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Abstract

We study the locus C of all points in the
plane whose pedal points on the six sides
of a complete quadrangle lie on a conic. In
the Euclidean plane, it turns out that C is
an algebraic curve of degree 7 and genus 5
and not of degree 12 as it could be expected.
Septic curves occur rather seldom in geome-
try which motivates a detailed study of this
particular curve. We look at its singular-
ities, focal points, and those points on C
whose pedal conics degenerate. Then, we
show that the septic curve occurs as the lo-
cus curve for a more general question. Fur-
ther, we describe those cases where C degen-
erates or is of degree less than 7 depending
on the shape of the initial quadrilateral.
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1 Introduction

1.1 Septic curves and curves

related to a quadrilateral

Algebraic curves of degree two, three, and
four (conics, cubics, and quartics) appear
frequently in many geometrical problems
(see, e.g., [9, 11, 14, 15, 17, 18, 23]). This is
caused by the fact that many problems in
geometry involve distances between points
or angles between lines and a quadratic
form is responsible for measuring distances
and angles in the Euclidean plane. Curves
of odd degrees proved useful in Computer
Aided Geometric Design: Cubic, quintic,
and even septic curves (in plane and in
space) are well suited for solving interpo-
lation tasks with tangent or curvature con-
tinuity [6, 7, 13, 19, 21] and are also helpful
in spaces of geometric objects, such as lines
and spheres [20].
Planar curves of odd degree may be the

images of algebraic curves under certain
Cremona transformations: Linear compo-
nents of the image curve will split off if the
initial curve passes through base points of
the transformation [4, 5, 8] as is the case
with many but not all cubic curves and
most of the algebraic curves which are re-
lated to the geometry of a triangle, see the
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list on B. Gibert’s page [10].
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Figure 1: Triangle related septics: The
curves Q001, Q008, Q009 are labeled accord-
ing to Gibert’s list [10].

On Gibert’s page [10], we find, among
many other curves, 12 septic curves related
to the geometry of the triangle. Three of
these septics are shown in Figure 1. For
example, the Darboux septic Q001 is the lo-
cus of all 4th pedal points of a point P on
the circumconics of a triangle ∆ = ABC

such that the circumconic’s normals at A,
B, C concur in P . This curve was derived
and described in [12]. The septic Q008 is
the isogonal image of a circular octic which
collects the perspectors of pedal and pro-
jection triangles of a triangle ∆, while Q009

is related to orthologic triangles.
However, the rational septic also related

to a geometric question about triangles
found by É. Lemoine (cf. [16]) does not
show up in [10]. Compared to the huge
amount of special conics, cubics, and quar-
tics related to many geometric questions,
these 13 septics are a rather poor aggre-
gation. It seems that K. Fladt [8] may
be right when he stated that “there could
hardly be some curves of degree 7 that could

be of interest and of geometrical relevance”,
although the space of septic plane curves is
35-dimensional (including even degenerate
ones) since the implicit equation of a septic
involves 36 coefficients where only the ratio
matters.
Cubic curves related to triangles can be

characterized by geometric properties [9].
While no vertex of a triangle is distin-
guished and the ordering of the vertices
does not matter, this is not the case with
a quadruple of points, say A, B, C, D.
There are three different orderings of four
points (up to cyclic and reverse rearrange-
ments), and so, they define three different
quadrilaterals. Asking for the locus of all
points P in the plane of the quadruple with
concyclic pedal points on four side lines of
one particular quadrilateral defined on the
point quadruple results in a certain cubic.
Since there are three different orderings, the
four points actually define three cubics one
of which passes through the quadrilateral’s
respective Miquel point (see [3] and cf. Fig-
ure 2).
It seems that asking for the locus C for

only one ordering of points may not deliver
the complete picture.
In the following, we assume that we are

given a planar quadrilateral Q = ABCD

with vertices A, B, C, D, no two of which
may coincide and no three shall be collinear.
(Later, we shall discuss the case where three
of these points are collinear as the only ac-
ceptable degenerate case.) Clearly, these
four points define six lines [A,B], [A,C],
[A,D], [B,C], [B,D], [C,D], i.e., the joins
of all six pairs out of the four points. The
union of the four points and the six lines is
called a complete quadrangle.
Now, we raise the following question (cf.

2



A B

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

D

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

MRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRPMRP

MQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQRMQR

MPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQMPQ

CABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCD

CABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCDCABCD

CACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDB

CACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDBCACDB

CADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBC

CADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBCCADBC

Figure 2: The loci CABCD, CACDB, CADBC of
points with four concyclic pedal points on
the sides of the three quadrilaterals on four
points A, B, C, D.
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Figure 3: The characteristic property of the
points on C: The six pedal points P·· of the
point X lie on a single conic p.

Figure 3): What is the locus C of points
X in the quadrilateral’s plane such that the
pedal points of X on the six lines of the com-
plete quadrilateral are conconic, i.e., they
are located on a single conic?

In order to answer this question, the re-
mainder of this section collects necessary
notations and provides some basic results.
In Section 2, we shall derive the equation of
C for a generic quadrilateral and study C’s
algebraic properties. However, the equation
of C is given in the Appendix A in full length
because of its complexity (2318 terms). A
rather intricate computation will show that
beside the diagonal points and three Miquel
points there are only 4 further real points on
C that deliver singular pedal conics. Subse-
quently, Section 3 will show that the curve
C is the locus curve for a more general for-
mulation of the initial problem. Then, Sec-
tion 4 deals with those quadrilaterals and
complete quadrangles where the degree of
the curve C drops. In all these cases, C be-
comes a sextic either of genus 1 or 3 and
carries no real point off the real (isolated)
singularities. We also show that the degree
of C is always larger than 5.

1.2 Prerequisites, notations,

and basic results

Although we are mostly dealing with Eu-
clidean geometry, we shall describe points
by homogeneous coordinates whenever this
is favorable. The Cartesian coordinates
(x, y) of a point X can easily made homo-
geneous by writing X = 1 : x : y. On
the contrary, from the homogeneous coor-
dinates x0 : x1 : x2 of a point, we can
change to its Cartesian coordinates by set-
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ting x = x1x
−1
0 and y = x2x

−1
0 , provided

that x0 6= 0. In this way, we have per-
formed the projective closure of the Eu-
clidean plane and x0 = 0 is the equation of
the ideal line (line at infinity). On this line,
we find the absolute points of Euclidean ge-
ometry 0 : 1 : ±i which are henceforth de-
noted by I and J = I.
The condition on six points to lie on a

single conic can be written in form of a van-
ishing determinant of a 6× 6 matrix whose
rows (or columns likewise) are the quadratic
Veronese images of the six points in ques-
tion see [11]. For a point X with homoge-
neous coordinates x0 : x1 : x2, the quadratic
Veronese image has the homogeneous coor-
dinates

v(x0, x1, x2) =

= x2
0 : x0x1 : x0x2 : x

2
1 : x1x2 : x

2
2.

(1)

Each conic c in the plane has a homoge-
neous equation of the form

2∑

i,j=0

aijxixj = 0

(with aik ∈ R not simultaneously vanish-
ing). The conic c is regular/singular if, and
only if, the symmetric matrix (aij) ∈ R

2×2

is regular/singular. Each point incident
with the conic corresponds to a hyperplane
in the space P

5 of all Veronese images. Six
linearly dependent hyperplanes in P

5 cor-
respond to six conconic points, and hence,
the 6× 6 matrix of the respective Veronese
images is of rank less than 6. A less alge-
braic and more geometric condition on six
points to lie on a conic is given by Pap-

pus’s theorem [11]. However, the algebraic
formulation of Pappus’s theorem is equiv-
alent to (1).

Now, it is natural to conjecture that
the locus C is a curve of degree twelve:
The computation/construction of the pedal
points of the normals from X to the sides
of the complete quadrangle is linear. Al-
gebraically speaking, the coordinates of the
six pedal points can be expressed linearly
in terms of the coordinates of X .
Therefore, the entries of the 6 × 6 ma-

trix are quadratic in the coordinates of the
pedal points, and thus, quadratic in the co-
ordinates of X . Finally, the determinant of
the 6 × 6 matrix is a polynomial of degree
twelve which, set equal to zero, is the equa-
tion of an algebraic curve of degree twelve.
Whatever the locus C may be, the follow-

ing can be shown without any computation:

Theorem 1.1. The vertices A, B, C, D

and the diagonal points P = [A,B]∩ [C,D],
Q = [A,C]∩ [B,D], R = [A,D]∩ [B,C] are
located on C.

Proof. If X coincides with one diagonal
point, say P , then the pedal points on
[A,B] and [C,D] coincide and equal P . So,
there are only five different pedal points
naturally having a unique circumconic. The
same holds true for the other diagonal
points.
If X equals a vertex of Q, say A, then

even three pedal points fall in one point,
i.e., the pedal points of A on [A,B], [A,C],
and [A,D] (the three side lines through A).
Therefore, the four vertices ofQ are located
on C and are singular points on C.

We shall also verify that A, B, C, and D

are double points on C by computation in
Thm. 2.2.
Remark:

The pedal conic of a vertex of Q, say A, is
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not uniquely determined. It passes through
the three pedal points on [B,C], [C,D],
[D,B], and A. These four points will, in
general, serve as the base points of a pencil
of pedal conics (cf. [11]). ♦

2 The equation of C

2.1 The generic quadrilateral

In order to give an equation of C, we attach
a Cartesian coordinate system to the given
quadrilateral. It means no loss of general-
ity, if we assume that the vertices of the
quadrilateral are given by the homogenized
Cartesian coordinates

A = 1 : 0 : 0, B = 1 : a : 0,

C = 1 : b : c, D = 1 : d : e.

We could simplify the coordinates of these
four points a little bit more by setting a = 1.
Regarding the question we are trying to
answer, this is admissible, since it would
only scale the quadrilateral and the problem
of conconic pedal points is invariant under
equiform transformations in general. How-
ever, we do not set a = 1 in order to keep
the coefficients of C homogeneous (polyno-
mials in a, b, c, d, e).

Later, some quadratic functions in terms
of a, b, c, d, e shall occur frequently and in
order to simplify many expressions, we la-
bel the squares of the six Euclidean lengths

between the given points by

l1 :=AB=a2,

l2 :=AC=b2 + c2,

l3 :=AD=d2 + e2,

l4 :=BC=(b−a)2+c2,

l5 :=BD=(d−a)2+e2,

l6 :=CD=(d−b)2+(e−c)2.

(2)

For the same reason, we denote the areas of
the four subtriangles of Q by

FD :=area(ABC)= 1
2
ac,

FC :=area(ABD)= 1
2
ae,

FB :=area(ACD)= 1
2
(be−cd),

FA :=area(BCD)= 1
2
(ac−ae+be−cd),

(3)

where, for example, FA is the area of the
triangle BCD (i.e., the area is labeled by
the point that does not contribute).
Now, let X = (x, y) (or likewise 1 : x : y)

be a point in the plane of Q. It is elemen-
tary to compute the six pedal points from
X to the sides of the complete quadrilateral.
Then, we replace the Cartesian coordinates
of X by homogeneous coordinates accord-
ing to x → x1x

−1
0 and y → x2x

−1
0 . For ex-

ample, the pedal point PAC on the side line
[A,C] has the homogeneous coordinates

PAC = l2x0 : b(bx1 + cx2) : c(bx1 + cx2).

Subsequently, we apply the Veronese map-
ping (1) and compute the determinant of
the 6× 6 matrix

V := (v(PAB), v(PAC), v(PAD),

v(PBC), v(PBD), v(PCD)) .
(4)

This results in a homogeneous polynomial
of degree 12 in the variable homogeneous
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coordinates x0 : x1 : x2 of X . Surprisingly,
det V factors and we have

det V = −28l−1
1 F 2

AF
2
BF

2
CF

2
D · x5

0 · P7, (5)

where P7 =
7∑

k=0

qkx
k
0 is a degree 7 form in

x0 : x1 : x2 with

q7 = q6 = 0,

q5 = 24l1l2FAFBFCFD(x
2
1 + x2

2),

q4 = . . . , q3 = . . . ,

q2 = (. . .)(x2
1 + x2

2), q1 = (. . .)(x2
1 + x2

2)
2,

q0 = 4(al1)
−1(4(FC−FD)(l1FB(FB−FC)·

·(FB+FD)+l2F
2
C(FC−FB)−l3F

2
D·

·(FB + FD))x1 + (l21F
2
B(FB−FC−FD)−

−l22F
2
CFD−2l23F

3
D+l1l2FC((4FB−5FC)·

·(FB − FC) + (FB − FC)FD)+

+l1l3FD(4F
2
B − 4FBFC − F 2

C+

+3FD(FB − FC + FD)) + l3l4F
2
CFD+

+l2l3FCFD(FC+2FD)−l2l4F
2
C(2FC−FD)−

−16FBFCFD((FB − FC)·

·(FC + FD) + F 2
D))x2)(x

2
1 + x2

2)
3.

(6)

The polynomial P7 is given in full length in
the Appendix A in term of inhomogeneous
(Cartesian) coordinates.
Now, we have:

Theorem 2.1. The locus C of points X

in the Euclidean plane with conconic pedal
points on the six lines of a complete quad-
rangle is, in general, a tricyclic algebraic
curve of degree 7 with the equation P7 = 0
having one real point at infinity.

We have added the phrase in general
since we shall soon see that for some special
configurations of the four points A, B, C,
D the degree will drop.

Proof. By virtue of (5), we can see that the
(in general) non-degenerate factor of det V

is a polynomial P7 of degree 7. Obviously,
the factor x5

0 splits off from det V , and thus,
the line at infinity is a component with mul-
tiplicity 5. However, this component does
not matter, since one cannot draw normals
from ideal points to proper lines. Therefore,
the affine part of C is only of degree 7. (An
example is shown in Figure 4.)

In the projective closure and the com-
plex extension of the Euclidean plane, the
term q0 of degree 7 (given in (6)) consists
of a linear factor corresponding to the one
and only real point at infinity and the term
(x2

1+x2
2)

3 = (x1+ix2)
3(x1−ix2)

3 whose solu-
tions are the absolute points (circle points)
of Euclidean geometry each with multiplic-
ity 3.

A BC

D

C

C

C

C

kC

kA

kD

kB

asymptote

Figure 4: The septic locus C of points whose
six pedal points on the sides of a complete
quadrilateral Q = ABCD lie on a conic.

Later, we shall have a look at all types of
quadrilaterals including those with symme-
try. In some cases the degree of the curve C
will drop. For some special quadrilaterals,
the curve C will consist of a finite number
of isolated real points and complex branches
without any real point.

6



Remark:

The equations of the cubics showing up in
[3] as the loci of points with four concyclic
pedal points on the four sides of a quadri-
lateral are also the irreducible parts of poly-
nomials of degree 8. The concyclicity of the
four pedal points is equivalent to the van-
ishing of the determinant of the 4×4 matrix
whose rows (columns) are Veronese images

(p21 + p22, p0p1, p0p2, p
2
0)

(cf. [11, p. 241]) of the four homogenized
pedal points. Surprisingly, from this degree
8 polynomial the factor x5

0 (the ideal line)
also splits off with multiplicity 5. ♦

We can state and prove:

Theorem 2.2. The vertices of the quadri-
lateral Q = ABCD are isolated double
points on the septic C. The four vertices are
focal points of C. The curve C is of class 22
and genus 5.

Proof. From (6), we see that q7 and q6 are
equal to zero, and therefore, A is a double
point on C. The coefficient q5 6= 0 (cf. (6))
tells us that the point A is a double point on
C. The linear factors of q5 are the equations
of C’s tangents at the double point. Since

x2
1 + x2

2 = (x1 + ix2)(x1 − ix2) = 0,

we see that the tangents at A are isotropic
lines and A is an isolated double point.
We recall von Staudt’s definition of fo-

cal points on algebraic curves: A point F

is a focal point of an algebraic curve if the
curve’s tangents at F are isotropic lines (cf.
[1, 5]). According to this, A is a focal point
since the tangents of the curve at A are
isotropic lines.

The other vertices B, C, D are of the like
kind. This can be shown by applying trans-
lations to Q and to the septic curve C such
that each vertex of Q coincides with the
origin of the coordinate system (three dif-
ferent translations). This does not change
the algebraic and geometric properties of C
and the linear factors of q0 are the equations
of the tangents at the origin. In all three
cases, q0 will turn out to be a scalar multiple
of x2

1 + x2
2 (since this quadratic form is in-

variant under Euclidean transformations).
Consequently, all four vertices of C are iso-
lated double points and focal points of C.
There are no further singularities on C

(different from A, B, C, D, I, J). This can
be shown either with a CAS (like Maple)
or by considering the following: At a sin-
gular point of C at least three pedal points
have to coincide which is not possible for
any other point (different from the already
known singularities).
With the Plücker formulae for planar al-

gebraic curves (cf. [2, 4, 5, 8, 14]), we find
the genus g and the class m of C:

g = 1
2
(7− 1) · (6− 1)− 1 · 4− 3 · 2 = 5,

m = 7 · (7− 1)− 2 · 4− 6 · 2 = 22

since there are 4 ordinary double points and
2 ordinary triple points on C.

Figure 5 shows that the curve C can have
up to six real separated components as is to
be expected for a curve of genus 5. These
six components occur if one vertex lies close
to one side.
Remark:

The well-known Plücker formulae (cf. [2, 4,
5, 8, 14, 23]) for the genus and class of a
planar algebraic curve have to be adapted
if the degree d is larger than or equal to 4
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Figure 5: If one vertex (here D) comes close
to one side line (here [A,B]), then the curve
C consists of 6 separated real components.

since curves of sufficiently high degree may
have singularities of multiplicity larger than
2.

In the present case with d = 7 and ordi-
nary triple points, the formulae for the class
m, the number w of inflection points, and
the genus g read

m = d(d− 1)− 2d− 3s− 6t,

w = 3d(d− 2)− 6d− 8s− 18t,

g = 1
2
(d− 1)(d− 2)−

∑
δi.

Herein, d, s, t, δi are the numbers of (or-
dinary) double points, cusps (of the first
kind), (ordinary) triple points, and the
δ-invariants of all singularities. The δ-
invariant can be computed with Maple’s
function singularities provided by the
algcurves package.

It is rather technical to show that each
(ordinary) triple point has to be weighted

with the factors 6 and 18 in the class and
inflection point formula.
This allows us to conjecture that

w = 3 · 7 · (7− 2)− 6 · 4− 18 · 2 = 45.

is an upper bound for the number of real
inflection points on C. ♦

2.2 Miquel points determine

singular pedal conics
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Figure 6: The Miquel point MRP lies on the
septic C, for its six pedals with respect to
the lines of a complete quadrilateral form a
degenerate conic m = sABR ∪ n.

Each quadrilateral Q = ABCD defines
three Miquel points each of which is com-
mon to four circles on two pairs of opposite
vertices and the respective diagonal points
of Q (cf. [22]). We shall denote the Miquel
points by MPQ, MQR, MRP pointing to the
diagonal points involved. It is well-known
that the Miquel points are located on the
following circles (cf. [22]):

MPQ ∈ kACP , kBDP , kABQ, kCDQ,

MQR ∈ kADQ, kBCQ, kACR, kBDR,

MRP ∈ kABR, kCDR, kADP , kBCP ,

8



where kXY Z denotes the circle on the three
(pairwise different) pointsX , Y , and Z. We
are able to show that these points play an
outstanding role:

Theorem 2.3. The three Miquel points
MPQ, MQR, MRP are located on the sep-
tic C. The three pedal conics defined by the
six pedal points of each Miquel point are de-
generate and split into pairs of lines.

Proof. It is sufficient to show the validity of
the above theorem for one particular Miquel
point, say MRP . For the remaining two the
proof uses the same arguments for different
subtriangles.
The Miquel point MRP is the common

point of the circumcircles kABR, kCDR,
kADP , kBCP of the respective subtriangles.
Since MRP ∈ kABR, the three pedal

points of MRP ’s normals to [A,B], [B,R],
[R,A] are collinear: They lie on the Sim-
son line of the triangle ABR. The trian-
gles ABR and CDR share two side lines:
[A,R] = [D,R] and [B,R] = [C,R].
Thus, two by two pedal points coincide:
PMRP ,[A,R] = PMRP ,[D,R] and PMRP ,[B,R] =
PMRP ,[C,R]. So, the two triangles ABR and
CDR share the Simson line sABR = sCDR

on which also the pedal points PMRP ,[A,B]

and PMRP ,[C,D] have to lie. This makes in
total four collinear pedal points.
The remaining two pedal points

PMRP ,[A,C] and PMRP ,[B,D] span a sec-
ond line n. The union of sABR and n is the
singular conic m. Since m is a (singular)
conic, MRP has to lie on C by the very
definition.

Figure 7 shows the three Miquel points
of the complete quadrangle Q together with
the three singular pedal conics. Each point

and line displayed in Figure 7 can be con-
structed only with a ruler (linearly): Each
Miquel point is a common point of two cir-
cles sharing an already known point. The
singular pedal conics of the Miquel points
are Simson lines which require only linear
constructions.
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Figure 7: The three Miquel points and their
singular pedal conics.

It is noteworthy that the triangle built by
the centers of the singular conics is perspec-
tive to the diagonal triangle PQR of Q:

PQR∧=CQRCRPCPQ

(with CQR denoting the center of the singu-
lar pedal conic of MQR. Further, the trian-
gle formed by the three Miquel points is also
perspective to the diagonal triangle, i.e.,

PQR∧=MQRMRPMPQ.

Remark:

Theorem 2.3 can also be verified by means
of computation. For that purpose, only the
coordinates

MRP = 2(l1−l2+l3+l4−l5+l6) :

: a(l1 − l2 + 2l3 − l5 + l6) :

: 4a(FC − FB),
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MPQ = 2(l1 + l2 − l3 − l4 + l5 + l6) :

: a(l1 + 2l2 − l3 − l4 + l6) :

: 4a(FB + FD),

MQR = 4a(l1 − l2 − l3 − l4 − l5 + l6) :

: l1(l1 − l2 − l3 − l4 − l5)+

+ (l4 − 3l2)l3+

+ (l2 + l4)l5 − 16FCFD :

: 8(l1(FC − FB)− FDl3 − l4FC),

of the three Miquel points (with the abbre-
viations given in (2) and (3)) have to be
inserted into (5). ♦

We are able to show that the Miquel
points are not the only points whose six
pedal points lie on a singular conic:

Theorem 2.4. In the Euclidean plane of a
generic quadrilateral Q there exist, in gen-
eral, 4 real points (different from the Miquel
point, the diagonal points, and the vertices
of Q) whose pedal conics are singular.

Proof. Unfortunately, this proof requires
some computation. We assume that W =
1 : ξ : η is a point on C, and thus, its coor-
dinates annihilate P7 from (5) and (6). By
the very definition of C, the six pedal points
of W lie on a conic. We can use (4) to de-
termine the equation of the conic cCD on
the pedals PAB, PAC , PAD, PBC , PBD of W
(note that PCD is missing). The determi-
nant of the coefficient matrix MCD has to
vanish in order to make cCD singular. Sur-
prisingly, detMCD splits into quadratic fac-
tors:

detMCD = ιA · ιB · kC · kD·

·kABR · kABQ · kBCQ · kADQ · kACR · kBDR.

The factors in the latter product are
the equations of some circles and pairs of
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Figure 8: The cycle L consists of 16 circles
and 8 isotropic lines. It intersects C in pos-
sible candidates of points with degenerate
pedal conics.

isotropic lines. For example, ιA = ξ2 + η2

is the equation of the pair of isotropic lines
through A, kA is the (equation of the) cir-
cumcircle kA of BCD, and kABR is the
(equation of the) circumcircle of ABR (with
P , Q, and R still being Q’s diagonal points
as defined in Thm. 1.1).

So far, it seems that the pedal point
PCD does not play a role. In order not
to miss a single pedal point, we compute
the least common multiple L of all deter-
minants detMkl (with k 6= l and (k, l) ∈
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{A,B,C,D}) and find

L = ιA · ιB · ιC · ιD
︸ ︷︷ ︸

isotropic lines
through vertices

· kA · kB · kC · kD
︸ ︷︷ ︸

circumcircles
of subtriangles

·

· kABR · kCDR · kADP · kBCP
︸ ︷︷ ︸

circles through
the Miquel point MRP

·

· kACP · kBDP · kABQ · kCDQ
︸ ︷︷ ︸

circles through
the Miquel point MPQ

·

· kADQ · kBCQ · kACR · kBDR
︸ ︷︷ ︸

circles through
the Miquel point MQR

.

The points on C with degenerate conics
through their pedal points are found as the
intersection of the curve C : P7 = 0 and the
cycle L : L = 0 of degree 40. The cycle L
consists of 16 circles and the 8 isotropic lines
passing through the four vertices of Q, cf.
Figure 8. According to Bézout’s theorem,
we have to expect up to 280 common points
of C and L. As we shall see, many of them
are not real and a huge amount of them
coincides with already known points.
In order to get rid of solutions that we al-

ready now and, further, in order to simplify
the computation we have to discuss the in-
tersection of the components of L with C.
The four pairs of isotropic lines can be

cut out immediately: The pair described
by ιA = 0 intersects C in 14 points 6 of
which coincide with A (since A is an or-
dinary double point on ιA and C and both
(isotropic) components of ιA are tangents to
C at A). Three intersection points each are
located at I and J (since they are ordinary
triple points on C (cf. Thm. 2.1) and regu-
lar points on ιA). The two remaining points
cannot be real since ιA does not contain any

real point different from A. The same argu-
ments hold for the other pairs. Therefore,
we can cut out the cycle of degree 8 given
by the equation ιA · ιB · ιC · ιD = 0.
The circumcircles can also be canceled:

For example, the circle kA (passing through
B, C, D) intersects C at B, C, D with mul-
tiplicity 2 at each point (since they are dou-
ble points on C, cf. Thm. 1.1 and Thm. 2.2).
At both absolute points I and J , the inter-
section multiplicity of kA and C equals 3.
Further, kA and C have a pair of complex
conjugate proper points in common. These
two points are never real since the discrim-
inant ∆A of the respective quadratic equa-
tions is a full square with a minus ahead:

∆A = −4l−1
1 (l1FB + l3FD − l2FC)

2·

·(l1(l3 − l2 − l4 + l5)+

+ad(l2 − l3 + l6)− 4FBFC)2.

Hence, kA does not lead to new real points
on C with singular pedal conics, as is the
case with kB, kC , kD for the same reasons.
Therefore, the cycle kA · kB · kC · kD = 0 of
degree eight being the union of the circum-
circles of the four subtriangles can also be
cut out.
Finally, we have to study the last three

quadruples of circles passing through their
respective Miquel point: At first, we shall
have a look at the four circles passing
through one particular Miquel point. For
example the circles kABR, kCDR, kADP ,
kBCP share only the points A, B, C, D,
R, P , MRP , I, and J with C (with multi-
plicities 4, 4, 4, 4, 2, 2, 4, 16, 16). Which is
similarily true for the other quadruples of
circles passing through the Miquel points
MPQ and MQR and does not deliver new
points.
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A B C D P Q R MPQ MQR MRP I J

24 24 24 24 4 4 4 4 4 4 60 60

R1 R2 R3 R4 compl. pts.
∑

2 2 2 2 32 280

Table 1: The common points of L and C
algebraically counted.

Surprisingly, the following combinations
of circles yield real points on C

kACP ∩ kBDR = {R1, R2},

kACR ∩ kBDP = {R3, R4}

while all other combinations of circles lead
to intersections which are either already
known or not on C, or, if on C, two points
which can never be real.

Table 1 lists the intersection points of L
and C with their respective multiplicities,
and thus, it summarizes the proof of Thm.
2.4.
Remark:

The cycle L is of degree 40 and it is the
union of 16 circles and 8 isotropic lines. It
has four 11-fold points at A, B, C, D; six
4-fold points at P , Q, R, MPQ, MQR, MRP ;
and the absolute points I, J are 20-fold
points. Further it has 128 ordinary double
points (among them R1, . . . , R4). ♦

2.3 Degenerate quadrilaterals

Quadrilaterals may degenerate in many
ways. Until now, we have assumed that
none of the four vertices falls into a line
spanned by two others, i.e., Q = ABCD is
a proper quadrilateral. If we exclude cases
where two or more vertices coincide, the
only possible degenerate quadrilaterals are

those where one vertex, say C, lies on the
side line [A,B]. In any other case, we can
relabel the points. In this rather special
case, we can state:

Theorem 2.5. Assume that all vertices of
Q are pairwise different, but, for example,
C ∈ [A,B]. Then, the septic curve C be-
comes the septic cycle consisting of the line
[A,B] and the circumcircles of the three
non-degenerate subtriangles ABD, ACD,
and BCD.

The line [A,B] serves as the degenerate
circumcircle of the improper triangle ABC.

Proof. If C lies on [A,B], then C = 1 : b : 0,
i.e., c = 0. Inserting this into P7, yields

P7 = (a−b)2b2 · x2 · (e(x
2
1+x2

2)−bex0x1+

+(bd−d2−e2)x0x2)·

·(e(x2
1+x2

2)−aex0x1+(ad−d2−e2)x0x2)·

·(e(x2
1+x2

2)−(a+b)ex0x1+

+((a+d)(d−b)−e2)x0x2+abex2
0).

The linear factor is the equation of [A,B],
the quadratic factors are the equations of
the circumcircles kC , kB, kA of ABD, ACD,
BCD.

The points on the septic cycle described
in Theorem 2.5 define only degenerate con-
ics: Let X be some point on the circum-
circle of ∆C = ABD. The pedal points
PAB, PAD, PBD of X on the sides of ∆C are
collinear and lie on the Simson line sABD.
Since C ∈ [A,B], [A,B] = [A,C] = [B,C],
and thus, PAB = PAC = PBC . Therefore,
the conic on the six pedals is the union of
two lines, the Simson line sABD and the line
[PCD, PAB].
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Here, we have only four different pedal
points, and four points always lie on at least
one conic, indeed, they form the basis of a
pencil of conics.

3 A more general point

of view

We have drawn the normals from some
pointX to the lines of a complete quadrilat-
eral and determined the pedal points. How-
ever, these six pedal points are very special
points on the six normals through P .

Let again Pkl denote the pedal point of
X on the line [k, l] (with k 6= l and (k, l) ∈
{A,B,C,D}) and let further denote P ω

kl the
ideal point of the normal of [k, l] throughX .
Then, we shall determine the points P δ

kl on
the normal such that the crossratio of Pkl,
P ω
kl, X , and P δ

kl equals δ ∈ R \ {0}.

Now, we can ask for the set Cδ of all
points X such that the six points P δ

kl lie on
a single conic. We can show the astonishing
result:

Theorem 3.1. Let Q = ABCD be a
quadrilateral in the projectively extended
Euclidean plane. Then, define six perspec-
tive collineations κδ

kl whose axes are the six
lines [k, l] (k 6= l, k, l ∈ {A,B,C,D}) of
the complete quadrangle determined by Q,
their centers P δ

kl being the ideal points of the
normals of [k, l], and δ ∈ R \ {0} be their
(common) characteristic crossratio.

Then, the set Cδ of all points X

whose images P δ
kl under the six perspective

collineations κδ
kl lie on a single conic form

the septic curve C described in Theorem 2.1
independent of the choice of δ 6= 0.

Proof. With the Cartesian coordinates ofX
and Pkl and the characteristic cross ratio
δ ∈ R, the points P δ

kl can be written as a
linear combination ofX and and the respec-
tive pedal point Pkl

P δ
kl = (1− δ)X + δ Pkl

(where δ 6= 0, (k, l) ∈ {A,B,C,D}, and
k 6= l) since P ω

kl is a point at infinity. Again,
the determinant of the matrix (4) factors
and equals

det V = −28l−1
1 F 2

AF
2
BF

2
CF

2
D · δ8 · x5

0 · P7

with the same polynomial P7 of degree 7 as
we know from (5) and (6) which is indepen-
dent of δ. Hence P7 = 0 is the equation of
Cδ = C.

Theorem 3.1 contains a very special case:
If δ = −1, then the collinear images of
X are the reflections of X in the six side
lines of the complete quadrilateral. Obvi-
ously, these points are conconic if X lies
on the septic C. Figure 9 shows the sep-
tic together with some point X ∈ C and
the conics on the six pedal points Pkl and
the six reflections Rkl. It is clear that the
conics corresponding to two different char-
acteristic cross ratios δ1, δ2 6= 0 are related
by a central similarity with center X and
similarity factor δ1δ

−1
2 (or its reciprocal).

4 Exceptional quadrilat-

erals, degree reduction

4.1 Special configurations

In the case of the locus curve described in
[3], the cubic may degenerate, i.e., it splits
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Figure 9: The conics p and r collect the
pedal points and reflections of P ∈ C. Here,
the conic r is the image of p under the cen-
tral similarity with center P and similarity
factor 2.

into lower degree parts, depending on the
shape of the quadrilateral. From Thm. 2.5,
we know that C becomes the union of three
circles and a straight line if three points out
of {A,B,C,D} are collinear (while still be-
ing pairwise different). This seems to be
the only case (as is indicated by a detailed
study of the curve C for all possible types
of quadrilaterals – up to Euclidean trans-
formations).
Now, we shall ask under what circum-

stances the degree of C is less than 7. We
have the following:

Theorem 4.1. Let Q = ABCD be a proper
quadrilateral such that, for example, the
point D is the orthocenter of ABC. The
curve C associated with the complete quad-
rangle on Q is of degree 6 and genus 1, has 9
(isolated) double points and no further sin-

gularities. It is of class 12 and has no real
branch.

Proof. The contents of this theorem can be
verified by setting

A = 1 : 0 : 0, B = 1 : a : 0, C = 1 : b : c,

and since D has to be the orthocenter of
ABC, we have

D = c : bc : b(a− b).

With (4), we find the (homogeneous) equa-
tion of C as

C : c2(x2
1 + x2

2)
3−

−2c((a+b)cx3
1 + 3bcx1x

2
2 + (ab−b2+c2)x3

2)·
·(x2

1 + x2
2 + abx2

0)x0 + (c2(a2 + 4ab+ b2)x4
1+

+6(a+ b)bc2x2
1x

2
2 ++4bc(ab− b2 + c2)x1x

3
2+

+(a2b2−2ab3+4abc2+b4−b2c2+c4)x4
2)x

2
0+

+a2b2c2(x2
1 + x2

2)x
4
0 = 0

(7)

which is obviously of degree 6 and allows
us to locate the singularities (isolated dou-
ble points) at the three diagonal points
of Q. (According to Thm. 2.2, the ver-
tices of Q are singular points on C in any
case.) Although the leading term in (7)
is (x2

1 + y22)
3, the absolute points I and J

are only double points. (This can be shown
at hand or the ranks of the tensors of the
partial derivatives of order 3 of (7) with
respect to the three variables xi or using
the singularities command in Maple’s
algcurves package.) Besides A, B, C, D,
P , Q, R, I, J there are no further singular-
ities.
With the Plücker formulae (cf. [2, 4, 5, 8,

14]), we find

g = 1
2
(6− 1) · (6− 2)− 9 · 1 = 1,

m = 6 · (6− 1)− 2 · 9 = 12

for the genus and the class of C.
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Symmetries of the initial quadrilateral
may not necessarily cause a reduction of the
degree of C. However, if two diagonal points
of Q move to the line at infinity, then their
join splits off from C. This yields to the
following result:

Theorem 4.2. Let Q = ABCD be a par-
allelogram. The curve C associated with the
complete quadrangle on Q is of degree 6 and
genus 3, has 7 (isolated) double points, is of
class 16 and has no real branch.

Proof. We proceed in a similar way as in
the proof of Thm. 4.1 with

A = 1 : 0 : 0, B = 1 : a : 0,

C = 1 : a + u : c, D = 1 : u : c.

It is not necessary to write down the rather
lengthy equation of C. (The reader may
convince her-/himself by using a CAS that
it is of degree 6.)
Now, the singularities are still the ver-

tices of Q (according to Thm. 2.2), the ab-
solute points I, J are double points, and
the diagonal point Q = [A,B] ∩ [C,D] is
the seventh (isolated) double point. Since
there are no further singularities, the genus
equals 3 and the class equals 16.

We shall make explicit the fact that Thm.
4.2 contains the cases of rhombi, rectangles,
and squares.
For trapezoids, in general, (no matter if

they are symmetric, cyclic, tangential, or
bicentric, equipped with right angles, or
three equally long sides (as long as they are
none of the above) the degree of C equals 7.
Kites (different from rhombi), cyclic, tan-

gential, and bicentric quadrilaterals (as long
as they do not fall into one of the above

mentioned classes of quadrilaterals) always
defined a septic C as the locus of points with
six conconic pedal points on the complete
quadrangle’s sides.

4.2 Degree less than 6?

Finally, we want to show that the degree
of C cannot be less than 6: Prior to Thm.
4.2, we have pointed out that a parallelo-
gram has two diagonal points on the line
ω at infinity, and thus, ω splits off from C
once and deg C = 6. In a classical projective
plane, the diagonal points of a quadrilateral
are never collinear. Therefore, the ideal line
will never splits off with multiplicity 3.
However, by virtue of (6), we see that the

greatest common divisor of coefficients qi of
P7 for i ∈ {0, 1, 2, 5, 6, 7} equals x2

1+x2
2 = Ω.

The degree of P7 would reduce about 2 if
gcd(q3, q4) = Ω. In this case the resultant

r3 := res(q3,Ω, xi), r4 := res(q4,Ω, xi)

for any variable xi (i ∈ {0, 1, 2}) have to
be equal to zero. We build the resultants
with respect to x1 (and would find the same
results if we would eliminate x2):

r3 = x8
2 · l

2
2 l

2
3 l4 l5 l6 · (l

2
1l4 − l1l2l5 − 2l1l3l4+

+ l1l3l5 + l22l5 − l2l3l5 + l23l4),

r4 = x6
2 · l1 l

2
2 l

2
3 l4 l5 l6 · (2aFB − el2 + cl3)

2 .

By assumption, li 6= 0 for all i ∈ {1, . . . , 6},
hence r4 = 0 yields

a =
e l2 − c l3

2FB

,

and after inserting into r3, we find

r4 = x8
2 · l

4
2 l

4
3 l

6
6 F

4
C F 4

D F−8
B .
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None of the (squares of the) lengths li and
none of the areas of the subtriangles are
allowed to vanish, otherwise Q would de-
generate. Therefore, neither r3 nor r4 can
vanish, and thus, Ω is a common divisor of
q3 and q4. Since there are no other (non-
constant) factors of q5, Ω cannot split off
from P7 and deg C cannot be equal to 5.
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A Equation of C

For the sake of completeness, we add the
equation of C in terms of inhomogeneous
coordinates.
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C : (x2 + y2)3·
· (4c(c2FBl3 − 2c2FC l3 + c2FDl3 − ceFBl3 + ceFBl5 + ceFC l3 − e2FBl5+

+ e2FBl6 − 4F 3
B + 4F 2

BFC − 4F 2
BFD)x+ (c3l2l3 + c3l3l4 − 2c3l3l5 − 2c3l3l6+

+ 16c2eF 2
B − 16c2eFBFC − 2c2el2l3 + c2el23 + c2el3l5 − 2c2el3l6 − 16ce2F 2

B+
+ 16ce2FBFC − 32aF 3

B + 16aF 2
BFC − 24aF 2

BFD + 24aFBFCFD − 4cF 2
Bl2+

+ 4cF 2
Bl3−4cF 2

Bl4+12cF 2
Bl5+8cF 2

Bl6+8cFBFC l2−12cFBFC l3−12cFBFC l5+
+ 24cFBFDl3 − 12cF 2

C l2 − 4cFCFDl3 + 16cF 2
Dl3 + 8eF 2

Bl2)y)+

+2(x2 + y2)2·
·((c4l2l3 − c4l23 − c4l3l6 + 16c3eF 2

B − 16c3eFBFC − c3el2l3 + c3el23 − 2c3el3l6−
− 16c2e2F 2

B + 16c2e2FBFC − 4c2F 2
Bl2 − 4c2F 2

Bl3 + 8c2F 2
Bl5 + 4c2F 2

Bl6+
+4c2FBFC l2+20c2FBFC l3−12c2FBFC l5−8c2FBFDl3−4c2F 2

C l2−12c2F 2
C l3+

+ 24c2FCFDl3 − 8c2F 2
Dl3 + 8ceF 2

Bl2 + 12ceF 2
Bl3 − 8ceF 2

Bl6 − 12ceFBFC l3+
+8ceFBFC l5−32F 3

BFD+16FBFCF
2
D)x

2+(2c3dl3l6−8c3eFBl5+8c2e2FBl5+
− 8c2e2FBl6 − 96c2F 2

BFC + 64c2FBF
2
C − 32c2FBFCFD + 10c2FBl2l3+

+4c2FBl2l5−2c2FBl
2
3−10c2FBl3l4+6c2FBl3l5+4c2FBl3l6−8c2FC l2l3+2c2FC l

2
3+

+ 12c2FC l3l4 − 6c2FC l3l5 + 2c2FDl2l3 + 4c2FDl
2
3 − 6c2FDl3l4 + 32ceF 3

B

− 32ceFBF
2
C − 2ceFBl

2
2 − 6ceFBl2l3 + 2ceFBl2l6 − 16F 3

Bl1 − 56F 3
Bl2+

+ 40F 3
Bl4 + 8F 2

BFC l1 + 96F 2
BFC l2 − 16F 2

BFDl1 − 40F 2
BFDl2 − 48F 2

BFDl3+
+ 24F 2

BFDl4 − 8FBF
2
C l2 + 32FBFCFDl2 + 64FBFCFDl3 − 16FBF

2
Dl2−

− 24FBF
2
Dl3−24F 3

C l2+24F 2
CFDl2)xy+(−c4l2l3+c4l23+c4l3l6−16c3eF 2

B+
+16c3eFBFC+c3el2l3−c3el23+2c3el3l6+16c2e2F 2

B−16c2e2FBFC+4c2F 2
Bl2+

+12c2F 2
Bl3−16c2F 2

Bl5−4c2F 2
Bl6−12c2FBFC l2−12c2FBFC l3+12c2FBFC l5+

+16c2FBFDl3+12c2F 2
C l2+12c2F 2

C l3−24c2FCFDl3−2c2l2l
2
3−c2l2l3l4+2c2l33+

+c2l2l3l5+c2l2l3l6+c2l23l4−c2l23l5−c2l23l6−8ceF 2
Bl2+4ceF 2

Bl3−4ceFBFC l3+
+2cel22l3−2cel2l

2
3−cel2l3l6+64F 3

BFD−32F 2
BFCFD+64F 2

BF
2
D−4F 2

Bl1l2+
+4F 2

Bl1l3−12F 2
Bl2l3+4F 2

Bl2l4+4F 2
Bl2l5−4F 2

Bl2l6−48FBFCF
2
D+4FBFC l

2
2+

+20FBFC l2l3+4FBFC l2l5+8FBFDl1l3−36FBFDl2l3+12FBFDl
2
3−4FBFDl3l4−

−12F 2
C l2l3+4F 2

Cl2l4−4F 2
C l2l5−4FCFDl1l3+20FCFDl2l3+4FCFDl3l4+4F 2

Dl1l3−
−12F 2

Dl2l3+4F 2
Dl

2
3−4F 2

Dl3l4)y
2)+

+ (x2 + y2)·
·((128c3FBF

2
C−128c3F 2

BFC+12c3FBl2l3−12c3FBl
2
3−8c3FBl3l4+12c3FC l

2
3+

+24c3FBl3l5−4c3FBl3l6+12c3FC l2l3−24c3FDl
2
3+64c2eF 3

B+64c2eF 2
BFC−

−128c2eFBF
2
C−12c2eFBl2l3−4c2eFBl3l5+4c2eFBl3l6−64aF 3

BFD−32aF 2
BF

2
D+

+96aF 2
BFCFD+32aFBFCF

2
D−48cF 3

Bl2−96cF 3
Bl3+32cF 3

Bl4+48cF 3
Bl5+16cF 3

Bl6+
+80cF 2

BFC l2+48cF 2
BFC l3−48cF 2

BFC l5−192cF 2
BFDl3+48cFBF

2
C l3−16cFBF

2
C l5−

−32cFBFCFDl2+64cFBFCFDl3−112cFBF
2
Dl3−48cF 3

C l2+32cF 2
CFDl2+16cF 3

Dl3+
+48cF 2

CFDl3−48cFCF
2
Dl3)x

3+(112c3F 2
Bl3−96c3F 2

Bl5−288c3FBFC l3−2c3l22l3+
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+64c3FBFC l5+96c3FBFDl3+7c3l2l
2
3+7c3l2l3l5+2c3l2l3l6−5c3l33−14c3l23l4+

+7c3l23l5 − 48c2eF 2
Bl2 − 80c2eF 2

Bl3 + 48c2eF 2
Bl5 + 16c2eF 2

Bl6 + 80c2eFBFC l3−
− 64c2eFBFC l5 + 4c2el22l3 − 4c2el2l

2
3 + 2c2el2l3l6 + 16aF 3

Bl1 + 120aF 3
Bl2−

−88aF 3
Bl4−8aF 2

BFC l1−272aF 2
BFC l2−8aF 2

BFDl1−24aF 2
BFDl2−120aF 2

BFDl3+
+104aFBF

2
C l2 + 112aFBFCFDl2 + 32aFBFCFDl3 − 48aFBF

2
Dl3 + 24aF 3

C l2−
−96aF 2

CFDl2−72aF 2
CFDl3+120aFCF

2
Dl3+24aF 3

Dl3−64cF 4
B−192cF 3

BFC+
+384cF 3

BFD+192cF 2
BF

2
C+192cF 2

BFCFD+384cF 2
BF

2
D+8cF 2

Bl
2
2−68cF 2

Bl2l3+
+12cF 2

Bl2l5−8cF 2
Bl2l6+56cF 2

Bl3l4+64cFBF
3
C−320cFBF

2
CFD−320cFBFCF

2
D+

−24cF 2
C l2l3−140cFBFDl2l3−72cFBFDl

2
3+44cFBFDl3l4−4cF 2

C l
2
2+36cF 2

Cl3l4−
+168cFBFC l2l3+36cF 2

Cl2l4+40cFCFDl2l3+32cFCFDl
2
3− 72cFCFDl3l4−

28cF 2
Dl2l3−16cF 2

Dl
2
3+8eF 2

Bl
2
2)x

2y+(384c3F 2
BFC−128c3FBF

2
C−36c3FBl2l3+

+ 52c3FBl
2
3 + 24c3FBl3l4 − 40c3FBl3l5 − 4c3FBl3l6 − 20c3FC l2l3 + 4c2dl2l

2
3−

− 20c3FC l
2
3 + 40c3FDl

2
3 − 2c2dl22l3 − 2c2dl33 − 2c2dl2l3l6 + 2c2dl23l6 + 64c2eF 3

B−
−192c2eF 2

BFC+128c2eFBF
2
C−8c2eFBl

2
3+16c2eFBl

2
2−4c2eFBl2l3 + 32aF 2

Bl
2
2−

−16c2eFBl2l6−4c2eFBl3l5+4c2eFBl3l6+192aF 3
BFD−32aF 2

BFCFD+8aF 2
Bl2l6−

− 32aF 2
BF

2
D + 40aF 2

Bl1l2 − 24aF 2
Bl1l3 − 8aF 2

Bl2l3 − 32aF 2
Bl2l4 + 8aFBFDl

2
2−

− 32aF 2
Bl2l5 + 32aFBFCF

2
D − 16aFBFC l1l2 − 72aFBFC l

2
2 − 40aFBFC l2l3+

+8aFBFC l2l5+32aFBFDl2l3 + 16aFBFDl
2
3 + 24aF 2

C l
2
2 − 8aF 2

C l2l4 + 8aF 2
C l2l5−

− 8aFBFDl3l4 + 48aF 2
C l2l3 + 8aFCFDl1l3 − 104aFCFDl2l3 − 32aFCFDl

2
3−

−8aFCFDl3l4−8aF 2
Dl1l3+16aF 2

Dl2l3+48aF 2
Dl

2
3−16cF 3

Bl5+16cF 3
Bl6+8aF 2

Dl3l4+
+144cF 3

Bl2−32cF 3
Bl3 − 96cF 3

Bl4 − 240cF 2
BFC l2 − 16cF 2

BFC l3 + 16cF 2
BFC l5+

+192cF 2
BFDl3−192cFBF

2
C l2+48cFBF

2
C l3−16cFBF

2
C l5−4cFBl

2
2l3−4cFBl

2
2l5+

+224cFBFCFDl2−64cFBFCFDl3+80cFBF
2
Dl3−32cFBl2l

2
3−4cFBl2l3l6−4cFBl

2
3l4+

+4cFBl2l3l4+32cFBl2l3l5+144cF 3
Cl2−160cF 2

CFDl2−144cF 2
CFDl3+144cFCF

2
Dl3+

+44cFCl
2
2l3+12cFCl2l

2
3−16cFC l2l3l4+16cFCl

2
3l4+4cFDl

3
3−16cFDl

2
3l4−4eFBl

3
2+

+16cF 3
Dl3−12cFDl

2
2l3−48cFDl2l

2
3+16cFDl2l3l4+12eFBl

2
2l3+4eFBl

2
2l6)xy

2+
(32c3F 2

Bl5−16c3F 2
Bl3+32c3FBFC l3−32c3FBFDl3+2c3l22l3−c3l2l

2
3−c3l2l3l5+

+16c2eF 2
Bl2−2c3l2l3l6−c3l33+2c3l23l4−c3l23l5−16c2eF 2

Bl3−16c2eF 2
Bl5−16aF 3

Bl1−
+ 16c2eF 2

Bl6 + 16c2eFBFC l3 − 4c2el22l3 + 4c2el2l
2
3 − 2c2el2l3l6 − 40aF 3

Bl2+
+40aF 3

Bl4−8aF 2
BFC l1+112aF 2

BFC l2−8aF 2
BFDl1+8aF 2

BFDl2+8aF 2
BFDl3+

− 24aFBF
2
C l2 + 16aFBFCFDl2 − 64aFBFCFDl3 + 16aFBF

2
Dl3 − 2aFBl

2
1l2+

+2aFBl
2
1l3 + 2aFBl1l

2
2 − 12aFBl1l2l3 + 2aFBl1l2l5 − 2aFBl1l

2
3 − 2aFBl1l3l4−

− 2aFBl
3
2 + 12aFBl

2
2l3 − 2aFBl

2
2l5 + 2aFBl

2
2l6 − 10aFBl2l

2
3 − 88cFBFC l2l3+

+ 8aFBl2l3l4 − 8aFBl2l3l5 − 8aFBl2l3l6 + 2aFBl
2
3l4 − 8aF 3

C l2 + 32aF 2
CFDl2+

+ 24aF 2
CFDl3 − 40aFCF

2
Dl3 + 2aFC l1l

2
2 + 4aFC l1l2l3 − 2aFC l

2
2l3 − 2aFC l

2
2l5+

+ 8aFC l2l
2
3 − 12aFC l2l3l4 + 8aFC l2l3l5 − 8aF 3

Dl3 − 8aFDl1l2l3 + 2aFDl1l
2
3−

−4aFDl2l
2
3+8aFDl2l3l4−2aFDl

3
3−2aFDl

2
3l4−64cF 4

B+64cF 3
BFC−128cF 3

BFD−
− 64cF 2

BF
2
C − 320cF 2

BFCFD − 128cF 2
BF

2
D − 8cF 2

Bl
2
2 + 12cF 2

Bl2l3 − 4cF 2
Bl2l5+

+8cF 2
Bl2l6−8cF 2

Bl3l4+64cFBF
3
C+192cFBF

2
CFD−64cFBFCF

2
D+16cFBFC l

2
2−
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+36cFBFDl2l3+8cFBFDl
2
3−20cFBFDl3l4−20cF 2

C l
2
2+24cF 2

Cl2l3−12cF 2
C l2l4−

−12cF 2
C l3l4+8cFCFDl2l3−32cFCFDl

2
3+24cFCFDl3l4+ 4cF 2

Dl2l3−cl32l3+
+16cF 2

Dl
2
3+7cl22l

2
3+cl22l3l4+3cl22l3l5−6cl2l

3
3−8cl2l

2
3l4+3cl2l

2
3l5+4cl2l

2
3l6+

+ cl33l4 − 8eF 2
Bl

2
2 − 2el32l3 + 2el22l

2
3 + 4el22l3l6)y

3)+

+ (128c2F 2
BF

2
C − 256c2F 3

BFC + 128c2F 2
BFCFD + 16c2F 2

Bl2l3 + 8c2F 2
Bl

2
3−

− 16c2F 2
Bl3l4 − 8c2F 2

Bl3l5 + 128c2FBF
3
C − 128c2FBF

2
CFD + 8c2FBFC l2l3−

−16c2FBFC l
2
3+16c2FBFC l3l5−8c2FBFDl2l3−8c2FBFDl

2
3+8c2FBFDl3l4+

+48c2F 2
C l2l3−24c2FCFDl2l3−24c2FCFDl

2
3+8ceF 2

Bl2l3−64F 4
Bl1−64F 4

Bl2−
+64F 4

Bl4+64F 3
BFC l1+128F 3

BFC l2−32F 3
BFDl1+32F 3

BFDl2+96F 3
BFDl3+

− 32F 3
BFDl4 + 32F 2

BFCFDl1 − 128F 2
BFCFDl2 − 96F 2

BFCFDl3 + 96F 2
BF

2
Dl3+

−64FBF
3
C l2+64FBF

2
CFDl2−32FBF

2
CFDl3+32FBFCF

2
Dl2−128FBFCF

2
Dl3−

+ 32FBF
3
Dl3 + 32F 3

CFDl2 − 32F 2
CF

2
Dl2 − 32F 2

CF
2
Dl3 + 32FCF

3
Dl3)x

4+

+(64c2F 3
Bl3−64c2F 3

Bl5+128c2F 2
BFC l2+64c2F 2

BFC l3+64c2F 2
BFDl3−8c2FDl

3
3−

−192c2FBF
2
C l2−128c2FBF

2
C l3+64c2FBF

2
C l5+512c2FBFCFDl3+8c2FBl2l3l4−

− 8c2FBl
2
2l3+8c2FBl2l

2
3−8c2FBl2l3l5+64c2F 3

C l2−64c2FCF
2
Dl3+8c2FC l

2
2l3+

+ 24c2FC l2l
2
3−16c2FC l2l3l4−16c2FC l

2
3l4−24c2FDl2l

2
3+32c2FDl

2
3l4−32F 3

Bl1l2+
+256F 4

BFD+256F 3
BF

2
D−32F 3

Bl
2
1+32F 3

Bl
2
2−32F 3

Bl2l4−256F 2
BF

2
CFD+32F 2

BFC l1l2+
− 96F 2

BFC l
2
2 + 160F 2

BFDl1l3 + 160F 2
BFDl2l3 − 128F 2

BFDl3l4 − 768FBF
2
CF

2
D+

+ 128FBF
2
C l1l2 + 96FBF

2
C l

2
2 − 32FBFCFDl1l2 − 32FBFCFDl1l3 − 64F 3

Cl1l2−
− 384FBFCFDl2l3 + 64FBF

2
Dl1l3 + 64FBF

2
Dl2l3 − 32FBF

2
Dl

2
3 + 32F 2

CFDl1l2+
+32F 2

CFDl1l3−64F 3
C l

2
2+64F 3

Cl2l4+64F 2
CFDl2l3−32F 2

CFDl2l4−32F 2
CFDl3l4−

+ 96FCF
2
Dl2l3 + 32FCF

2
Dl

2
3 − 128F 3

Dl
2
3)x

3y+

+(256c2F 2
BF

2
C−256c2F 3

BFC−1024c2F 2
BFCFD − 48c2F 2

Bl2l3+64c2F 2
Bl2l5−

−16c2F 2
Bl3l4+80c2FBFC l2l3 − 16c2FBFC l

2
3 + 16c2FBFC l3l5−16c2FBFDl

2
3−

−64c2FBFDl3l4−96c2F 2
C l2l3+48c2FCFDl2l3+48c2FCFDl

2
3+2c2l22l

2
3−2c2l2l

3
3−

− 4c2l22l3l5 + 4c2l2l
2
3l4 + 4c2l2l

2
3l5 − 4c2l33l4 + 16ceF 2

Bl2l3 − 2cel32l3 + 2cel22l
2
3+

+2cel22l3l6−64F 4
Bl1−64F 4

Bl2+64F 4
Bl4+64F 3

BFC l1+128F 3
BFC l2+16F 2

Bl
2
1l2−

−320F 3
BFDl1−512F 3

BFDl2+64F 3
BFDl3+256F 3

BFDl4+64F 2
BFCFDl1−24F 2

Dl1l2l3+
+768F 2

BFCFDl2−64F 2
BFCFDl3−256F 2

BF
2
Dl2+64F 2

BF
2
Dl3−16F 2

C l1l
2
2−32F 2

C l1l2l3+
+16F 2

Bl
2
1l3+16F 2

Bl1l
2
2+24F 2

Bl
2
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