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Abstract

A semi-orthogonal path is a polygon in-
scribed into a given polygon such that the
i-th side of the path is orthogonal to the i-th
side of the given polygon. Especially in the
case of triangles, the closed semi-orthogonal
paths are triangles which turn out to be
similar to the given triangle. The itera-
tion of the construction of semi-orthogonal
paths in triangles yields infinite sequences
of nested and similar triangles. We show
that these two different sequences converge
towards the bicentric pair of the triangle’s
Brocard points. Furthermore, the relation
to discrete logarithmic spirals allows us to
give a very simple, elementary, and new
constructions of the sequences’ limits, the
Brocard points. We also add some remarks
on semi-orthogonal paths in non-Euclidean
geometries and in n-gons.
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1 Introduction

1.1 Sequences of triangles

Little is known about sequences of Cevian
triangles within a given triangle. Sequences
of medial triangles and Routh triangles are
studied in [3]. There, triangles are consid-
ered as triplets of points in the complex
plane and a shape function which is actu-
ally a complex affine ratio is defined and de-
scribes how the shape of a triangle changes
during the iteration process. It turns out
that the above mentioned classes of trian-
gles converge in shape, in most cases to
equilateral triangles.

Figure 1: Where and what is the limit of
the sequence of intouch triangles?

It is well-known (and rather trivial) that
the sequence of Cevian triangles of a tri-
angle’s centroid converges towards the cen-
troid. The intouch triangle (contact points
of the incircle and the triangle sides) is al-
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ways in the interior of the initial triangle
(cf. Fig. 1). So, it is nearby to expect that
the sequence of nested intouch triangles has
a point shaped limit which is yet undiscov-
ered. On the contrary, the orthic triangle is
an interior triangle only if the base triangle
is acute and, unfortunately, acute triangles
may have an obtuse orthic triangle and con-
vergence cannot be expected in the generic
case.

We try to leave the beaten tracks by start-
ing the construction of the triangles of the
sequence in a different way. The edges of
the triangles in the sequences in question
shall form a semi-orthogonal path, i.e., the
i-th edge of the new triangle shall be orthog-
onal to the i-th side of the given triangle.
Depending on the ordering of the sides of
the base triangle, we find two closed semi-
orthogonal paths which shall be constructed
and discussed in Sec. 2. Further, the case of
generic n-laterals (n straight lines in generic
position such that no two lines enclose a
right angle) shall be addressed in Sec. 2,
besides some comments on closed semi-
orthogonal paths in non-degenerate Cayley-
Klein geometries, i.e., the elliptic and the
hyperbolic plane. Sec. 3 is dedicated to the
computation of the limits of the triangle
sequences. We show that the triangles in
one sequence shrink to one Brocard point,
while the others converge to the other Bro-
card point, and thus, these two limits are
located on the Tucker-Brocard cubic. Fi-
nally, in Sec. 4, we conclude and address
some open problems. The remaining part
of this section (Sec. 1) collects some prere-
quisites.

1.2 Prerequisites and conven-

tions

Since we deal with triangles in the Eu-
clidean plane R

2, we use Cartesian coordi-
nates in order to describe points. It will
turn out useful to perform the projective
closure of the Euclidean plane by adding
the ideal line ω to R

2. Whenever, we deal
with points and lines in the projectively ex-
tended plane, we can switch between Carte-
sian and homogeneous coordinates of points
by

(1, x, y)←→ (x0 : x1 : x2)

as long as x0 6= 0. Lines l : a0+a1x+a2x =
0 can also be described by homogeneous co-
ordinates (a0 : a1 : a2). Especially, the ideal
line (or line at infinity) is simply given by
ω = (1 : 0 : 0).

For the moment, it is sufficient to assume
that the Cartesian coordinates of the ver-
tices of the base triangle ∆0 are

A0 = (0, 0), B0 = (c, 0), C0 = (u, v). (1)

We assume that c, v 6= 0 so that A0 6= B0

and C0 6∈ [A0, B0]. Further, u2 + v2 6= 0
which implies A0 6= C0. In the following,
no interior angle of ∆0 shall be a right one.
This is expressed algebraically by u 6= c,
u 6= 0, and u2 − uc+ v2 6= 0.

We shall agree that the side lengths of ∆0

are

a := B0C0, b := C0A0, c := A0B0.

Later, when we try to express especially
metric properties of the triangle in terms of
∆0’s side lengths a, b, c, we should be able
to replace u and v from (1) by functions
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depending on a, b, c. For that purpose, we
compute C0 = (u, v) as the intersection of
two circles: one centered at A0 with radius
b; the other one centered at B0 with radius
a such that v > 0. This results in

u =
b2 + c2 − a2

2c
and v =

2F

c
(2)

with F being the area of ∆0. Note that
F can be expressed in terms of ∆0’s side
lengths using Heron’s formula or, equiva-
lently, with help of the Cayley-Menger de-
terminant.

2 Closed semi-orthogon-

al paths

2.1 Triangles in the Euclidean

plane

Let ∆0 = A0B0C0 be a triangle in the Eu-
clidean plane. Let further P0 be a point on
the side line [A0, B0]. We construct a se-
quence P0, P1, P2, P3 of points on the lines
[A0, B0], [B0, C0], [C0, A0], [A0, B0] in the
following way (cf. Fig. 2):

P0 ∈ [A0, B0], [P0, P1]⊥[A0, B0],

P1 ∈ [B0, C0]

with P0→P1→P2→P3,

A0→B0→C0→A0,

cyclical replacement.

Henceforth, we shall refer to such paths as
semi-orthogonal paths. It doesn’t make a
difference if we start at [A0, B0] or at any
other side line of ∆0.

Obviously, the mapping π : P0 7→ P3 is
a projective mapping [A0, B0] → [A0, B0],
since it is a chain of three perspectivities:

[A0, B0]
R⊥

∧=
[B0, C0]

S⊥

∧=
[C0, A0]

T⊥

∧=
[A0, B0]

︸ ︷︷ ︸

∧−

where R := [A0, B0] ∩ ω, S := [B0, C0] ∩ ω,
and T := [C0, A0] ∩ ω are the ideal points
of ∆0’s side lines and R⊥, S⊥, and T⊥ are
the ideal points of the respective orthogonal
directions. Note, that the three perspectors
are collinear as indicated in Fig. 2.

A0

B0

C0

P0

P1

P2

P3

R

S

T
R⊥

S⊥

T⊥

ω

Figure 2: The projective mapping π :
[A0, B0] → [A0, B0] is the product of three
perspectivities. The perspectors themselves
are assigned to the ideal points of ∆0’s side
lines in a projective way: They are joined
by the absolute polarity acting on ω.

Remark 1. Indeed, the projective mapping
⊥ : ω → ω that assigns the ideal point of
the orthogonal direction to any ideal point
can be replaced by any other elliptic pro-
jective mapping acting on ω. The pseudo-
Euclidean case would be covered if ⊥ is hy-
perbolic.
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The ideal point R of [A0, B0] is self-assigned
in π, since π(R) = R, and therefore, we can
expect only one further fixed point A1 of π.

Let now, P0 = (t, 0) with t ∈ R which is a
parametrization of the line [A0, B0] and we
find

P1 =
(

t,
v(c−t)
c−u

)

, P2 =
α(t)

β
(u, v) ,

P3 =
α(t)(u2 + v2)

uβ
(1, 0)

(3)

where

α(t) = ((c−u)2+v2)t−cv2,

β = ((c−u)2+v2)u−cv2.

Note that c − u is a divisor of β that can-
not vanish due to assumptions made earlier.
The path P0P1P2P3 is closed if the points
P0 and P3 coincide. This is equivalent to
t = α(t)

uβ
(u2 + v2), and thus,

t =
c(u2 + v2)

c2 − cu+ u2 + v2
. (4)

We shall make explicit the fact that the de-
nominator of t in (4) cannot vanish: Sub-
stituting (2) into (4), we find

t = 2b2cσ−1 (5)

where
σ := a2 + b2 + c2 (6)

which cannot vanish for a, b, c ∈ R
⋆.

If we insert (4) into (3) and relabel the
points by letting A1 = P0 = P3, B1 = P1,
and C1 = P2, we arrive at

A1 =
c
γ
(c(u2 + v2), 0) ,

B1 =
c
γ
(u2 + v2, cv) , C1 =

cu
γ
(u, v)

(7)

with γ = c2 − cu + u2 + v2. Such a closed
triangular path A1B1C1 is shown in Fig. 3.

As can be seen in Fig. 3,

<)C1A1B1 = <)C0A0B0,

<)A1B1C1 = <)A0B0C0,

<)B1C1A1 = <)B0C0A0.

Thus, we have

Lemma 1. The triangles ∆0 and ∆1 are
similar.

A0 B0

C0

A1

B1

C1

α

α
β

β

γ

γ

Figure 3: The first triangle ∆1 = A1B1C1

inscribed into ∆0 = A0B0C0.

In order to construct the path A1B1C1, we
started at P0 leaving [A0, B0] in the orthog-
onal direction until we meet [B0, C0]. We
could also look for a path Q0Q1Q2Q3 with
Q0 = P0 and Q1 ∈ [C0, A0], i.e., leaving
[A0B0] in the orthogonal direction until we
meet [C0A0], and so forth. This yields a
second closed triangular path if we achieve
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Q0 = Q3. Then, L1 = Q0, K1 = Q1, and
M1 = Q2 form a triangle ∇1, see Fig. 4.
Similar to Lem. 1 and due to the same rea-
soning, we have

Lemma 2. The triangles ∆0 and ∇1 are
similar.

A0 B0

C0

A1

B1

C1

K1

L1

M1

X6

l

Figure 4: The two perspective triangles
∆1 and ∇1 with their common circumcir-
cle (centered at the symmedian point X6).

Moreover, we can show the following

Theorem 1. The triangles ∆1 and ∇1 are
congruent, share the circumcircle l, and
therefore, the circumcenter which is the
symmedian point X6 of ∆0.

1

Proof. The similarity of ∆0 and ∆1 needs
no further confirmation, since this is done
right before Lem. 1. The similarity of ∆0

1Here, and in the following Xi means the i-th
point in Kimberlings’s encyclopedia of triangle cen-
ters [4, 5].

and ∇1 can be shown in the same way.
From ∆1 ∼ ∆0 and ∇1 ∼ ∆0 we can in-
fer ∆1 ∼ ∇1.

Since C1M1 is seen from B1 and K1 at right
angles, B1, C1, K1, and M1 are concyclic.
Further, B1L1 is seen from A1 and M1 at
right angles. Thus, the circumcircle of B1,
C1, K1, and M1 equals that of A1, B1, L1,
and M1.

Two similar triangles can only share the cir-
cumcircle if they are congruent (which can
be confirmed with help of the Law of sines).

Finally, we have to show that the circum-
center of the six points A1, B1, C1, K1, L1,
M1 is the symmedian point X6 of ∆0. We
compute the actual distances of the mid-
point M of the segment A1K1 to ∆0’s side
lines and find

M [A0, B0] = 2cFσ−1,

M [B0, C0] = 2aFσ−1,

M [C0, A0] = 2bFσ−1,

and thus, the homogeneous trilinear coordi-
nates are

M = (a : b : c)

which confirms that M equals the symme-
dian point X6 of ∆0.

From Lem. 1, we can deduce a simple linear
construction of ∆1 (and ∇1) which is shown
in Fig. 5: An arbitrary triangle ∆ = A′B′C ′

with

A′ ∈ [A0, B0], B′ ∈ [B0, C0],

[A′, B′]⊥[A0, B0]

similar to ∆0 is drawn, i.e.,

<)C ′A′B′ = <)C0A0B0,

<)A′B′C ′ = <)A0B0C0.
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The central similarity with center B0 sends
C ′ to C1 ∈ [C0, A0], and thus, it maps ∆′ →
∆1.

A0 B0

C0

A′

B′

C ′

A1

B1

C1

Figure 5: The construction of ∆1 is linear
and uses the central similarity from B0.

From this construction it is clear that there
is a second triangle ∇1 = K1L1M1 simi-
lar to ∆0 and inscribed into ∆0, but dif-
ferent from ∆1: We start with a triangle
∇ = K ′L′M ′ and let

L′ ∈ [A0, B0], K
′ ∈ [C0, A0],

[K ′, L′]⊥[A0, B0]

with

<)K ′L′M ′ = <)A0B0C0,

<)M ′K ′L′ = <)C0A0B0.

Now, the similarity with center A0 sends
K ′L′M ′ to K1L1M1.

2.2 Non-Euclidean planes

The case of the pseudo-Euclidean plane was
the subject of Rem. 1 since its only differ-
ence is the hyperbolic projectivity on the
ideal line (in the plane’s projective exten-
sion).

In hyperbolic and elliptic geometry, there
is still a projective mapping π : [A0, B0] →
[A0, B0]. However, since there is no ideal
line, but rather an ideal conic, we miss a
self-assigned ideal point on [A0, B0]. Thus,
π has up to two real fixed points:

Theorem 2. In each generic triangle in the
hyperbolic or elliptic plane, there exist two
closed semi-orthogonal paths for a particu-
lar chosen ordering of side lines.

The reality of the fixed points mentioned
in Thm. 2 is clear in the hyperbolic and in
the elliptic case: Let ω denote the abso-
lute conic. Each pair (Vi, Vj) of proper ver-
tices of the triangle and the pair of absolute
points (A1, A2) = [Vi, Vj] ∩ ω of [Vi, Vj] are
not entangled. Therefore, there are two real
fixed points on [Vi, Vj], see [2, p. 254].

Fig. 6 shows a triangle ∆0 = A0B0C0 in
the projective model of the elliptic plane to-
gether with the two closed semi-orthogonal
paths to a chosen ordering of ∆0’s side lines.

There are two different closed semi-
orthogonal paths in a triangle in the ellip-
tic or in the hyperbolic plane. Since the
projective mapping π : [A0, B0] → [A0, B0]
is hyperbolic in elliptic as well as hyper-
bolic geometry, there are four closed semi-
orthogonal (triangular) paths in a generic
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A0

B0

C0

P1
P2

P0

P ′
1

P ′
2

P ′
0

Figure 6: Two closed semi-orthogonal paths
in a triangle ∆0 = A0B0C0 of the ellip-
tic plane. The paths are starting with
[P0, P1]⊥e[A0, B0] and [P ′

0, P
′

1]⊥e[A0, B0],
respectively.

triangle. Fig. 7 shows these four closed
semi-orthogonal paths in a triangle in the
elliptic plane. This four-fold symmetry re-
sembles the four-fold symmetry in Universal
Hyperbolic Geometry (cf. [8, 9]) and shows
up when classical triangle geometry is also
studied from the viewpoint of projective ge-
ometry, see [7].

Neither in the elliptic nor in the hyperbolic
plane we can use Thales’s theorem in order
to show that two of the triangular paths
share a circumconic as illustrated in Fig. 7.

3 Infinite sequences of

inscribed triangles

In this section, we return to Euclidean ge-
ometry in order to attack the main problem.

We have seen that ∆0 and ∆1 are similar

P0

P1

P2

P ′
0

P ′
1

P ′
2

Figure 7: There are four closed semi-
orthogonal paths in a triangle in the ellip-
tic plane. Two by three vertices gather on
a conic: three points from an [A0, B0] −
[B0, C0] − [C0, A0] path and three vertices
from an [A0, B0]− [C0, A0]− [B0, C0] path.

triangles. Consequently, the triangle ∆2 in-
scribed into ∆1 whose vertices A2, B2, C2

are obtained in the same way as A1, B1, C1

is also similar to ∆1, and thus, to ∆0. This
procedure can be repeated arbitrarily often
which yields a sequence of similar triangles
∆0, ∆1, ∆2, ∆3, ∆4, . . . for a particular tri-
angle ∆0.

Due to the construction of ∆1, subsequent
edges AiAi+1 and Ai+1Ai+2 of the polygon
A0A1A2A3A4 . . . are orthogonal. Further,
the edges AiAi+1 and Ai+2Ai+3 are anti-
parallel. The same holds true for the poly-
gons B0B1B2 . . . and C0C1C2 . . .. Fig. 8
shows the polygon A0A1A2A3 . . ., while Fig.
9 shows the six discrete logarithmic spirals
encircling two different limits.

Now, we want to show that the triangles ∆i

and ∇i converge to a point as i → ∞. In
this case, it is not necessary to apply shape
functions like in [3]. We need some other
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A0 A1

A2

A3

A4
A5

Figure 8: The discrete logarithmic spiral
formed by A0, A1, . . . winding towards a
limit.

prerequisites. With (7) it is easy to verify
that the side lengths a1 = B1C1, b1 = C1A1,
c1 = A1B1 of ∆1 are

a1 = aλ, b1 = bλ, c1 = cλ

where λ is the scaling factor of the similarity
∆0 → ∆1 which can be computed from a,
b, and c via

λ = 4Fσ−1 (8)

where F equals the area of ∆0. This allows
us to express the radius of the circle l (cf.
Thm. 1) in terms of ∆0’s side lengths:

Corollary 1. The radius of l equals

R1 =
abc

a2 + b2 + c2
.

Proof. Lengths are scaled with the factor
λ when applying the similarity ∆0 → ∆1.
Thus, the circumradius R0 changes to R1 =
R0λ with λ given in (8). According to the
Law of sines, R0 = abc

4F
, and thus, R1 =

abcσ−1.

The fact that the sequence of triangles ∆0,
∆1, ∆2, . . . (as well as the sequence of

all ∇i) consists of scaled versions of the
initial triangle ∆0 together with the fact
that the scaling factor depends on the side
lengths of each triangle in the same way
(cf. Eq. (8)) makes the traces of ∆0’s ver-
tices a special polygon. For example, the
segment A1A2 is orthogonal to A0A1 and
A1A2 = λ · A0A1. This holds true for
any pair (AiAi+1, Ai+1Ai+2) of subsequent
segments. Thereby, a sequence of discrete
equiform motions (consisting of a quarter
turn and a constant scaling) moves the
polygon A0A1A2 . . . into itself and we can
say that A0A1A2 . . . is invariant under the
sequence of discrete equiform motions. In

L

L′

Figure 9: The six discrete logarithmic spi-
rals orbiting the limit points L and L′.

the smoth case, the trace of a point under-
going one-parameter equiform motion with
constant parameter is a logarithmic spiral.
Therefore, we can call A0A1A2 . . . a dis-
crete logarithmic spiral. Fig. 9 shows the
six discrete logarithmic spirals traced by
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the three vertices of ∆0 undergoing the two
independent sequences of discrete equiform
motions.

Now, we are able to state and prove:

Theorem 3. The limit position L of all
points Ai, Bi, or Ci is the first Brocard
point of ∆0 with homogeneous trilinear co-
ordinates

L = (ac2 : ba2 : cb2) (9)

while the limit L′ of all points Ki, Li, or Mi

is the second Brocard point of ∆0, i.e., in
terms of homogeneous trilinear coordinates

L′ = (ab2 : bc2 : ca2). (10)

Proof. With the initial choice of the coor-
dinate frame, we can find the limit position

L = lim
i→∞

Ai.

The x- and y-coordinate xL and yL are

xL=A0A1−A2A3+A4A5−A6A7±. . . ,

yL=A1A2−A3A4+A5A6−A7A8±. . . .
(11)

The similarity ∆i → ∆i+1 changes lengths
by scaling them with the factor λ, i.e.,

AiAi+1 = λk ·Ai+kAi+k+1

for i, k ∈ {0, . . . , n}. Consequently, the co-
ordinates xL and yL from (11) change to

xL = A0A1 (1− λ2 + λ4 ∓ . . .),

yL = A0A1λ(1− λ2 + λ4 ∓ . . .).
(12)

The length of the segment A0A1 follows
from (1), (7) with (2) and is already given
in (4):

A0A1 = t = 2b2cσ−1.

We let

τ := a2b2 + b2c2 + c2a2 (13)

and with (8), we can infer

λ =

√

2τ − a4 − b4 − c4

2τ + a4 + b4 + c4
< 1

for any admissible choice of a, b, and c.
Consequently, the infinite alternating sum
of even powers of λ attains the value

1

1 + λ2

which gives

L =
b2c

2τ
(σ, 4F ). (14)

Note that L given in (14) is at the same
time the limit of Bi and Ci too.

The y-coordinate of L in (14) equals the dis-
tance of L to the line [A0, B0]. Therefore,
it is the third actual trilinear coordinate of
L. It is elementary to compute the first and
second actual trilinear coordinate of L and
it turns out that they can be obtained by
cyclically replacing a, b, c once and twice in
2b2cFτ−1. We observe that both F and τ

are cyclic symmetric in a, b, c, and there-
fore, they do not change. For the sake of
simplicity, we aim at homogeneous trilinear
coordinates of L which allows us to cancel
cyclic symmetric factors as long as they are
common to all coordinate functions. So, we
obtain (9).

A comparison of (9) with the trilinear rep-
resentation of the first Brocard point given
in [6] confirms that L is indeed the first Bro-
card point.

9



The calculations do not really differ if we
compute the limit position lim

i→∞

Ki = L
′. In

this case, it is beneficial to start at B0 =
(c, 0) and determine

L′ =

(
c

0

)

+

+B0L1

(

−1 + λ2 − λ4 ± . . .

λ(1− λ2 + λ4 ∓ . . .)

)

where B0L1 = 2a2cσ−1 which results in

L′ =
c

2τ

(
b2c2 − a4 + τ, 4a2F

)
. (15)

In the same way as above, we end with

L′ = (ab2 : bc2 : a2c).

Remark 2. The two limit positions L and
L′ are no triangle centers: Of course, the
trilinear representation is apparently cyclic
symmetric in the side lengths a, b, c of ∆0,
but, they do not satisfy the norming condi-
tion: If f(a, b, c) is a center function, then
it also has to satisfy |f(a, b, c)| = |f(a, c, b)|
in order to make (f(a, b, c) : f(b, c, a) :
f(c, a, b)) a center.

Now, we show

Theorem 4. The point L is the only
(real and proper) common point of the
three Thaloids of the segments A0A1, B0B1,
C0C1.

The point L′ is the only (real and proper)
common point of the three Thaloids of the
segments A0K1, B0L1, C0M1.

Proof. From the asymptotic point L of the
discrete logarithmic spiral A0A1A2 . . ., any

segment AiAi+1 can be seen at a right an-
gle, since each subsequent segment of the
discrete logarithmic spiral corresponds to a
quarter turn plus a scaling with the factor
λ. This is also the case for the segments
BiBi+1 and CiCi+1.

For the same reasons, the limit L′ of the
second sequence is simultaneously located
on three Thaloids.

Thm. 4 provides a very elegant and elemen-
tary construction of the two Brocard points
L and L′. This construction seems not to
be mentioned in the literature.

Fig. 10 shows the three Thaloids through
L. Clearly, there are also three Thaloids

A0 B0

C0

A1

B1

C1

Figure 10: Three Thaloids concur in L.

passing through L′.

As a consequence of Thm. 3, the two lim-
its of the triangle tunnels are located on a
special self-isotomic pivotal cubic K012 (cf.
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[1]), better known as the Tucker-Brocard
cubic T . Only a few centers from Kimber-
ling’s list [5] are known to lie on T : the sym-
median point (also Lemoine point or Grebe
point) X6, its isotomic conjugate X76 (the
third Brocard point), and further the two
centers X880 and X882. (X882 lies on the
Brocard axis [L,L′].) Fig. 11 shows the tun-
nel limits (Brocard points) together with
the Tucker-Brocard cubic T and the cen-
ters X6, X76, X880, X882.

A0
B0

C0

X6

X76X880

X882

L

L′

T T

T

Figure 11: The Tucker-Brocard cubic con-
tains the first and second Brocard point L
and L′. besides X6, X76, X880, and X882.

4 Conclusion and open

problems

The semi-orthogonal paths in quadrilat-
erals will, in general, not be similar to
the initial quadrilateral, for there exists

no equiform transformation that maps two
quadrilaterals onto each other even when
they agree in their interior angles. Nev-
ertheless, the iteration of the computation
of semi-orthogonal paths in a quadrilat-
eral produces sequences of shrinking and
nested quadrilaterals which preserve their
interior angles. Fig. 12 shows an exam-
ple. In fact, there exist up to six such se-

Figure 12: A sequence of shrinking and
nested closed semi-orthogonal paths in a
quadrilateral. It is obvious that interior an-
gles remain unchanged.

quences in a generic quadrilateral. Appar-
ently, there exists an attractor for the six
different semi-orthogonal paths in a quadri-
lateral. It would be interesting to find a tool
to compute the limits, if they exist. Shape
functions for quadrilaterals as used for tri-
angles in [3] or for generic n-gons defined in
[10] could help.

Only the case of cyclic quadrilaterals seems
hopeful. Since the measures of interior
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angles are preserved during the transi-
tion from one quadrilateral to the next in
the sequence of semi-orthogonal paths, so
is there sum or difference. In a cyclic
quadrilateral opposite interior angels sum
up to π, i.e., <)ABC + <)CDA = π and
<)BCD + <)DAB = π and so do the
sums of the opposite (interior) angles in
their semi-orthogonal paths, see Fig. 13.
Hence, the semi-orthogonal path of a cyclic

Figure 13: The first four semi-orthogonal
paths of a cyclic quadrilateral are similar
and perspective to the initial quadrilateral.

quadrilateral is again a cyclic quadrilateral.
Numerical experiments show that each 4i-
th semi-orthogonal path of a cyclic quadri-
lateral is similar and perspective to the ini-
tial cyclic quadrilateral (i ∈ N). The per-
spector is common to all pairs of quads, cf.
Fig. 14.

Figure 14: The 4th, 8th, and 12th semi-
orthogonal path of a cyclic quadrilateral are
similar and perspective to the initial quadri-
lateral. The perspector could be see as
the limit of the sequence of semi-orthogonal
paths.
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