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Abstract

The aim of this paper is to show a way to find an explicit parametrization

of rational isotropic congruences of lines in Euclidean three-space R
3. It will

be shown that also the focal surfaces of these congruences admit a rational

parametrization. Furthermore, the close relation of isotropic congruences

of lines to minimal surfaces will be used to find the related polynomial

minimal surfaces.
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1 Introduction

In this paper we consider the set L of lines of Euclidean R3 as the four-dimensional
Grassmann manifold. The two-dimensional submanifolds C of L are called con-
gruences of lines and have been a field of intensive study since the first half of
the nineteenth century, see for example [6].

Nowadays congruences of lines have become relevant for practical applications.
Motion planing, NC machining and tool path planing are examples where con-
gruences of lines appear. Congruences are studied also from the design viewpoint,
see for example [9], [10] and [12].

Among the congruences of lines the so-called isotropic congruences of lines have
been of interest, see [5], [13] and [14]. Isotropic congruences of lines also appear in
the context of energy minimizing congruences of lines, see [10]. For the design of
congruences of lines it is useful to have a geometrically favorable representation.
Rational parametrizations are favorable in this sense. The design of curves and
surfaces by means of rational parametrizations is well studied, see [4] and [11].

In the following an explicit and rational parametrization of isotropic congruences
of lines will be given. Unlike in [5] these parametrizations are free of integrals.
For that end the concept of the infinitesimal kinematic mapping introduced by
H. R. Müller in [7] will be used to characterize and subsequently parametrize
isotropic congruences of lines.
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Afterwards, some results on rational isotropic congruences are shown. The most
important among these are:

1. The focal surfaces of rational isotropic congruences admit rational para-
metrizations. This is surprising since these surfaces appear as the solutions
of a quadratic equation.

2. The minimal surfaces appearing as the central envelopes of rational isotropic
congruences of lines admit even polynomial parametrizations, if the gen-
erating function is a polynomial one. (For detailed explanation see Sec.
4.)

2 Congruences of lines in Euclidean three-space

2.1 Differential geometry of congruences of lines in R
3

The lines of a congruence can be locally parametrized by

L(u1, u2) = m(u1, u2) + u3l(u1, u2), (1)

where m(u1, u2) : D ⊂ R2 → R3 is a parametrization of a director surface and
l(u1, u2) : D ⊂ R2 → S2 is the field of unit direction vectors of L. The spherical
image l(D) is a part of the unit sphere S2. Changing the director surface m(D)
by letting m′(u1, u2) = m(u1, u2) + α(u1, u2)l(u1, u2) with an arbitrary function
α(u1, u2) : D → R does not change the lines of C.

Figure 1: Some lines of a congruence with director surface.
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Now we assign the normalized Plücker coordinates (l, l) to the lines L in C,
see [12]. The first three entries of the Plücker coordinate vector of a line L
are simply the coordinates of the unit direction vector l. The vector l is called
moment vector and is defined by l = m × l. It is independent on the choice of m
on L. Its length equals the distance of L to the origin of the coordinate system.

With 〈·, ·〉 we denote the standard scalar product in R3.

Following [3, 6, 12] we define the two quadratic differential forms

I = 〈dl, dl〉 = gijduiduj and II = −〈dm, dl〉 = γijduiduj , (2)

which are called first and second fundamental form of C. For a given direction
u̇1 : u̇2 at (u1

0
, u2

0
) in the congruence the value

u3

s =
γij u̇iu̇j

gij u̇iu̇j
(3)

is the u3-value of the striction or central point of all ruled surfaces in C containing
L(u1

0, u
2
0) and having the given direction. Thus the form II is called striction form,

see also [3, 6, 12].

Now we are going to look for the extremal positions of the striction point on a
congruence line L(u1

0
, u2

0
). A similar problem is to find the minimum and maxi-

mum of the normal curvature of a surface in R3. We have to find the extremal
values of II/I. II is in general not symmetric, therefore we symmetrize it by letting

γij :=
1

2
(γij + γji) and II := γijduiduj . (4)

This simple minimization problem leads to an eigenvalue problem and the eigen-
values u3

Si
of (γij)(gij)

−1 are the extremal values of u3

S . The corresponding di-
rections of u3

Si
are called principal directions. If we have u3

S1
= u3

S2
at L, the

line L is called isotropic. Congruences containing only isotropic lines are called
isotropic congruences.

We define the central point of a line L in C as the midpoint of the two extremal
positions of the striction points on L. The central points form the central surface
and can serve as director surface as well, it can degenerate to a curve or a point.

The coordinate functions of the second fundamental form of an isotropic congru-
ence of lines which ist parametrized by its central surface satisfy

γ11 = γ22 = 0, γ12 + γ21 = 0, (5)

see [1, 3, 12]. With (5) the computation of principal direction fails and we can
say that each direction in an isotropic congruence C of lines is a principal one.
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2.2 Study’s sphere, infinitesimal kinematic mapping

The normalized Plücker coordinates (l, l) of a line L satisfy 〈l, l〉 = 1 and

〈l, l〉 = 0, (6)

which will be referred to as the Plücker relation. Equation (6) tells us that
the moment vectors of lines are tangent vectors of the Euclidean unit sphere
described by l. Thus the vectors l form a vector field on S2.

Figure 2: Field of moment vectors on S2 of lines of an isotropic congruence.

Following E. Study [15], the normalized Plücker coordinates make it possible

to define a mapping σ from the set ~L of oriented lines in Euclidean three-space to
points of the dually extended Euclidean unit sphere S2

D
, sometimes called Study

sphere. The orientation of C’s lines is given by the orientation of l. We let

σ(L) = l + εl (7)

be the image of the Line L = (l, l) under the Study mapping σ : ~L → S2

D
. The

dual unit ε follows the rule ε2 = 0. With (6) we find 〈σ(L), σ(L)〉 = 〈l+εl, l+εl〉 =
〈l, l〉 + 2ε〈l, l〉 = 1 and therefore σ(L) = l + εl is a point in S2

D
.

In [7] the mappings induced by congruences of lines in S2

D
are studied. It turns out

that these infinitesimal kinematic mappings L 7→ σ(L) determine congruences of
lines and vice versa. In [7] H. R. Müller found that an isotropic congruence C
of lines induces an infinitesimal conformal mapping in S2

D
, if the spherical image

of C’s lines is parametrized isothermally.

Following [7] and assume l : D ⊂ R2 → R3 is an isothermal parametrization
of the unit sphere S2. The moment vectors l of C’s lines satisfy (6). On the
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other hand, we have 〈l, l〉 = 1 and therefore 〈l,i, l〉 = 0, where ,i denotes partial
differentiation with respect to ui. Now the infinitesimal conformal mapping reads

σ(L) = l + ε(λ1l,1 + λ2l,2), (8)

where λi(u1, u2) : D → R are real and imaginary part of a holomorphic function
λ = λ1 + iλ2 depending on the complex parameter u = u1 + iu2. Consequently,
λi satisfy the Cauchy-Riemann equations

λ1

,1 = λ2

,2, λ1

,2 = −λ2

,1. (9)

3 Parametrization of rational isotropic congru-

ences

In order to parametrize rational isotropic congruences of lines, we assume that
the unit sphere is isothermally parametrized by

l(u1, u2) =
1

N

[

2u1, 2u2, 1 − (u1)2 − (u2)2
]T

, (10)

where N := 1 + (u1)2 + (u2)2. Since an isotropic congruence C of lines induces
an infinitesimal conformal mapping, the moment vectors of the lines in C are the
dual part of (8) and read

l = λ1l,1 + λ2l,2. (11)

Now we can state:

Theorem 3.1

1. Any rational isotropic congruences of lines in Euclidean three-space R3 ad-
mits the parametrization

L(u1, u2; u3) = λ1l,2 − λ2l,1 + u3l, (12)

where l is any rational isothermal parametrization of the Euclidean unit
sphere S2 and λi are real and imaginary part of a rational function λ : D →
C.

2. If a congruence C can be parametrized by (12), where l is any isothermal
parametrization of S2 and λi are real and imaginary part of a holomorphic
function λ, then C is isotropic.
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Proof:

1. Let C be a rational isotropic congruence of lines. Following [7] C induces an
infinitesimal conformal mapping. Thus the moment vectors l of C’s lines can
be described by (11). In order to find a parametrization of C, we compute
the surface P of pedal points of C’s lines. A parametrization of P is given
by

P = l × l = l × (λ1l,1 + λ2l,2) = λ1l,2 − λ2l,1, (13)

which is the director surface of C parametrized by (12).

2. By assumption l is an isothermal paramtrization of S2, so we have 〈l, l〉 = 1,
〈l, l,i〉 = 0 〈l,i, l,j〉 = ϕ2δij . Obviously l,1 × l,2 = ϕ2l. With the latter
identities we compute the moment vector of the lines described by (12) and
arrive at

l = (λ1l,2 − λ2l,1) × l = λ1l,1 + λ2l,2,

Thus the Study image of the lines given by (12) is parametrized by

σ(L) = l + ε(λ1l,1 + λ2l,2),

which is an infinitesimal conformal mapping comparable to (8) and (11).

�

Figure 3 shows some iso-parameter surfaces and some lines of an isotropic con-
grunece C of lines. Therein λ = (1 + i)u is the generating function.

4 Porperties of rational isotropic congruences

This section shows some properties of rational isotropic congruences of lines in
Euclidean three-space by means of the representation (12).

First we compute the fundamental form (2)

I = gijduiduj = ϕ2δijduiduj , (14)

where ϕ = 2/N , and the second fundamental form

II = γijduiduj = −〈m,i, l,j〉duiduj . (15)

The coordinate functions are

γ11 = λ2

,1ϕ
2 − λ1ϕ,2ϕ + λ2ϕ,1ϕ,

γ12 = −λ1
,1ϕ

2 − λ1ϕ,1ϕ − λ2ϕ,2ϕ,

γ21 = λ2
,2ϕ

2 + λ1ϕ,1ϕ + λ2ϕ,2ϕ,

γ22 = −λ1

,2ϕ
2 − λ1ϕ,2ϕ + λ2ϕ,1ϕ.

(16)
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Figure 3: Iso-parameter surfaces (left) and some lines in an isotropic congruence
C (right).

With (3), (14) and (16) we are able to show the following result:

Theorem 4.1

If C is a rational isotropic congruence parametrized by (12) and λ : D ⊂ C → C

is a rational function, then the central surface M of C is a rational surface.

Proof: We compute the central surface M using the formula

u3

M =
1

2
γijg

ij (17)

given in [3, 12], where (gij) is the inverse matrix to g = (gij). Because of (14),
(16) and (9), equation (17) simplifies to

u3

M = λ2

,1 − λ1ϕ,2ϕ
−1 + λ2ϕ,1ϕ

−1 =: ζ. (18)

With

M = λ1l,2 − λ2l,1 + ζl (19)

we obtain a rational parametrization of the central surface. �

In the following we will use the central surface M as the director surface. Thus
we have

L′(u1, u2; u3) = λ1l,2 − λ2l,1 + ζl + u3l = M + u3l. (20)
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Because they are needed later, we compute the coefficients of the second funda-
mental form of (20). We denote these coordinate functions by γ ′

ij and find

γ′

11 = γ′

22 = 0 & γ′

12 = −γ′

21 = γ12 = −γ21. (21)

Parametrizations of isotropic congruences of lines can also be obtained by the
a theorem given by Ribaucour (1881), see [2]: If v ∈ R3 and M is the central
surface of an isotropic congruence C : L = M + u3l of lines, then C′ : L′ =
M + v × l + u3l is an isotropic congruence of lines too. The central surfaces of
both congruences C and C ′ coincide. This leads to further rational congruences
of lines:

Theorem 4.2

If v ∈ R3 and M is the central surface of a rational isotropic congruence C (19)
of lines, then C′ is also a rational isotropic congruence of lines.

Proof:

1. We do not have to check te isotropy of C ′, since it is regulated by the above
mentioned theorem by Ribaucour.

2. The rationality of C ′ is obvious: The vector v is a constant vector in R3

and by theorem 4.1 the central surface M of C and the vector field l are
rational.

�

Using the director surface

M ′ := M + v × l (22)

of C′ and the identity ϕ2l = l,1 × l,2 to compute the moment vectors of C ′’s lines,
we find

l
′

= M ′ × l = M × l + 〈v, l〉l − v = l + 〈v, l〉l − v. (23)

On the other hand we have the decomposition

λ1′l,1 + λ2′l,2 = l
′

(24)

and arrive at

λ1′ = λ1 − 〈v, l,1〉ϕ
−2 and λ2′ = λ2 − 〈v, l,2〉ϕ

−2. (25)

Thus we can say:
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Theorem 4.3

Changing the director surface from (12) to the director surface given in (22) the
generating function λi change according to (25).

We ask for the singularities of L. They are characterized by

F (u1, u2, u3) = det(L,1, L,2, L,3) = 0. (26)

Obviously, F is a quadratic polynomial in u3, called focal polynomial, see [3, 6, 12].
Its solutions u3

F correspond to the focal points. There are 0, 1 or 2 focal points on
each line of C. We use the complex extension of R3 and extend L : D×R3 → R3

in the obvious way to L : D × C3 → C3.

It is well known and easy to show that the focal surfaces of isotropic congruences
are a pair of conjugate complex developables. The interested reader may find this
in the monograph [1].

Indeed, it is a new result that these two developables are rational in the case of
a rational isotropic congruence C. So we have the following remarkable result:

Theorem 4.4

The focal surfaces F1 and F2 of a rational isotropic congruence C of lines are a
pair of conjuate complex rational developable surfaces.

Proof: We assume C is parametrized by (20) and use (21) and (26) in order to
compute the focal surfaces. So we find

F = (u3)2ϕ2 − γ′

12
γ′

21
ϕ−2 = (u3)2ϕ2 + γ2

12
ϕ−2,

which leads to u3

F 1
= iγ′

12ϕ
−2 and u3

F 2
= −iγ′

12ϕ
−2 with i2 = −1. The focal

surfaces of (20) thus have the parametrization

F1 = M + i
γ′

12

ϕ2
l and F2 = M − i

γ′

12

ϕ2
l. (27)

Comparing (16), (21) and (27), we observe that for any rational generating func-
tion λ the focal surfaces of C from (20) are rational. �

In the following we use the abbreviation

µ := γ′

12ϕ
−2. (28)

The curves of regression of Fi are given by

rj = M ± iµl ± i(µ,1 ± iµ,2)ϕ
−2(l,1 ∓ il,2), (29)

where j = 1, 2. This can be found in [1]. Now we have the following theorem:
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Theorem 4.5

The curves of regression of the focal surfaces (27) of rational isotropic congru-
ences C given by (12) are rational isotropic curves.

Proof: The scalar and vector functions appearing in (29) are rational, if the
generating function λ is rational, which is immedeatly seen, if we look at (10)
and (27).

These curves are isotropic, which means 〈ṙj , ṙj〉 = 0. This is also shown in [1]. �

The isotropic curves rj of regression of Fj are in a close relation to an other
surface which is associated to an isotropic congruence C of lines. We call the
plane perpendicular to a congruence line L through its central point symmetry
plane. The envelope R of the two-parameter family of symmetry planes of C’s
lines is called central envelope.

A well known theorem by Ribaucour says that the central envelope R of an
isotropic congruence C of lines is a minimal surface, see [1, 3]. The central enve-
lope admits the parametrization

R = ζl + ζ,1ϕ
−2l,1 + ζ,2ϕ

−2l,2 = M − µ,2ϕ
−2l,1 + µ,1ϕ

−2l,2, (30)

where µ and ζ are defined by (28) and (18), respectively. The right hand side of
(30) can be found in [1].

In order to show that the right hand side of (30) is a minimal surface, we have to
recall S. Lie’s generation of minimal surfaces, [8]: Translate an isotropic curve
along its conjugate complex counter part. The real points appearing in this mo-
tion form a minimal surface.

We use the curves of regression (29), which are isotropic and compute

1

2
(r1 + r2) = M − µ,2ϕ

−2l,1 + µ,1ϕ
−2l,2.

The equivalence of the middle term and the right hand side of (30) is shown with
help of the Cauchy-Riemann equations (9) and the integrability condition

ϕ(ϕ,11 + ϕ,22) − ϕ2

,1 − ϕ2

,2 + ϕ4 = 0. (31)

The integrability condition (31) follows from the fact that l : D ⊂ R2 → R3

from (10) is parametrization of the unit sphere. With the metric (14) induced by
l and the theorema egregium we obtain (31).

With the above assumptions on l and λ we have:

Theorem 4.6

The central envelope R of a rational isotropic congruence C (12) of lines is a
rational minimal surface.
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Proof: The rationality of R from (30) is obvious, since λ is a rational function
and l is a rational parametrization of S2. �

Theorem 4.7

The central envelope R (30) of a rational isotropic congruence C (12) of lines is a
polynomial minimal surface, if the generating function λ is a polynomial function
C → C.

Proof: Under the assumption that l is parametrized according to (10) we simplify
the coordinate functions of (30) and arrive at

R =











λ1

,22u
1u2 +

1

2
λ2

,11(1 − (u1)2 + (u2)2) + λ2

,1u
1 + λ2

,2u
2 − λ2

λ2

,22u
1u2 +

1

2
λ1

,11(1 + (u1)2 − (u2)2) − λ1

,1u
1 − λ1

,2u
2 + λ1

λ2

,22u
1 − λ1

,11u
2 + λ2

,1











. (32)

Now we assume λ = p(u), where p(u) is a polynomial with complex coefficients
depending on the complex variable u = u1 + iu2. The real and imaginary part λ1

and λ2 are polynomials too. Inserting them into (32), we find that the coordinate
functions of the central envelope are polynomials. �

A congruence C of lines in Euclidean space is called normal congruence, if
γ12 = γ21 independent on the choice of the director surface, see [3, 12]. These
congruences consist of the normals of a surface. We ask if an isotropic congruence
can be a normal congruence.

Theorem 4.8 The only rational isotropic congruences of lines that are normal
congruences at the same time are the bundles of lines.

Proof: Normal congruences are characterized by γ12 = γ21 independently of the
choice of the director surface. With (16) and (9) we find the system of differential
equations

(λ1

,1 + λ2

,2)ϕ + λ1ϕ,1 + λ2ϕ,2 = 0,

λ1

,1 − λ2

,2 = 0,

λ2

,1 + λ1

,2 = 0

(33)

for λ. The solutions of (33) belong to isotropic normal congruences. (33) is solved
by

λ1 = c(−1 − (u1)2 + (u2)2) + au1u2 + bu2,

λ2 =
a

2
(1 − (u1)2 + (u2)2) − 2cu1u2 − bu1,

(34)
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where (a, b, c) ∈ R3 are real constants. Inserting (34) into (26), we find

F1(u
1, u2) = F2(u

1, u2) = [−a,−2c,−b]T = const. (35)

(35) implies that the point [−a,−2c,−b]T appears as focal surface, central sur-
face and central envelope of the rational isotropic congruence C generated by λ
from (34). Therefore the rational isotropic congruences of lines which are normal
congruences at the same time are the bundles of lines with vertices (35). �

Here we remark that it is easy to show that the bundles of lines are isotropic
congruences which are normal congruences at the same time, even if these con-
gruences are not rational.

5 Examples

We show examples of low degree rational isotropic congruences of lines and the
related low degree minimal surfaces.

We assume that the generating function λ of an isotropic congruence C of lines
is a polynomial

λ(u) = Pu4 + Qu3 + Ru2 + Su + T, (36)

where P , Q, R, S, T ∈ C, not all of them zero and u = u1 + iu2. With (30) we
find that the central envelope is given by

R =





=(−3Pu4 − Qu3 + 6Pu2 + 3Qu + R − T )
<(3Pu4 + Qu3 + 6Pu2 + 3Qu + R + T )

=(−8Pu3 − 3Qu2 + S)



 . (37)

R is of degree 16 if P 6= 0. In the case P = 0 equation (37) parametrizes Enneper

surfaces, which are of degree 9 as algebraic surfaces.

We use (29) to compute the curves of regression and obtain

r1 =





3iPu4 + iQu3 − 6iPu2 − 3iQu− i(R − T )
3Pu4 + Qu3 + 6Pu2 + 3Qu + R + T

8iPu3 + 3iQu2 − iS



 and r2 = r1. (38)

A remarkable example appears if P = Q = 0.

Theorem 5.1

The lines of a rational isotropic congruence C which is generated by a quadratic
polynomial can be obtained as the intersection of planes tangent to a pair of
isotropic cones. The vertices of these cones are a pair of conjugate complex points.
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Figure 4: Central envelope (left) and central envelope with some lines (right) of
C defined by λ = u4.

Proof: In this case the curves given by (38) degenerate to points

r1 = [i(T − R), R + T,−iS]T and r2 = r1. (39)

The focal surfaces of C are developables with isotropic generators with points
for their curves of regression. Thus the focal surfaces are quadratic cones with
vertices r1 and r2 given by (39), and having the equations

F1 : (x1 − i(T − R))2 + (x2 − (R + T ))2 + (x3 + iS)2 = 0
and

F2 : (x1 + i(T − R))2 + (x2 − (R + T ))2 + (x3 − iS)2 = 0.
(40)

In this case the central envelope R also degenerates to a point, being the midpoint
of r1 and r2: R = [=(R − T ),<(R + T ),=S]T . �
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