BC it also is interior bisector of $n_I(AC)$ and $n_I(BC)$. Consequently $S_1S_2 \perp w_{\gamma}$ and thus S_1S_2 is parallel to A_1A_2 .

Since $n_{A_2}(AB)$ and $n_{A_1}(AB)$ are parallel we have $\overline{A_1A_2} = \overline{S_1S_2}$. The same is true if we change indices (1, 2, 3) and (A, B, C), respectively while keeping the cyclic ordering.

So far we have shown that Δ_A is congruent to Δ_S . Now we have to prove that there is a rotation ρ with angle π and $\rho(\Delta_A) = \Delta_S$.

We observe that S_2A_2 and A_3S_3 are the diagonals of the parallelogram $\Pi_1 := \{S_2, S_3, A_2, A_3\}$. Thus they intersect in a point X. Each of the parallelograms $\Pi_2 := \{S_1, S_3, A_1, A_3\}$ and $\Pi_2 := \{S_1, S_2, A_1, A_2\}$ shares a diagonal with Π_1 . Therefore the diagonals of Π_1 , Π_2 and Π_3 , respectively, are concurrent in X. Consequently, there exists a unique reflection about X which maps Δ_A to Δ_S . The existence of this reflection is equivalent to the existence of a rotation ρ about X with angle π transforming Δ_A into Δ_S .

At last we have to show that X is the FEUERBACH point F_{Δ_S} of Δ_S . The base triangle Δ is the pedal triangle of Δ_A . Thus the circumcircle of Δ is the FEUER-BACH circle of Δ_A . Since ρ maps Δ_A to Δ_S it maps the corresponding pedal triangles onto each other by reflecting them about X. Thus the FEUERBACH circles of Δ_S and Δ_A coincide such as their centers coincide in X.

Proof: (Proof of Theorem 2.4.)

There is nothing to be done. This Theorem is a consequence of the proof of Theorem 2.3. $\hfill \Box$

Proof: (Proof of Theorem 2.5.)

The incenter I of Δ is the circumcenter of Δ_S , see Theorem 2.1. Thus it is contained in the EULER line e_{Δ_S} of Δ_S .

Since e_{Δ_S} passes through the FEUERBACH point F_{Δ_S} the rotation ρ with center F_{Δ_S} transforms e_{Δ_S} into e_{Δ_A} .

4 Alternative Interpretation

As remarked in Sec. 1 the Theorems given in Sec. 2 can be seen in a different light.

For a given triangle $\Delta_A := \{A_1, A_2, A_3\}$ draw the orthoptic triangle $\Delta_O := \{B_2, B_2, B_3\}$, where $B_i \in A_j A_k$ with cyclic ordering of (i, j, k). The ortho center H of Δ_A is the incenter of Δ_O . Now we recall that Δ_A is the excenter triangle of Δ_O .

Thus Theorem 2.1 can be reformulated:

Theorem 4.1 (Equivalent to Theorem 2.1)

The normals from the vertex A_1 of the base triangle Δ_A to the side B_1B_2 of the orthoptic triangle Δ_O , the normal from A_3 to B_2B_3 , and the normal through the ortho center H of Δ_A to B_1B_3 are concurrent in a point S_2 .

This remains true if we change the indices while keeping the cyclic ordering.

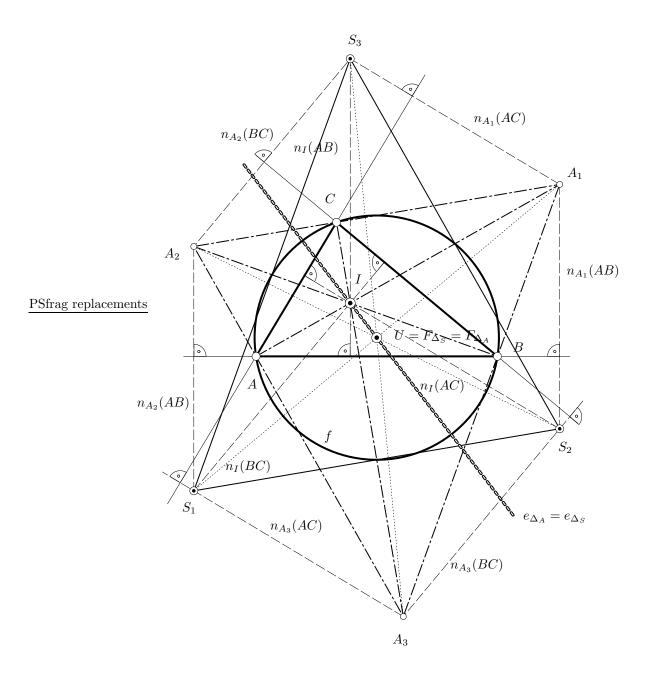


Figure 4: Triangles Δ_A and Δ_S with common EULER line $e_{\Delta_A} = e_{\Delta_S}$ and FEUERBACH circle f.

References

- [1] H. S. M. COXETER: *Introduction to Geometry.* J. Wiley & Sons, New York London, 1961.
- [2] C. KIMBERLING: *Encyclopedia of Triangle Centers*. Available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [3] H. A. SCHWARZ: Gesammelte mathematische Abhandlungen. Springer, Berlin, 1890.
- [4] J. STEINER: Jacob Steiner's gesammelte Werke. (2 Bände) Reimer, Berlin, 1881.