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Abstract

In the present paper it is shown that certain normals to the sides of a

triangle ∆ passing through the excenters and the incenter are concurrent.

The triangle ∆S built by these three points has the incenter of ∆ for

its circumcenter. The radius of the circumcircle is twice the radius of

the circumcircle of ∆. Some other results concerning ∆S are stated and

proved.
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1 Introduction

Let ∆ := {A, B, C} be a triangle in the Euclidean plane. The side lengths of
∆ shall be denoted by c := AB, b := AC and a := BC. The interior angles
enclosed by the edges of ∆ are β := ∠ABC, γ := ∠BCA and α := ∠CAB, see
Fig. 1.
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Figure 1: Notations used in the paper.

It is well-known that the bisectors wα, wβ and wγ of the interior angles of ∆
are concurrent in the incenter I of ∆. The bisectors wβ and wγ of the exterior
angles at the vertices A and B and wα are concurrent in the center A1 of the
excircle touching ∆ along BC from the outside.
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Figure 2: Three remarkable points occuring as the intersection of some normals.

Changing α, β and γ cyclically, we can find the remaining two excenters A2 and
A3. To get familiar with the notations used in this paper, see Fig. 1.

Here we remark that the base triangle ∆ is the orthoptic triangle of the triangle
built by the excenters. The ortho center of ∆ is the incenter of the orthoptic
triangle. Later when we give our Theorems a second interpretation we will use
this facts.

2 Results and Theorems

Now we draw some normals emanating from the excenters Ai and the incenter
I . We use the symbol nA1

(AC) to indicate that this line is perpendicular to
AC and contains the point A1. Drawing the lines nA1

(AC), nA2
(BC) and
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nI(AB), respectively, we observe that these lines are concurrent in one point S3.
Cyclic rearrangement of (A, B, C) and (1, 2, 3) enables us to state the following
Theorem:

Theorem 2.1

The following triples of lines are concurrent:

1. (nA1
(AC), nA2

(BC) , nI(AB) are concurrent in S3.

2. (nA2
(AB), nA3

(AC), nI(BC) are concurrent in S1.

3. (nA3
(BC), nA1

(AB), nI(AC) are concurrent in S2.

Even in classical literature [3, 4] these points and the concurrencies of these nor-
mals are not mentioned. The concurrencies of the lines mentioned in Theorem
2.1 are illustrated in Fig. 2.

Moreover, we are able to prove the following result.

Theorem 2.2

1. The circumcenter of the triangle ∆S := {S1, S2, S3} is the incenter of ∆.

2. The circumradius of ∆S equals twice the circumradius of ∆.

For sake of simplicity we use the abbreviation ∆A := {A1, A2, A3} and state:

Theorem 2.3

The triangles ∆A and ∆S are congruent. There exists a rotation ρ about the
center of the Feuerbach circle of ∆S with angle φ = π with ρ(∆A) = ∆S .

Theorem 2.4

1. The Feuerbach circle of ∆S equals the circumcircle of ∆.

2. The triangles ∆A and ∆S share the Feuerbach circle.

Theorem 2.5

1. The incenter I lies on the Euler line e∆S
of ∆S.

2. The triangles ∆A and ∆S share the Euler line.

None of the above Theorems are hitherto known. Even in [3, 4] the points Si

and Theorems dealing with them are not mentioned.

3 Proof of main Results

Proof: (Proof of Theorem 2.1.)

In order to show that the lines nA1
(AC), nA2

(BC) and nI(AB) are concurrent in
S3 we compute the length of IS3 in two different ways and obtain equal results.
IS3 can be seen as the coordinate of the intersection points nI(AB)∧ nA1

(AC)
and nI(AB) ∧ nA2

(BC) on nI(AB).

We look at triangles appearing in Fig. 3 and compute the length IS3. The first
triangle to look at is ∆1 := {A, B, A1}. The lengths of its edges are AB = c,
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Figure 3: Computation of IS3.

BA1 and A1A, respectively. The opposite angles have values 1

2
(π −α−β), α/2

and 1

2
(π + β). So we find

A1B = c
sin α

2

cos α+β
2

. (1)

The next triangle we pay attention to is ∆2 := {B, I, A1}. The lengths of
edges appearing here are BI , IA1 and A1B, respectively. The values of the
angles lying opposite to these three edges are 1

2
(π − α − β), π/2 and 1

2
(α + β),

respectively. Thus we find

IA1 = 2c
sin α

2

sin(α + β)
. (2)

At last we look at ∆3 := {I, A1, S3} with edge lengths IA1, A1S3 and S3I ,
respectively. The angles opposite to these edges have values α, 1

2
(π − α) and

1

2
(π − α), respectively. Finally we arrive at

IS3 =
c

sin(α + β)
. (3)

The computation of IS3 can be done in the same way with the triangles ∆′

1 :=
{A, B, A2}, ∆′

2 := {A, I, A2} and ∆′

3 := {I, A2, S3}, which leads again to (3).
Thus the coordinate of nI(AB) ∧ nA1

(AC) and nI(AB) ∧ nA2
(BC) on nI(AB)

are equal and we have nI(AB) ∧ nA1
(AC) = nI(AB) ∧ nA2

(BC) = S3.

Cyclic rearrangement of indices shows that the points S1 and S2 mentioned in
Theorem 2.1 do exist and lie on the respective three normals. �

We additionally obtain:
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Theorem 3.1

The point Si is the circum center of the triangle {I, Aj , Ak} and (i, j, k) is either
(1, 2, 3) or (2, 3, 1) or (3, 1, 2).

Proof: Looking at triangles ∆4 := {I, A1, S3} and ∆5 := {I, A2, S3} we find

∠IA1S3 = ∠A1IS3 and ∠IA2S3 = ∠A2IS3.

So we have IS3 = A2S3 = A1S3. Rearranging the indices completes the proof.
�

Proof: (Proof of Theorem 2.2) Replacing (A, B, C) and (1, 2, 3) cyclically in (3)
we obtain

IS1 =
a

sin(β + γ)
and IS2 =

b

sin(α + γ)
. (4)

Since the values of the interior angles sum up to π, that is γ = π − α − β, we
find

c

sin(α + β)
=

c

sin γ
= 2R. (5)

Further we use the well-known formulae

c

sin γ
=

b

sin β
=

a

sin α
= 2R, (6)

which gives a simple relation between the angles, the side lengths and the cir-
cumradius R of ∆. Thus the circumradius of {S1, S2, S3} is twice the circum-
radius of ∆. �

Proof: (Proof of Theorem 2.3.)

In order to show that ∆A ≡ ∆S we show that the lines A1A2 and S1S2 are
parallel. (Equivalently we could show that A1A3 and S1S3 are parallel and also
A2A3 and S2S3 are parallel. Changing the indices while keeping the cycling
ordering we obtain the equivalent results for the other pairs of lines.)

By definition we have A1A2⊥wγ and from Theorem 2.2 we have IS1 = IS2.
Since wγ is interior bisector of AC and BC it also is interior bisector of nI(AC)
and nI(BC). Consequently S1S2⊥wγ and thus S1S2 is parallel to A1A2.

Since nA2
(AB) and nA1

(AB) are parallel we have A1A2 = S1S2. The same is
true if we change indices (1, 2, 3) and (A, B, C), respectively while keeping the
cyclic ordering.

So far we have shown that ∆A is congruent to ∆S . Now we have to prove that
there is a rotation ρ with angle π and ρ(∆A) = ∆S .

We observe that S2A2 and A3S3 are the diagonals of the parallelogram Π1 :=
{S2, S3, A2, A3}. Thus they intersect in a point X . Each of the parallelograms
Π2 := {S1, S3, A1, A3} and Π2 := {S1, S2, A1, A2} shares a diagonal with Π1.
Therefore the diagonals of Π1, Π2 and Π3, respectively, are concurrent in X .
Consequently, there exists a unique reflection about X which maps ∆A to ∆S .
The existence of this reflection is equivalent to the existence of a rotation ρ
about X with angle π transforming ∆A into ∆S .

At last we have to show that X is the Feuerbach point F∆S
of ∆S . The base

triangle ∆ is the pedal triangle of ∆A. Thus the circumcircle of ∆ is the Feuer-

bach circle of ∆A. Since ρ maps ∆A to ∆S it maps the corresponding pedal
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triangles onto each other by reflecting them about X . Thus the Feuerbach

circles of ∆S and ∆A coincide such as their centers coincide in X . �

Proof: (Proof of Theorem 2.4.)

There is nothing to be done. This Theorem is a consequence of the proof of
Theorem 2.3. �

Proof: (Proof of Theorem 2.5.)

The incenter I of ∆ is the circumcenter of ∆S , see Theorem 2.1. Thus it is
contained in the Euler line e∆S

of ∆S .

Since e∆S
passes through the Feuerbach point F∆S

the rotation ρ with center
F∆S

transforms e∆S
into e∆A

. �

4 Alternative Interpretation

As remarked in Sec. 1 the Theorems given in Sec. 2 can be seen in a different
light.

For a given triangle ∆A := {A1, A2, A3} draw the orthoptic triangle ∆O :=
{B2, B2, B3}, where Bi ∈ AjAk with cyclic ordering of (i, j, k). The ortho
center H of ∆A is the incenter of ∆O. Now we recall that ∆A is the excenter
triangle of ∆O .

Thus Theorem 2.1 can be reformulated:

Theorem 4.1 (Equivalent to Theorem 2.1)
The normals from the vertex A1 of the base triangle ∆A to the side B1B2 of the
orthoptic triangle ∆O, the normal from A3 to B2B3, and the normal through
the ortho center H of ∆A to B1B3 are concurrent in a point S2.

This remains true if we change the indices while keeping the cyclic ordering.
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Figure 4: Triangles ∆A and ∆S with common Euler line e∆A
= e∆S

and
Feuerbach circle f .
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