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Abstract

The construction of planar conchoids can be
carried over to the Euclidean unit sphere.
We study the case of conchoids of (spheri-
cal) lines and circles. Some elementary con-
structions of tangents and osculating circles
are stil valid on the sphere. Further, we aim
at the illustration and a precise description
of the algebraic properties of the principal
views of spherical conchoids, i.e., the con-
choid’s images under orthogonal projections
onto their symmetry planes.
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1 Introduction

The construction of conchoids goes back to
the early Greek mathematicians [5, 13]. As-
sume we are given a point F', called focus
and a line [ called directriz one can ask for

the set ¢ of all points in the Euclidean plane
at fixed distance d from [ measured on all
lines through F, cf. Figure 1.

The set ¢

Figure 1: The construction of the conchoid
c of a line [ in the plane.

turns out to be an algebraic curve of degree
4, namely the conchoid of the line [ with
respect to F' at distance d. The conchoid ¢
can be described by the equation

(2 —d))(f —2)* +2%* =0 withd, f€R

provided that a Cartesian coordinate sys-
tem is chosen as depicted in Figure 1. The
conchoid has two branches, one correspond-
ing to the distance +d, while the other cor-
responds to the distance —d. The algebraic
variety contains both branches.
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Figure 2: The planar conchoid of a line has
an ordinary double point if d > f (left),
a cusp if d = f (in the middle), and an
isolated double point if d < f (right).

The conchoid ¢ has an ordinary double
point at F' = (f,0) if d > f (or an isolated



double point if d < f). In the case of d = f,
F'is a cusp of the first kind, i.e., with the
local expansion (u? + o(u?), u® + o(u)), see
2, 3]. The cusped curve can also be seen
in Figure 2. Independent of the choice of
d and f the curve ¢ considered as a curve
in the projective plane (cf. Figure 3) has
a tacnode at the ideal point of the y-axis.
There, two linear branches with the same
tangent emanate. Therefore, the conchoid
is of genus 0, and thus, it is a rational curve.
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Figure 3: The singularities of the con-
choid considered as a curve in the projective
plane.

The name conchoid is due to the fact that
its shape somehow reminds of a conch. The
conchoid of a line (the directrix [ is a line)
is frequently called conchoid of Nikomedes,
see [4, 5, 13]. The line [ can be replaced by
an arbitrary curve.

In former years, mathematicians developed
elementary constructions of points, tan-
gents, and osculating circles for some kinds
of conchoids such as those of lines and cir-
cles. The kinematic point of view allows
us to see the conchoids as traces of moving
particles, and thus, further constructions of
tangents and osculating circles can be de-

duced, see for example [6, 14].

In the last few years conchoids became
popular in CAGD, see [1, 8, 9, 10, 11].
This is mainly due to the fact that un-
der certain circumstances conchoids can be
parametrized by means of rational functions
which is mainly the content of [8, 9]. Thus,
a huge class of possibly new surfaces is avail-
able for CAGD. The conchoids of spheres
and ruled surfaces are not spheres or ruled
surfaces anymore, except in some special
cases. In order to overcome this flaw, an
intrinsic construction of conchoids for some
geometries is presented in [7].

It is somehow surprising that conchoids
on the sphere have not attracted the re-
searchers’ interest. = Many constructions
that are valid in the Euclidean plane can
easily be adapted for the Euclidean unit
sphere. In this article, we shall demonstrate
this at hand of the spherical analoga to con-
choids of lines and circles. The spherical
conchoids of lines are conchoids of greatcir-
cles on the sphere. However, the spherical
conchoids of circles are stil conchoids of cir-
cles but on the sphere.

We shall describe spherical conchoids of
lines and circles and study their algebraic
properties at hand of their equations. Then,
we discuss the shape of the principal views
of the spherical conchoids. The principal
views are obtained as orthogonal projec-
tions to a triple of mutually orthogonal
planes where at least one of these planes is
a plane of symmetry of the spherical curve.
The resulting image curves are at most of
degree 8 as is the case for the space curves.
For some image curves the degree reduces
to 4. Further, we describe the singularities



showing up on the principal views of the
spherical conchoids.

2 Conchoids of a line

Assume Y] is the Euclidean unit sphere with
the equation
Sttt =1 (1)

and let further [ be a line on X, i.e., a great-
circle of 3. Without loss of generality, we
can asssume that [ is the equator of X in
the plane z = 0 (see Figure 4). Thus, a
parametrization of [ reads

LX) = (e, 81,0) with A € [0,2n] (2)
where we have used the abbreviations ¢, :=
cos A and sy := sinA. The focus F' of the
conchoid shall be at spherical distance ¢ €
10, 7/2[ from [. Therefore, its coordinates
are

F = (cs,0,50) (3)

(with ¢, := cos¢ and ss = sin¢) since
it means no restriction to assume that the
greatcircle orthogonal to [ through F' lies in
the plane y = 0.

The points on the spherical conchoid ¢ of [
with respect to I at distance ¢ € ]0, 7| are
found via the analogous construction on the
sphere: Choose a point L on the equator [,
join it with F' by a greatcircle, and deter-
mine the points P at spherical distance o
from L.

We exclude the case ¢ = 7 which yields a
pair of distance curves provided that § # 0.

These distance curves are circles on > with

Figure 4: Construction of a conchoid on the
unit sphere and the choice of a coordinate
system.

Z — ) in planes parallel to

spherical radius 3
the equator plane. The choice o = 0 shows
that the equator can be seen as a trivial
conchoid ¢ = [. The case ¢ = 7 also yields

circles as spherical conchoids of [.

Now we are going to derive an analytical de-
scription of the spherical conchoid. Assume
that (z,y, z) are the Cartesian coordinates
of a point X on the conchoid of [ at the
spherical distance ¢ € 0, 7[ with respect to
the point F'. These coordinates satisfy Eq.
(1). Since [L, F] is a greatcircle of ¥, the
points F', L, and the point X on the con-
choid are coplanar with the center (0,0,0)
of . This is equivalent to

(4)

Further, we have f}\( = 0 which is mea-
sured along the greatcircle [L, X]. Thus,

S)S¢ T — CASp Y — SxCp 2 = 0.



the canonical scalar product of the unit vec-
tors X = (z,y, 2) and L = (cy, 53,0) yields
the cosine of the angle subtained by LX,
and therefore, we have

(5)

We can eliminate A from Egs. (4) and (5):
These equations are linear in ¢, and s, and
thus, we can solve this system for ¢y and sy
which gives

C\ T+ S\ Yy = Cosd.

cosd(Sy T — Cy 2)
sa(@? +y?) — ¢y x2’
cos 054 Y
sa(@? +y?) —cp x2

C\ =

S

Since )2 + 5,2 = 1 holds for any A\ € C, we
arrive at an implicit equation of the spher-
ical conchoids ¢ of a (spherical) line [:

cos? 0 ((sy 1—Cy 2)*+s4%y?)
c: —(ss(2*+y?)—cy 22)* = 0, (6)
2+ 4+ 22 =1,

Obviously, ¢ is a space curve of degree 8,
since it is the intersection of a quartic sur-
face ® (an example of which is displayed in
Figure 5) with the unit sphere. Thus, we
can say:

Theorem 1. The spherical conchoid ¢ of a
(spherical) line | with respect to the focus
F at (spherical) distance 6 € ]0,5[ is an
algebraic space curve of degree 8 and can be
given by the two equations (6).

It is clear that these curves are spherical
so that it is not worth to be mentioned
that Eq. (1) is fulfilled by the coordinates
(x,y, z) of a generic point on the conchoid.

Figure 5: A spherical conchoid is the in-
tersection of the unit sphere with a quartic
surface.

Therefore, only the first equation of (6)
matters. Thus, such curves are often called
of spherical degree four.

The three different shapes of conchoids of
a line that can be observed in a plane also
appear on the sphere as can be seen in Fig-
ure 6. There are conchoids with loops, i.e.,
they have a spherical double point (actually
a pair of opposite double points) with real
tangents at the double point F' if § > ¢.
The conchoids with spherical cusps (a pair
of opposite cusps) appear if, and only if,
0 = ¢. In the case of § < ¢, we observe that
F'is an isolated (spherical double) point on
the conchoid.

As can be seen from Figures 4 and 6 the
spherical conchoids always consist of two



Figure 6: Three different appearances of spherical conchoids of a the equator: § > ¢

(left), 0 = ¢ (middle), 6 < ¢ (right).

branches. This is caused by the fact that
points in spherical geometry are actually
a pair of antipodal points on the sphere.
Therefore, any singular point on a conchoid
also shows up twice. Even the spherical sin-
gularity is a pair of antipodal points.

2.1 Principal views of spheri-
cal conchoids

The orthogonal projections of ¢ onto the
three planes z = 0, ¢ = 0, and y = 0
shall be called top view, front view, and side
view. We can state:

Theorem 2. The front and topview of a
spherical conchoid given by Eq. (6) with
6 € 10,3[ are of algebraic degree 8 and of
genus 1, i.e., they are elliptic. The right
side view is a rational quartic.

Proof. The equations of ¢’s principal views
can be obtained from (6) by simply elimi-
nating z, x, or y. Since c is of degree 8, the
principal views of ¢ are at most of degree 8.

Reductions of the degree occur only in cases
where the image plane is a plane of symme-
try of each branch, i.e., each point of the
image curve is the image of two points on
c. Because of the special choice of the co-
ordinate system, we see that ¢ is symmetric
with respect to the plane y = 0, and there-
fore, the side view is covered twice. Hence,
it is of degree 4. When computing the re-
sultants of both equations in Eq. (6) with
respect to y, we find the square of

q: (cax + 5,2)%22 — 2s5cp8in? S22

—(cgxcos? 0 + 25,2)22 4 5\2sin? 6 = 0

as the equation of the right side view of the
spherical conchoid.

The computations can be carried out by
Maple. The algcurves package allows us to
compute the singularities and the genus of
an algebraic curve. We summarize the re-
sults in tables: Besides the degree we give
the singularities in terms of homogeneous
coordinates (with the homogenizing factor
always in the first position), the invariants
[m, d, b], where m is the multiplicity, d is the



Figure 7: Right side view of the spherical
conchoid shows no singularity in the affine
part. Note that the image of the focus is
not singular.

0-invariant, and b is the branching number.

Note that for an ordinary m-fold point the
equation m = b holds. In any other case we
have m > d. The genus g of an algebraic
curve of degree n is the integer

9= 30— -2 -3 ds,

where § ist the set of singular points on
¢ and dgs are the d-invariants of all sin-
gularities on ¢. According to the Milnor-
Jung formula, the d-invariant d can be com-
puted from the Milnor number p and the
branching number b of a singularity as d =
L(u+b—1). Thus, an ordinary k-fold point
has invariants [k, $k(k — 1), k], see [2, 3].

We have to distinguish between two cases
whether ¢ # § or ¢ = 9.

‘ right side view ‘

deg(c) =4
S1 (0:1:0) 2,2,2]
S | (0:1:—cote) | [2,1,2]
genus(c) =0

Table 1: Singularities on the right side view.

(1) Let us first assume that ¢ # ¢:

parasitic branch

parasitic branch

Figure 8: Singularities on the principal
views of spherical conchoids of lines.

The singularities of the right side view are
given in Table 1. Since the genus equals
zero, the curve showing up in the right side
view is rational. Note that both singulari-
ties are ideal points of the [z, z]-plane. The
point (0:1:0) is an isolated tacnode, i.e.,
a point where a pair of complex conjugate
linear branches touches a real tangent at a
the real point (0 : 1 : 0). The remaining sin-
gularity is an ordinary double point. The
right side view of the spherical conchoid is
displayed in Figure 7.



‘ front view ‘

deg(c) =8
5172 (1 20 :|ZS¢) [2,1,2]
Tio | (1:0:Esmd) | [2.2.2]
S5 (0:1:0) 4,12 4]
56,7 (O i C¢) [2,1,2]
genus(c) = 1

Table 2: Singularities on the front view.

In Figure 8 we can observe another phe-
nomenon which may not only appear in con-
nection with spherical conchoids. The al-
gebraic image curve carries points that are
outside the silhouette of the unit sphere.
Thus, these points cannot be the images of
points on the spherical curve. The points on
these parts of the curve are called parasitic.

The front view shows a curve of degree
eight (shown in Figure 9). It has a pair of
complex conjugate ordinary double points
(0 : £i : ¢p) at the ideal line of the [y, 2]-
plane. Further, there is an ideal 4-fold point
with d-invariant d = 12. Among the four
singularities in the affine part of the curve
(the part we can see in Figure 9) there are
two tacnodes (1 : 0 : £sind) which are
the images of the top most points 7} and
T5 of the conchoid on the front and back
side of the sphere (cf. Figure 8). The fact
that the two linear branches are in con-
tact at the common image of the top most
point is caused by the fact that the spheri-
cal conchoid has horizontal tangents at both
points, T} and 7. The image of the spher-
ical focus F' (antipodal pair) completes the
list of singular points, cf. Table 2

The top view has six real ordinary double
points (see Figure 10). These are the image

Figure 9: The front view of the spherical
conchoid shows up to four singularties.

points (£cg, 0) of F' and its antipode. Fur-
ther, there are four ordinary double points
at (0, w) where w is a solution of the quartic
equation

thsy? + 12 cos® §(cy® — 84%) — cp° cos® § = 0.

Two of these double points are real, two
are complex conjugate. The ideal points
(0 : 1 : #£i) of the [z,y]-plane are dou-
ble points on the top view of the spherical

‘ top view ‘

deg(c) =8

Si2 | (1:%cosd:0) | [2,2,2]

Ssa | (1:dcy:0) |[2,1,2]

55,678 (1 :0: w) [2,1,2]

So10 | (0 1 i) | 24,2

511,12 ( (;5 ) [27172]
genus(c) = 1

Table 3: Singularities on the top view.



conchoid. However, they are not ordinary
double points, for there d-invariant equals
four. At these points the curve hyperoscu-
lates itself. Further, we find tacnodes at
(1:+£cosd : 0) being the images of the front
and back most points of the conchoid on the
upper and lower hemisphere, see Figures 8
and 10. The singularities of the spherical
conchoid’s top view are listed in Table 3.

Figure 10: The top view of the spherical
conchoid shows up to six singular points.

(2) Finally, we deal with the case ¢ = 4,
1.e., the curves with cusps.

We do not have to go through all the de-
tails. There are some minor changes in the
types of some singularitiers showing up on
the different views. Figure 11 shows the
right side view, the front view, and the top
view.

The top view of the spherical conchoid with
cusp shows no singularity in the affine part.

‘ right side view ‘

deg(c) =4
S| (0:1:0) | 222
genus(c) = 1

Table 4: Singularities of the right side view
of the curve with cusp.

‘ front view ‘
deg(c) =8
Stz | (1:£sind:0) ] [3,3.2]
Ss (0:1:0) 4,12 4]
Sas | (0:=£i:cosd) | [2,1,2]
genus(c) = 1

Table 5: Singularities of the front view of
the curve with cusp.

There is only on ideal point which is a tacn-
ode, cf. Table 4. In this case the curve is of
degree four, but nevertheless, it has genus
1 and is, therefore, elliptic since the only
singularity has d-invariant 2.

The front view shows a pair of triple points.
Here, the images of the top most points and
the image of the focus F' coincide. These
triple points have ¢-invariant d = 3 and
branching number 2, cf. Table 5. Thus,
these triple points are composed singular-
ities, consisting of an ordinary cusp sitting
on a linear branch. Further, there are two
complex conjugate ideal singular points on
the front view.

Again, the top view shows more singular-
ities then any other view. The two triple
points (see Table 6) showing up are com-
posed singularities of the same type as those
in the front view. Furthermore, there are
four ordinary double points (two real ones
and a pair of complex conjugate) at (1 :



‘ top view ‘

deg(c) =8
S (1:+cosd:0) | [3,3,2]
31 0:1:%) | 212
Sse | (0:=£ising:1) | [2,1,2]
57,879,10 (1 20 w) [2,1,2]
genus(c) = 1

Table 6: Singularities of the top view of the
curve with cusp.

0 : w) where w is a solution of the quartic
equation

t'sy? — t? cos® §(2 — cos? §) — cos* § = 0.

According to the genus formula the front
and top view are of genus 1, and thus, el-
liptic. O

There is a special type of spherical con-
choid if we choose 6 = 7. In this case the
conchoid construction assigns to each point
L € [ the absolute polar point, i.e., the or-
thogonal point. Hence, the two branches to
0 = —% and to 0 = 7 are identic since oppo-
site points represent the same point. All the
three principal views of orthogonal conchoid
are curves of degree four. Figure 12 shows
some examples of orthogonal conchoids and
the three principal views of a special one.
The curves in the right side view are two-
fold hyperbolae in a pencil of the second
kind with the images of the north and south
pole as well as the ideal point of the z-axis
for the base points.

Figure 12: Above: Some orthogonal con-
choids of the equator. Below: Right side
view, front view, and top view of an orthog-
onal conchoid.

2.2 Constructive approach
2.2.1 Planar and spherical tangents

The kinematic generation of conchoids al-
lows us to construct tangents to conchoids
in the plane, see for example [14]. The same
holds true in the spherical case, cf. [6, 12].
In Figure 13, the construction of the tan-
gent to the planar conchoid ¢ at some point
X is shown. The kinematic generation of
the curve shows the way: In order to find
the instantaneous pole P of the motion of
the line [L, F'| we observe that L is gliding
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Figure 11: From left to right: the right side view, the front view, and the top view of
the spherical conchoid with cusp. The front and top view show triple points that are

composed of cusps and linear branches.

-

Figure 13: The instantaneous pole P of the
motion of the line [L, X] with respect to the
fixed system is found as the intersection of
two normals.

on the line [, and thus, the pole of the mo-
tion of [L, F] with respect to the fixed sys-
tem [ is the ideal point of the lines orthog-
onal to [. Since [L, F] is gliding through
I and rotating about F' at the same time
the instantaneous pole P is also contained
in the line orthogonal to [L, F'| through F,
see [14]. The construction also works at the
double point since this is a singularity of
the algebraic curve but not for the trace of

C. The tangent t of ¢ at X is orthogonal to
[P, X].

Figure 14: The construction of the instan-
taneous pole P and the tangent t on the
sphere.

Figure 14 illustrates the construction of the
tangent ¢ to the spherical conchoid at some
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point X. Actually, the planar construction
has to be translated into the spherical set-
ting: We intersect the greatcircle orthogo-
nal to the equator [ through the point L
with that greatcircle through F' that is or-
thogonal to the greatcircle joining L and F'
and obtain the instantaneous spherical pole
P (actually a pair of antipodal points). The
spherical normal of the conchoid at X is the
great circle joining X and P. Finally, the
spherical tangent ¢ is the greatcircle orthog-
onal to the spherical normal through the
point X.

2.2.2 Planar and spherical osculat-
ing circles

Figure 15 shows the construction of the os-
culating circle o at a generic point X on a
planar conchoid c¢. We use Bobillier’s con-
struction (see [14]). For that purpose we
have to find two pairs of assigned points of
the quadratic transformation that maps a
point U to its center of curvature U*. The
point L is moving on a straight line [, and
thus, the center of its path is the ideal point
L* of all lines orthogonal to [. Further, we
observe that the line [L, F| is rotating about
F while gliding through F'. Thus, F'is the
envelope of [L, F] and F' = A* is the center
of curvature for the trace of the ideal point
A = [L, F]* of all lines orthogonal to [L, F.
The two pairs (L, L*) and (A, A*) uniquely
define the quadratic curvature mapping.

Now, we can apply Bobbilier’s construc-
tion to any of the pairs (L, L*) or (A, A*)
in order to complete (X, X*) with the yet
unknown point X*. Note that [L,A] N
[L*,A*] =: (Qar defines an auxiliary

Figure 15: Bobilier’s construction simplifies
in the case of the conchoid.

line qar, := [Qar,P] with the property
J (gaz,p) = J (gax,p) (after proper ori-
entation), see [14], where p is the pole tan-
gent, i.e., the common tangent to the two
polhodes at P.

In the case of the conchoid it is not neces-
sary to construct the pole tangent p since
we only have to add an angle as shown in
Figure 15. On the auxiliary line g4 x we find
the point Qax = [A, X] Ngax, and finally,
X*=[X,P|N[A*, Qax].

In order to find the spherical osculating cir-
cle o (as shown in Figure 16) we translate
all the constructions done in the planar case
to the sphere. We are allowed to do this
since the quadratic curvature mapping can
be lifted to the sphere. We consider the Eu-
clidean unit sphere to be placed such that
it touches the Euclidean plane (carrying the
planar figure) at the instantaneous pole P.
Then, we perform a gnomonic projection
from the plane to the sphere. The center of
the projection is the center of the sphere,
and thus, the projectively extended Eu-
clidean plane is mapped to the sphere model

11



of projective geometry. The gnomonic pro-
jection is locally (around P) conformal, and
therefore, the quadratic curvature mapping
is lifted to that on the sphere.

Figure 16 shows the construction of the
spherical center of curvature. At this point
we shall remark that the spherical osculat-
ing circle o is not a greatcircle on X, except
in those cases where X is a spherical point
of inflection. The spherical radius of curva-
ture equals the spherical distance of X and
ist center of curvature X*.

Figure 16: The spherical version of Bobil-
lier’s construction yields the spherical cen-
ter of curvature X* for an arbitrary point
X on the spherical conchoid.

3 Conchoids of a circle

The construction of a conchoid is indepen-
dent of the choice of the directrix curve. If

we replace the line [ by a circle, we obtain
the conchoids of circles. The analytic as
well as the constructive treatment of con-
choids of circles does not differ that much
from the affore mentioned types of con-
choids. Since circles can also be found on
a sphere, we can also find conchoids of cir-
cles on the sphere. We will not discuss the
conchoids of a circle in the plane and on
the sphere in all details. We shall just show
that the equations of these special spherical
curves can be derived in a similar way.

Conchoids of a circle in the Euclidean plane
are of algebraic degree 6. Surprsingly, their
spherical counter parts are of algebraic de-
gree 8 (or, equivalently, of spherical degree
4), although we would expect them to be
of degree 12 Some spherical conchoids of a
circle are displayed in Figure 17.

The computation of an equation of spher-
ical conchoids slightly differs from that of
spherical conchoids of (spherical) lines.

Again, we assume that the focus F' lies in
y = 0 at latitude ¢ € [0, 5[. It means no
restriction to assume that F' is a point on
the upper hemisphere. There is a change
in the directrix [ which shall henceforth be
the circle of latitiude 8 # 0,5. Thus, the

directrix is given by
L(X)=(cgen, cgsa, sg) with A € [0, 2x[ (7)

(with c3 := cos § and sz :=sin 3). Here, we
should remark that this restricts the class
of spherical conchoids of a circle. In this
case, there exists a greatcircle through F
in a plane parallel to the plane of [ which,
in general, needs not be true. However, we
deal with the simpler type.

12



Figure 17: Spherical conchoids of a circle show cusps, and two types of double points.

Let X = (z,y,2) be the point on the con-
choid of | with respect to F' at spherical
distance 6 € [0,%[. Note that X is also
a point on the unit sphere, and therefore,
2?2 + y? 4+ 22 = 1 holds. The collinearity
condition of F'; X, and L from Eq. (4) now

changes to

SpSx T+ (Cotg — eaSp)Y — o5y 2 =0 (8)

with t3 := tan . Between the point I(t) on
the directrix and the point X on the con-
choid we measure the spherical distance ¢
which is a value with sign. Consequently,
Eq. (5) modifies to

(9)

CACB T + 5xCg Y + Sg 2 = COS 0.

Like in the case of the spherical conchoids
of lines, we solve the system of linear equa-
tions (8), (9) with respect to ¢, and s,.
Since c)? + 5,2 = 1 for all A € C, we have
the following two equations that have to be
satisfied by the coordinates of a point on

o
N

the spherical conchoid ¢ of a circle I:

(

(242 — 1)a? — s42y*
+(cg? — 284%)a?y?
+2¢454(2%2 + y?)z

—4cy848p cos Oy + x)y?
+255 cos6(2¢4 — 1)x?2
—254285 c08 0y 2
+((cos? +s52) (1-2¢42)—cy?) 2?
+(cos? §(1 + 2¢42) + s42s5%)y>
—2¢454(c08 0% + 55%)x2
+2¢453 co8 6(254T — Cy2)

c?(cos® § + s57) =0,

22 +y?+22=1.

From that we can infer in analogy to The-
orem 1:

Theorem 3. The spherical conchoids of a
circle at latitude B with respect to a point F
s an algebraic curve of degree 8 or of spher-
ical degree 4. The coordinates of all points
on the spherical conchoid fulfill Equation
(10).

The spherical conchoid of a circle is the
intersection of a quartic surface with the

13



Figure 18: Spherical conchoids as intersections of a quartic and the unit sphere.

sphere ¥. Some examples of the quartic
surface are displayed in Figure 18. Like in
the case of spherical and planar conchoids
of lines, the spherical conchoids of circles
can have cusps, isolated, and ordinary dou-
ble points, see Figure 17.

Equations of the principal views (right side
view, front view, top view) can be easily
derived by eliminating coordinates (y, x, z)
from the two equations given in Eq. (10).
It is not necessary to go into all the details
of the computations and discussions. They
are similar to those in the previous section.
Now, we can state (cf. Theorem 2):

Theorem 4. The front and top view of
spherical conchoids of circle are algebraic
curves of degree 8 and genus 1, i.e., they
are elliptic. Thr right side view is an ellip-
tic quartic.
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