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Abstract. The present paper deals with the computation of the common nor-
mals of two tori. We use line geometry in order to describe these common normals
as the solution of a system of algebraic equations. Further the non trivial config-
urations of two tori with infinitely many common normals are investigated.

Key Words: torus, normal, common normal, line geometry, line complex, congru-
ence of surface normals, ruled surface.

MSC 2000: 51N20, 51M35, 51N35

1. Introduction

The computation of relatively extremal distances between two surfaces S1 and S2 in three-
dimensional Euclidean space is equivalent to the problem of finding common normals of S1 and
S2, respectively. It is important in different areas such as robotics (e.g. in collision detection),
computer graphics, computer animation, and virtual reality, see [4, 12, 16].

The computation of distances between polyhedral objects is well understood. There are a
lot of efficient algorithms for that. It is much more difficult to find the minimum or maximum
distance between two curved objects. In general one has to solve a system of polynomial
equations, which can be time consuming. In case the surfaces do not allow a convenient
analytical representation the surfaces have to be replaced by sufficiently well approximating
polyhedra.

In [12] line geometry was used to simplify the computation of distances between ellipsoids.
The techniques presented in this paper can be applied to other algebraic surfaces as well. Thus
the computation of distances (or equivalently of common normals) of further simple geometric
objects as used in geometric modeling can be done this way. A different approach is presented
in [4]. Because of the absence of convincing examples and the rather high degrees of involved
algebraic equations this approach looks not very promising.

Another simple object which sometimes appears in geometric modeling is a torus. A torus
is not a quadratic surface, it is of degree four, but it is rational and so it can be written as
rational tensor product surface. There are algorithms to find the minimum and maximum
distance between such surfaces. One of these algorithms uses recursive subdivision, see [3].
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In the following we show a way to find the common normals of two tori. On these normals
the minimum and maximum distance can be found. We use some ideas from line geometry
in order to simplify the computations and clarify the number of solutions. For this purpose
we make the reader familiar with some basic concepts of line geometry. After that we discuss
the general case, i.e., the two tori are in general position relatively to each other.

Then we focus on those cases where two tori have infinitely many common normals. Some
of the configurations are trivial, others not.

2. Fundamentals of line geometry

In the following we use the projective closure P3 and the complex extension of Euclidean three-
space as well, if necessary. We describe points P by their Cartesian coordinates p = (px, py, pz).
Oriented lines L in Euclidean three-space can easily be described by normalized Plücker
coordinates L = (l, l) = (L1, L2, L3;L4, L5, L6) ∈ R6, where l is a unit vector parallel to L.
Thus L becomes oriented. The vector l is called momentum vector of L. It is computed by
l = p × l, if P is any point on L. The momentum vector is independent on the choice of P
on L and thus the Plücker coordinates of L are also independent of P . Obviously

〈l, l〉 = L1L4 + L2L5 + L3L6 = 0 (1)

holds for the Plücker coordinates of a line. Here 〈·, ·〉 denotes the standard scalar product.
Conversely any six tupel of real (indeed complex) numbers Li satisfying (1) are the coordinates
of a uniquely determined (oriented) line.

When the direction vector l is scaled by a non vanishing factor the momentum vector is
scaled by the same factor, and the Plücker coordinates describe the same line. The Plücker
coordinates of a line are homogeneous, i.e., we give up the orientation and drop the norming
condition of l. So the Plücker coordinates of L can be interpreted as homogeneous coordinates
of points in a projective five-space P5.

The mapping γ : L 7→ (L1, L2, L3;L4, L5, L6) is called Klein mapping, see [6, 13]. It
maps lines in (projective) three-space to points in P5. The Klein mapping is not onto. Only
points whose coordinates satisfy (1) appear as γ-images of lines. Eq. (1) defines a quadratic
hypersurface M 4

2
called Klein quadric or Plücker quadric. The subscript and superscript

denote the algebraic degree and the dimension, respectively. The Klein quadric is a point
model for the set of lines in (projective) three-space, see [6, 13].

The mapping γ maps manifolds of lines to submanifolds of M 4
2
. For instance the normals

of a regular C1-surface are mapped to a two-dimensional submanifold of M 4
2
. Line manifolds

of dimension one, two, and three are called ruled surfaces, congruences of lines, and complexes
of lines, respectively. At least one example of each type will appear in the present paper. The
set of lines whose homogeneous Plücker coordinates satisfy a homogeneous algebraic equation
of degree d is called algebraic line complex of degree d.

3. The set of normals of a torus

A torus T can be generated by rotating a circle c about an axis A contained in c’s plane. If
A passes through the center of c we obtain a sphere. Each position of c is called a meridian
circle of T . The path s of the center of c is called spine curve. An example is illustrated in
Fig. 1.
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Figure 1: Torus as a surface of revolution

Sometimes it makes sense to distinguish between three types of tori: They correspond to
the three possible set of intersection points of c and A. It will turn out that we are able to
treat these types simultaneously, so we do not distinguish.

In order to represent the normals of T by Plücker coordinates we choose a Cartesian
coordinate system and let A be the z-axis. Further we assume that (R, 0, 0) with positive R
is the center of c and r > 0 is its radius. Since c is contained in the xz-plane T admits the
parametrization

T = ((R+ r cosu) cos v, (R + r cosu) sin v, r sin u) , (2)

where (u, v) ∈ [0, 2π]2. Eliminating u and v from (2) we obtain

(x2 + y2 + z2 − r2 −R2)2 − 4R2(r2 − z2) = 0

as an irreducible equation of T . Obviously T is an algebraic surface of degree four.
In order to compute the normals of T given by (2) we compute n = ∂T

∂u
× ∂T

∂v
. Normalizing

n and computing the momentum vector, we find

N = (cosu cos v, cosu sin v, sinu; R sin u sin v, R sin u cos v, 0) (3)

as a parametrization of T ’s congruence N of surface normals.
We recall that a normal N of T is a normal of a meridian circle c. Thus N is the normal

of T in at least two diametral points P1 and P2 on c, see Fig. 1. If either P1 or P2 lies on the
equator of T , then N is normal in four points of T . Therefore any normal of T is at least a
double normal of T .

Since N is a normal of c it contains the center of c and meets the axis A of T , see Fig. 1.
So the normals of T along a meridian form a pencil of lines and the normals of T along a
path circle of a point on c form a cone of revolution. The axis of the cone obviously is A.
So the congruence N can be decomposed into a one-parameter family of cones of revolution
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sharing the axes and into a one-parameter family of pencils of lines all of whose vertices lie
on a circle s in planes through A (orthogonal to s). Fig. 1 shows a torus with a cone and a
pencil of normals.

The lines of N belong to a singular linear line complex A, i.e., the set of lines intersecting
a fixed straight line called the axis of the complex (cf. [6]). Here the axis A of s is the axis
of A. The Plücker coordinates of lines in A satisfy

N6 = 0 (4)

as can be seen from (3).

Now we eliminate the parameters u and v from (3). Besides of (1), (4) and the inhomo-
geneous norming condition N 2

1
+N 2

2
+N 2

3
= 1 we find

N2

4
+N 2

5
= R2N2

3
. (5)

This is the equation of the quadratic complex Q of lines which intersect the spine curve s.1

Eqs. (4) and (5) describe the congruence N of normals of T .

Later we are interested in the normals of two tori, so we have to ask for the algebraic
equations describing these congruences for tori in a more general position.

It is well known (see e.g. [6, 13]) that Euclidean motions induce automorphic collineations
of M 4

2
. We assume β : R3 → R3 with p 7→ p′ = Bp+b, where B−1 = BT and b = const. ∈ R3,

is a Euclidean motion. The mapping β transforms a torus into another one and it induces a
transformation of the linear line complex (4) and the quadratic complex (5) too.

In order to write down the equations of the induced mapping we extend R3 projectively
and thus β reads

β :

[

1
p′

]

=

[

1 0T

b B

] [

1
p

]

. (6)

The induced automorphic collineation of M 4
2
is now described by the 6× 6 matrix

B =

[

B 0
b ∧B B

]

, (7)

where b ∧ B is the 3 × 3-matrix of the linear mapping x 7→ b × (Bx). Plücker coordinates
N = (N1, N2, N3;N4, N5, N6) and the equations of linear line complexes C transform according
to

N ′ = BN and C ′ =M−1B−1MC, (8)

where M is the matrix of the quadratic form (1). With Q = diag (0, 0,−R2; 1, 1, 0) we can
write down the equation of the transformed quadratic complex as

NTB−TQB−1N = 0. (9)

1Q has the characteristic [(22)2], which means that s is its singular surface. More on the classification of
quadratic complexes can be found in [15].
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4. Common normals of two tori

Let T1 and T2 be two tori with axes A1, A2 and pairs of radii (R1, r1) and (R2, r2), respectively.
They may be centered at Ci ∈ Ai, i ∈ {1, 2}. The normals of Ti intersect both the axes Ai

and the spine curves si, i = 1, 2. Thus the common normals of T1 and T2 belong to two
singular linear line complexes Ai with axis Ai and two quadratic complexes Qi with si for
their singular curves.

In order to find common normals of two tori one has to write down the equations of the
involved complexes. The underlying Cartesian coordinate system can always be choosen such
that the linear and quadratic complex containing the congruence of surface normals N1 of
T1 have the equations (4) and (5). The equations of the complexes corresponding to N2 can
always be obtained by transforming the ones determining T1 and according to (7).

Taking into account that the coordinates of a common normal N of Ti have to satisfy
(1) the solution of a system of two linear homogeneous and three quadratic homogeneous
equations in the unknowns N1, N2, N3, N4, N5, and N6 has to be solved. Now we have the
following:

Theorem 1 Two tori T1 and T2 in general position have eight common normals. The number
of common normals is independent on the meridian radii.

Proof: We use Bézout’s theorem. Since the meridian radius does not appear in any of the
equations (1), (4), and (5) the solutions of the above mentioned system of algebraic equations
is independent on the meridian radii.

Note that each common normal N of T1 and T2 is a double normal of both T1 and T2.
Thus N is four times a common normal of T1 and T2.

Example: Let A1 = (0, 0, 1; 0, 0, 0) and A2 = (−24, 0, 7; 28, 0, 96) be the axes of T1 and T2,
respectively. The centers of T1 and T2 shall be given by (0, 0,−1) and (−24/25, 4, 7/25) and
let further R1 = 6 and R2 = 7 be radii of the respective spine curves. The thus determined
tori have (independent on ri) eight real common normals with Plücker coordinates

( 1.1539, 2.5805, 0.1302; 1.8672, −0.8350, 0),
(−1.2300, 16.9597, 1.8424; 5.9345, 0.4304, 0),
(−3.8744, −3.1911, 7.1665; 24.1458, −29.3160, 0),
(−6.0906, −6.3847, −2.1113; −15.5507, 14.8343, 0),
(−0.7265, −8.4488, 3.8430; 14.5246, −1.2489, 0),
(−0.8284, 3.8595, −2.5857; −11.3091, −2.4273, 0),
( 2.5020, −6.6736, 5.9281; 26.6312, 9.9841, 0),
( 2.2539, −1.4237, −5.0933; −17.7435, −28.0909, 0).

Fig. 3 shows T1 (yellow), T2 (orange), and the eight common normals (blue). In order to
illustrate that normals intersect both axes and spine curves, we give Fig. 2. In this example
the maximum number of eight real solutions is achieved.
Computations are done with Maple 9.5. The images displayed in Figs. 2, 3, 5, 6, and 7 are
created with POV-Ray. 3

As a consequence of Theorem 1 we can state:

Corollary 2 Let s1 and s2 be circles in Euclidean three-space R3. There exists a two-
parameter family of pairs (T1, T2) of tori with spine curves s1, s2 such that each pair of the
two-parameter family has the same eight common normals.
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Figure 2: Eight common normals of two tori (blue): Each of them intersects
both spine curves and both axes (yellow: A1 and s1, orange A2, s2)

Figure 3: Tori with eight common normals
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The radii of the respective meridian curves can serve as the coordinates in this two-
parameter family of tori.

Before starting the discussion of particular cases we take a different point of view. We
do already know that a normal N of T1 meets the axis A1 and the spine curve s1. If N is a
normal of T2 at the same time it also intersects A2 and s2. Thus we are looking for lines N
intersecting all A1, A2, s1 and s2. It is well known (see e.g. [5]) that the lines intersecting two
lines A1, A2 and a circle s1 are the set of rulings on an algebraic ruled surface Φ1 of degree four
and Sturm type 7.2 One example is displayed in Fig. 6, and Fig. 5 shows a discrete version.

Therefore the computation or construction of common normals can be done by intersecting
Φ1 with s2. Since Φ1 is of degree four its intersection curve φ1 with the plane π1 carrying s1

is (in general) an algebraic plane curve of degree four.

Applying Bézout’s theorem we can expect up to eight points lying on both s2 and φ1,
where multiplicities and the complex extension of π1 have to be taken into account. The
common normals of T1 and T2 are passing through the previously mentioned eight points.

Analogously we could take the algebraic ruled surface Φ2 consisting of all lines intersecting
A1, A2 and s1.

The computation of common normals is obviously equivalent to the computation of com-
mon normals of the spine curves. In [16] the extreme distances between two spatial circles are
computed. Constructive and algebraic methods are used in order to find the minimum and
maximum distance between points and circle, line and circle, plane and circle, and finally,
circle and circle. The authors even tried a line geometric approach. Unfortunately, they did
not see that the computation of common normals of two tori is done automatically.

5. Special configurations

In this section we ask for configurations of two tori where common normals and extremal
distances can be given explicitly. We also look for configurations of Ti such that they have
infinitely many common normals. We use the preparations and considerations from Section 4
and compute the conditions for two quartic ruled surfaces Φi to coincide.

5.1. Skew axes

First we assume skew axes A1, A2 with the enclosed angle 2ϕ < π and distance 2d > 0.
Then a Cartesian coordinate system can always be chosen such that the z-axis is the common
perpendicle of Ai and their Plücker coordinates are

A1 = (cϕ, sϕ, 0;−dsϕ, dcϕ, 0) and A2 = (cϕ,−sϕ, 0;−dsϕ,−dcϕ, 0), (10)

where cϕ := cosϕ and sϕ := sinϕ, see Fig. 4. Note that A1 and A2 are oriented.

With Ci we denote the center of Ti. The distance of Ci to the z-axis shall be denoted by

2Algebraic ruled surfaces of degree four and Sturm type 7 are characterized by having two skew straight
lines as their double curve, here these lines are A1 and A2.
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Figure 4: Choice of a coordinate system attached to two skew axes

mi. The equation of the quartic ruled surface Φ1 with directrices A1, A2 and s1 is given by

Φ1 : 2(d2 − (m2
1
+R2

1
)s2

ϕc
2
ϕ)(−sϕcϕxy(z

2 + d2) + d(s2
ϕx

2 + c2ϕy
2)z)

+s2
ϕc

2
ϕ(−m

2
1
(z2 − d2)2 + 2d2x2y2)− d2(x4s4

ϕ + y4c4ϕ)

+(R2
1
c4ϕ −m2

1
s2

ϕc
2
ϕ − d2)(s2

ϕx
2z2 + d2c2ϕy

2) + (R2
1
s4

ϕ −m2
1
s2

ϕc
2
ϕ − d2)(c2ϕy

2z2 + d2s2
ϕx

2)

+2dsϕcϕ(2d
2 + 2m2

1
s2

ϕc
2
ϕ −R2

1
(s4

ϕ + c4ϕ))xyz

+2dm1sϕcϕ(sϕx+ cϕy)(z + d)((z − d)2 + (sϕx− cϕy)
2) = 0

(11)

The equation of Φ2 is obtained by replacing d, ϕ, R1, m1 in (11) by −d, −ϕ, R2, m2,
respectively. Again we observe that the existence of common normals is independent on the
meridian radii ri since they do not show up in the equations of Φi.

Now we are able to discuss the configurations of T1 and T2, where they have infinitely
many common normals. This situation appears exactly if and only if the ruled surfaces Φ1

and Φ2 coincide. Then the set of lines intersecting A1, A2 and s1 is the same as the set of
lines intersecting A1, A2 and s2.

Analogously we could look for conditions to the coefficients of Eq. (11) of Φ1 such that
s2 is included, i.e., Φ1 and s2 have infinitely many common intersection points.

For that end we have to compare the coefficients of the monomials xryszt in the equations
(11) of Φ1 and Φ2. The resulting equations are relations in Ri, mi, d and ϕ describing the
relative position of T1 and T2.

We assume d 6= 0 and by the above assumptions neither sϕ = 0 nor cϕ = 0. Therefore
A1 and A2 are not parallel. Skipping the trivial relations we arrive at the following seven
equations

m2 +m1 = 0, (12)

m2 −m1 = 0, (13)

s2

ϕ(m
2

2
−m2

1
) + (R2

1
−R2

2
)c2ϕ = 0, (14)

c2ϕ(m
2

2
−m2

1
) + (R2

2
−R2

1
)s2

ϕ = 0, (15)

2d2 − (R2

1
+R2

2
+m2

1
+m2

2
)s2

ϕc
2

ϕ = 0, (16)

2c2ϕ(m
2

1
−m2

2
) + (R2

1
−R2

2
)s2

ϕ = 0. (17)
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Eqs. (12) and (13) imply m1 = m2 = 0. From Eq. (14) we conclude R1 = R2 or R1 = −R2.
The latter equation does not matter, since the radii of spine curves are always assumed to be
positive and Eqs. (15) and (17) are satisfied automatically. Eq. (16) now reads d2−R2

i s
2
ϕc

2
ϕ = 0

and is equivalent to

2d = ±Ri sin 2ϕ. (18)

Thus we can state the following theorem:

Theorem 3 The configuration of two tori with skew axes (d 6= 0, 2ϕ 6= 0, π) and infinitely
many common normals is characterized by the relations

m1 = m2 = 0, R1 = R2 and 2d = ±Ri sin 2ϕ.

Fig. 6 shows axes and spine curves of tori as described in Theorem 3. In Fig. 5 a pair of
tori with sixty of infinitely many common normals is shown.

When T1 and T2 are in a configuration described in Theorem 3, then the equation (11) of
the quartic ruled surface simplifies to

(s2
ϕx

2 − c2ϕy
2)2 + (s2

ϕ − c2ϕ)
(

(x2 − y2)z2 +R2(c4ϕy
2 − s4

ϕx
2)− 2Rxyz(c2ϕ − s2

ϕ)
)

= 0. (19)

An example of this type of quartic ruled surface can be seen in Fig. 6.
Let us consider the special case where 2d = Ri or equivalently 2ϕ = π/2 holds. Con-

sequently A1 and A2 are orthogonal. Then the equation of the algebraic ruled surface
Φ = Φ1 = Φ2 of degree four becomes (x − y)2(x + y)2 = 0. Obviously Φ splits into a pair of
pencils of lines each of multiplicity two.

Eq. (18) allows a reformulation of Theorem 3. Assume that the axis A1 and the spine
curve’s radius R1 of T1 are fixed. Then we can characterize the set of axis of all tori T2 with
R2 = R1 which share a one-parameter family of normals:

Theorem 4 Let A1 be the axis and R be the radius of the spine curve of a torus T1. Up to
rotations about A1 the axes A2 of tori T2 with spine curve radius R sharing infinitely many
common normals with a torus T1 are rulings of a quartic ruled surface of Sturm type 7.

Proof: Assume A1 = (t, 0, 0). Thus the axis A2 of a torus T2 that has infinitely many
common normals with T1 is given by A2(ϕ, t) = (tcϕ, tsϕ, 1/2Rsϕ), with (t, ϕ) ∈ R × [0, 2π].
This parametrizes a quartic ruled surface of Sturm type 7. The rulings coresponding to
ϕ = 0, π, 2π have to be excluded.

Further we can state the following theorem:

Theorem 5 For a given torus T there exists a 4-parameter manifold T of tori each of them
having infinitely many common normals with T . The distance of and the angle enclosed by
the axes of T and T ′ ∈ T are related by (18).

Proof: Consider a given torus T with given axis A and spine curve radius R. If we prescribe
the distance 2d 6= 0 of the axis A′ of T ′ ∈ T the angle 2ϕ between A and A′ is determined
according to Eq. (18). So the distance of the axes can be choosen freely and the angle is
determined uniquely. The radii r and r′ of the respective meridian curves can also be chosen
freely. The configuration of T and T ′ can be rotated about T ’s axis without changing the
number of common normals, which gives the fourth parameter.
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Figure 5: Tori with infinitely many common normals

Figure 6: Left: Axes (blue) and spine curves (yellow). Right: Quartic ruled surface (green)
whose generators intersect both the axes (blue) and the spine curves (yellow)
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The generators of the quartic ruled surface Φ defined by (19) carring the continuum of
common normals of T1 and T2 meet the spine curves s1 and s2 orthogonally. This is equivalent
to 〈s1−s2, ṡ1〉−〈s1−s2, ṡ2〉 = 0. Integration yields 〈s1−s2, s1−s2〉 = const. and consequently
on each common normal the two spine curves enclose a segment of the same length. Thus we
have

Theorem 6 In the particular position of Theorem 3 the spine curve s2 is entirely contained
in a torus with spine curve s1, and vice versa.

Thus s2 is a Villarceau-circle of a torus T1 with spine curve s1. For Villarceau sections
and generalizations the reader may be referred to [1, 11, 14]. On the other hand we can shrink
T1 such that it degenerates to s1 and simultaneously we can blow up T2 such that s1 becomes
one of its Villarceau-circles. Both cases can be seen as borderline cases of tori with infintely
many common normals. This is illustrated in Fig. 7.

Figure 7: Normals of a torus along a Villarceau-circle

The right choice of radii of meridian curves of T1 and T2, respectively, leads to tori in line
contact. In this case the meridian radii r1 and r2 sum up to 2d.

Since the curve of intersection of two tori is of degree eight and both surfaces share
the absolute conic3 the curve of contact is of degree four. In general it is not a circle with
multiplicity two since Φ given by (19) contains only the two circles s1 and s2, respectively.
The common curve of the two touching tori becomes a Villarceau-circle only in the limiting
case where one torus shrinks to a circle.

3This conic in the ideal plane x0 = 0 of the projectively closed Euclidean three-space obeys the equation
x2

1 + x2
2 + x2

3 = 0.
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5.2. Coplanar axes

5.2.1. Axes are not parallel

In case of coplanar axes A1 and A2 we find four common normals of T1 and T2 in the plane
µ = A1 ∨ A2. Their Plücker coordinates can be given explicitly. We use the abbreviations
∆m := m2 −m1, Σm := m1 +m2, ∆R := R2 −R1, and ΣR := R1 +R2 and find

(∆msϕ + ΣRsϕ, ∆Rcϕ − Σmcϕ, 0; 0, 0, (m1R2 −m2R1)c2ϕ − (m1m2 +R1R2)s2ϕ),

(∆msϕ −∆Rsϕ,−ΣRcϕ − Σmcϕ, 0; 0, 0, −(m1R2 +m2R1)c2ϕ − (m1m2 −R1R2)s2ϕ),

(∆msϕ +∆Rsϕ, ΣRcϕ − Σmcϕ, 0; 0, 0, (m1R2 +m2R1)c2ϕ − (m1m2 −R1R2)s2ϕ),

(∆msϕ − ΣRsϕ,−∆Rcϕ − Σmcϕ, 0; 0, 0, −(m1R2 −m2R1)c2ϕ − (m1m2 +R1R2)s2ϕ),

which are always real and connect the two intersection points P1, P2 ∈ s1 and Q1, Q2 ∈ s2

of either si and µ with each other. The remaining four common normals pass through the
intersection point A1 ∩A2. They are the common generators of two cones of revolution given
by

K1 : (R2
1
c2ϕ −m2

1
s2

ϕ)(x
2 + y2)−m2

1
c2ϕz

2 + 2sϕcϕxy(m
2
1
+R2

1
) = 0,

K2 : (R2
2
c2ϕ −m2

2
s2

ϕ)(x
2 + y2)−m2

2
c2ϕz

2 − 2sϕcϕxy(m
2
2
+R2

2
) = 0,

which connect A1 ∩ A2 with the spines curves s1 and s2, respectively. Since K1 and K2 are
concentric cones of revolution they share a pair of conjugate complex lines and a further
pair of lines. The latter pair can be a pair of real lines, a single double line, or a pair of
conjugate complex lines. Therefore we can expect to find four or six real common normals
of Ti depending on the number of common real generators of Ki, respectively. In case of the
single double line K1 and K2 are in line contact along this line. Thus one of the four common
normals of T1 and T2 is of multiplicity three.

If the spine curves si intersect µ in a common point, s1 and s2 are in first order contact.
In this case the above mentioned cones touch along a generator. Then the two tori Ti have a
pencil of common normals and one common normal N not contained in the pencil. One line
in the pencil of common normals is the line of contact of K1 and K2 and has thus multiplicity
three. In this case the radii of the spine curves have to satisfy m2

1
+R2

1
= m2

2
+R2

2
. It is not

necessary that Ti share a meridian to have a pencil of common normals.
Finally we observe that in casem1 = m2 = 0 there are four different real common normals

with multiplicity one. The common perpendicle of A1 and A2 appears as one common normal
with multiplicity four. In this case we have five common normals.

5.2.2. Axes are parallel

Now we assume Ai and A2 are parallel. In this case one has to distinguish two subcases:
1. The spine curves lie in different planes: It is a special situation of the above mentioned

case of coplanar axes. We choose a Cartesian coordinate system such that T1’s center
coincides with the origin and A1 = (1, 0, 0; 0, d, 0), A2 = (1, 0, 0; 0,−d, 0). T1 may be
centered at (0, 0, d) and T2 may be centered at (m, 0,−d). The Plücker coordinates of
the four common normals which are always real are given by

(m, 0,ΣR − 2d; 0,m(d−R1), 0), (m, 0,−ΣR − 2d; 0,m(d+R1), 0), (20)

(m, 0,∆R − 2d; 0,m(d+R1), 0), (m, 0,−∆R − 2d; 0,m(d−R1), 0). (21)
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Table 1: Number of common normals of two tori T1 and T2 depending on distance 2d
and angle 2ϕ < π of axes, radii R1, R2 of spine curves and position m1, m2 of centers

2d 2ϕ R1, R2, m1, m2 # real solutions shape

skew axes

6= 0 6= 0 up to 8 –

6= 0 6= 0 2d = Ri sin 2ϕ, mi = 0 ∞1 quartic ruled surface

6= 0 π/2 2d = Ri sin 2ϕ, mi = 0 2∞1 two two-fold pencils

coplanar axes (not parallel)

0 6= 0 R2
1
+m2

1
6= R2

2
+m2

2
4, 6 – 4

0 6= 0 R2
1
+m2

1
= R2

2
+m2

2
∞1 pencil + line 5

0 6= 0 m1 = m2 = 0 5 – 6

parallel axes

6= 0 0, π m 6= 0, |R1 ±R2| 6= 2d 4,6 –

6= 0 0, π m 6= 0, |R1 ±R2| = 2d 5 – 7

6= 0 0, π m = 0, |R1 ±R2| 6= 2d 1, 3 – 8

6= 0 0, π m = 0, |R1 ±R2| = 2d ∞1 pencil 9

identical axes

0 0 m 6= 0, R1 6= R2 2∞1 two cones of revolution

0 0 m 6= 0, R1 = R2 2∞1 cone + cylinder of revolution

0 0 m = 0, R1 6= R2 4∞1 four-fold pencil

0 0 m = R1 = R2 = 0 ∞2 –

The remaining four common normals appear as common generators of two cylinders K1

and K2 of revolution. Like in the previous case the cylinders share a pair of conjugate
complex lines, and a further pair of lines all of them being common normals of T1 and
T2. The latter pair is a pair of real lines, a single double line, or a pair of conjugate
complex lines, if and only if

D := (R2

1
−R2

2
)2 − 8d2(R2

1
+R2

2
− 2d2)

is greater, equal, or less than zero. In the present case we can find four or six real
common normals of T1 and T2, respectively, if D 6= 0. In analogy to the previous case
we can also find four common normals Ti, where one of them has multiplicity 3. This
occurs exactly if D = 0, i.e., the cylinders touch along this common generator.

2. The carrier planes of the spine curves coincide: The four common normals from (21)
become one common normal with multiplicity four. In case of D > 0 we have three real

4In case of four common normals there can be one line with multiplicity three, if the above-mentioned
cones touch along a generator.

5The pencil contains a line with multiplicity three. The further line is not contained in the pencil.
6One line is of multiplicity three.
7See Footnote 6.
8There is one common normal of multiplicity four.
9See Footnotes 5, 8.
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common normals one of them having multiplicity four. The case D < 0 leads to one
real common normal. In case of D = 0 the spine curves are in first order contact similar
to the case above and there is a pencil of common normals of Ti containing one normal
of multiplicity four.
The cases where pencils of common normals appear can be charactrized by

|R1 − R2| = 2d or |R1 +R2| = 2d.

5.3. Coinciding axes

Now we have A1 = A2 and denote the distance of the centers of Ti by m. There are four
different cases:

1. m 6= 0 and R1 6= R2: The four common normals of T1 and T2 in any of the common
meridian planes of the tori. So there exist two cones of revolution whose generators
are common normals of either Ti, i.e., there are two one-parameter families of common
normals.

2. m 6= 0 and R1 = R2: This case is a special case of the previous one. One of the cones
of revolution becomes a cylinder of revolution.

3. m = 0 and R1 6= R2: Consider one of the common meridian planes. The four common
normals of Ti in this plane coincide and become thus one common normal with multi-
plicity four. Since this is the fact for all the common meridian planes, the two tori have
a pencil of common normals. This pencil is of multiplicity four. Each of these lines is a
diameter of the concentric spine curves.

4. m = 0 and R1 = R2: The two tori share the congruence of surface normals. In case of
r1 = r2, i.e., T1 = T2 this is also true.

The results are summarized in Table 1.

6. Conclusion and future research

Line geometry and the methods used in the present paper can obviously be used to compute
the common normals of arbitrary algebraic surfaces. The discussion of coinciding ruled sur-
faces traced out by the normals of two tori was successful since it was of relatively low degree.
Dealing with surfaces of higher order the algebraic congruences of their normals become much
more complicated.

Unfortunately, (algebraic) surfaces in general do not have two spine curves like the torus.
The only algebraic surfaces with two spine curves are Dupin cyclides, including the torus and
cylinder and cone of revolution. These types of surfaces do not differ from the viewpoint
of Laguerre-Geometrie, see [7, 8]. They are used in CAGD in order to model pipes and
connections of pipes with different radii, see [7, 8, 9, 10].

Dupin cyclides are pipe surfaces with two focal conics (ellipse + hyperbola or parabola
+ parabola) for their spine curves. The normals of a dupin cyclide D1 meet the ellipse and
hyperbola (or the two parabolas). Common normals of two Dupin cyclides D1 and D2 meet
the two focal conics of both D1 and D2. Thus in general one can expect to find up to 16
common normals of D1 and D2, respectively.

The discussion of configurations of D1 and D2 with infinitely many common normals
would start at a list of trivial cases. The non-trivial cases appear if the set of rulings of two
algebraic ruled surfaces Φ1 and Φ2 of degree eight coincide. Φ1 is the ruled surface determined
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by the directrices of D1 and one of the directrices of D2. The surface D2 is determined by the
remaining director curves.
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