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Abstract

We present a low dimensional point model for the set of flags in

R
3 which is contained in a six-dimensional algebraic variety M68 of

degree eight embedded in a nine-dimensional projective space. It

turns out that M68 can be parameterized rationally. We study the

geometry of the manifold and show the relations between the ge-

ometry of flags and kinematics in Euclidean R3 and Non-Euclidean

geometries.

1 Introduction

The study of higher dimensional algebraic (and other)

manifolds has a long history. Grassmann, Segre, and

Veronese varieties as well as Schubert manifolds have

been a field of intensive research [3, 4, 5, 10]. The ma-

jor benefits of geometries of this type are the following:

(1) They allow to treat objects consisting of a collec-

tion of elements of projective spaces as points in some

(of course higher dimensional) projective space. (2) The

transformations of these objects can be represented by

collineations (i.e. linear transformations) in the model

space. The obvious disadvantage (in view of applica-

tions) of these models is their relatively high dimensional

model space. Computations can become long winded and

costly.

Nowadays point models for some special manifolds appear

frequently in application areas: The Klein model of line

space as well as other models of line space can be used

for approximation and interpolation problems in line space

[13, 14]. Even a new model for the set of line elements

in Euclidean three-space was developed in [12] for the

recognition and reconstruction of spiral surfaces, see [6].

In the following we study the manifold of flags in Eu-

clidean three-space R3. The investigations are not done

for their own sake. We show a tricky way to parame-

terize this manifold by means of rational functions. This

parameterization method also applies to other parame-

terization problems. Further we discuss the geometry of

this six-dimensional manifold in order to get insight and

understand it. Applications of this are not well studied

until now. Though motion planning by means of subdivi-

sion motions on this manifold could be of future interest.

2 Equation of the Manifold M68

2.1 Lines in space

Since we are dealing with Euclidean three-space we use

Cartesian coordinates p = (p1, p2, p3) in order to rep-

resent points P . A line L in Euclidean three space will

be described by normalized Plücker coordinates. Assume

that L is parallel to the unit vector l 6= 0 (i.e. its Eu-

clidean length ‖l‖ equals 1) and passes through the point

P with coordinate vector p. Then we define the normal-

ized Plücker of L coordinates as

L = (l , l) = (l1, l2, l3; l4, l5, l6), (1)

where l = p × l is the momentum vector of L. Here

and in the following the cross product of vectors in R3 is

denoted by ×. The coordinates of L do not depend on

the choice of P on L.

With 〈., .〉 we denote the standard scalar product of vec-

tors in R3. It is obvious that

M42 : 〈l , l〉 = l1l4 + l2l5 + l3l6 = 0 (2)

holds.

If we drop the normalization of l the coordinates li can

be considered as homogeneous coordinates of points in

a projective five-space P5. M42 is the Klein quadric or

Plücker quadric (i.e. the Grassmannian G31). It is a point

model for the set of lines in three-space, see [3, 7, 13].

M42 is a regular quadric carrying two three-parameter

families of planes corresponding to bundles and fields of

lines.

2.2 Line elements in space

The pair (P, L) consisting of a line L and a point P on

it will be called line element. In order to describe line

elements we assign coordinates to them in the following

way (cf. [6, 12]): The line L is described by its normalized

Plücker coordinates (l , l). In order to fix the point P on

L we add a seventh coordinate λ := 〈p, l〉 to the Plücker

coordinates of L and let

(P, L) = (l , l , λ) = (l1, l2, l3; l4, l5, l6; l7) (3)

be the coordinates of the line element (P, L).
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The point P can be recovered from the line element co-

ordinates by p = l× l+λl . Note that this is true because

‖l‖ = 1, which is yet assumed. The line element coordi-

nates of (P, L) thus satisfy (2).

Again we can drop the normalization condition of l . Then

we can consider the seven coordinates of line elements

as homogeneous coordinates of points in a projective six-

space P6. Since l7 does not appear in Eq. (2), we see that

Eq. (2) (interpreted in P6) is the Equation of a quadratic

coneM52 whose points correspond to line elements in Eu-

clidean three-space. M52 has a point for its vertex and two

three-parameter families of three-dimensional generators.

The points contained in the generator l1 = l2 = l3 = 0

do not correspond to line elements in Euclidean R3.

2.3 Flags in space

We follow [10] and define:

Definition 2.1 A flag F in Euclidean three-space R3 is

a triplet (P, L, E) where P is a point, L is a line, and E

is a plane and P ∈ L ⊂ E.

Obviously a flag F = (P, L, E) consists of a line element

(P, L) and a plane carrying it. Assume that the unit

vector l̂ is perpendicular to the plane E. In order to

assign coordinates to the flag F we add the vector l̂ to

the coordinates of the line element (P, L). So we define

(P, L, E) = (l , l , l̂ , λ) = (l1, l2, l3; l4, l5, l6; l7, l8, l9; l10) (4)

as coordinates of the flag F = (P, L, E).

The coordinates of F satisfy the following conditions:

〈l , l〉 = 0 = l1l4 + l2l5 + l3l6, (5)

〈l , l̂〉 = 0 = l1l7 + l2l8 + l3l9, (6)

〈l , l〉 − 〈l̂ , l̂〉 = 0 = l21 + l
2
2 + l

2
3 − l

2
7 − l

2
8 − l

2
9 . (7)

Any vector (l1, . . . , l10) satisfying Eqs. (5), (6), and (7)

defines (up to orientations) a unique flag F in R3. The

point P , the line L, and the plane E can be recovered

from the coordinates of F by p = l × l + λl , L = (l , l),

and E : 〈l̂ , x〉 = det(l , l , l̂).

3 Some Facts on M68

Now we can drop the norming conditions on l and l̂ , re-

spectively. We only assume that they are of equal length,

i.e. ‖l‖ = ‖l̂‖. We observe that the coordinates of F are

homogeneous in the following sense: If we scale l and

l̂ by a real non-vanishing factor, say c, we find the mo-

mentum vector changes to cl and λ changes to cλ. This

makes it possible to interpret the coordinates li of F as

homogeneous coordinates of points in a projective space

P
9 of dimension nine. Eqs. (5), (6), and (7) define an

algebraic variety M68 in P
9. We have:

Theorem 3.1 The algebraic degree and the dimension

of M68 equal eight and six, respectively.

Proof: The dimension d of M68 equals six, which is clear

since we need six parameters in order to fix a flag in R3.

The algebraic degree follows from the Hilbert-Polynomial

(for definition and properties see [15])

H(t) =
1

90
t6 + o(t6)

since degM68 = d!c6 = 8, where c6 is the coefficient of

the leading monomial. �

Suprisingly we find the following result:

Theorem 3.2 The manifoldM68 allows a rational param-

eterization.

Proof: We construct a rational parameterization Φ of

M68 . We let P be represented by p = (u3, u4, u5) ∈ R
3.

Further we assume that l = (2u1, 2u2, 1 − u
2
1 − u

2
2)/M,

where M = 1+ u21 + u
2
2 . The momentum vector is given

by p × l according to its definition.

Since l is a rational isothermal parameterization of the

Euclidean unit sphere S2 we find that the partial deriva-

tives are of equal length and orthogonal to each other,

i.e. we have ‖l,1‖ = ‖l,2‖ = 2M
−1 and 〈l,1, l,2〉 = 0 and

{l,1, l,2, l} is an orthogonal frame.

Eqs. (5), (6), and (7) tell us that l̂ is orthogonal to l

and thus we can write l̂ = l,1/‖l,1‖c3 + l,2/‖l,2‖s3. We

substitute c3 = (1 − u
2
3)/N and s3 = 2u3/N with N =

1 + u23 which guarantees that ‖l‖ = ‖l̂‖ and find

MNΦ(u1, u2, u3, u4, u5, u6) = [2u1N, 2u2N,NS;

N(u5S − 2u2u6), N(2u1u6 − u4S),

2N(u2u4 − u1u5);

(1− u23)(M − 2u
2
1)− 4u1u2u3,

2u3(M − 2u
2
2)− 2(1− u

2
3)u1u2,

− 2u1(1− u
2
3)− 4u2u3;

N(2u1u4 + 2u2u5 + u6S)],

(8)

where S = 1− u21 − u
2
2 . �

We note that (u1, . . . , u6) is an affine parameter and (8)

does not reach the entire surface M68 .
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4 Geometric Properties of M68

In Eqs. (5), (6), and (7) the coordinate l10 does not show

up. Thus we have:

Theorem 4.1 The manifoldM68 is a cone with the thenth

base point of the standard projective frame for its vertex.

From Eqs. (5), (6), and (7) we conclude that M68 is the

intersection of three quadratic cones ∆i . At least from

the viewpoint of projective geometry (over the real num-

ber field) these three cones do not differ: One can find

collineations of P9 (i.e. linear mappings in R10) trans-

forming one cone ∆i into another cone ∆j .

The cone ∆1 has the Klein quadric M
4
2 contained in the

subspace B1 : x7 = x8 = x9 = x10 = 0 for a direc-

tor quadric. Its vertex is the three-dimensional subspace

V1 : x1 = x2 = x3 = x4 = x5 = x6 = 0. Since M
4
2

carries two three-parameter families of planes ∆1 has

two three-parameter families of six-dimensional projec-

tive subspaces for its generators. The cones ∆2 and ∆3
have similar properties. The vertex space of ∆1 is entirely

contained in ∆2 and vice versa.

We use the following definition:

Definition 4.1 The set of flags sharing two components

is called pencil of flags.

We can distiguish between three types of pencils of flags:

(1) flags with fixed line and plane component, (2) flags

with fixed point and plane component, and (3) flags with

fixed point and line component (see Fig. 1).

Figure 1: Flags sharing two components.

The three types of pencils of flags correspond to certain

subspaces in M68 :

Theorem 4.2 Pencils of flags correspond to lines in M68 .

Proof: Parameterizing these pencils and computing their

flag coordinates leads to linear parameterizations of the

one-dimensional subspaces in M68 corresponding to the

pencils. �

There are other simple manifolds of flags:

Definition 4.2 The set of flags sharing one component

is called bundle of flags.

Figure 2: Flags sharing only one component.

We find three different types of bundles of flags (see

Fig. 2): (1) flags with a common point, (2) flags with a

common plane, and (3) flags with a common line. Unfor-

tunately only one type of these corresponds to projective

subspaces in M68 . We have:

Theorem 4.3 The bundels of flags with a common line

component correspond to planes in M68 .

Proof: The proof is as simple as in the case of pencils. �

5 Euclidean Kinematics and

Non-Euclidean Geometries

In this section we finish the discussion of bundels of flags

and corresponding subspaces. For that we look closer

to the definition of flag coordinates. We recall that the

vectors l and l̂ were unit vectors in the beginning. Con-

sequently the line L (and thus the line element) and the

plane E are oriented. Therefore a flag can be oriented in

four different ways depending on the respective choices

of the orientations of l and l̂.

As is clear from the definition the triplet {l , l̂ , l × l̂} is

a Cartesian frame attached to the flag F = (l , l , l̂ , λ).

Assume an orientation is fixed and a certain proto flag

F0 (system of reference, referred to as the fixed system)

is chosen. Then there exits a unique Euclidean motion

transforming F0 into F . Thus we have:

Theorem 5.1 There is a bijective correspondence be-

tween the set of oriented flags in Euclidean three-space

and the set of Euclidean motions.

Using the calculus of dual quaternions (see [7, 8]) one

finds that Euclidean motions can be mapped to points on

a certain quadric S62 ⊂ P
7, the so called Study quadric,

see [2, 7, 16]. By identifying Euclidean motions and ori-

ented flags we find:

Theorem 5.2 There is a one-to-one correspondence be-

tween the set of oriented flags in Euclidean three-space

and the points of the Study quadric S62 .
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The Study quadric is a hyper surface in P7 and it is not

possible to find a lower dimensional point model for the

set of (oriented) flags in Euclidean three-space.

Note that the geometric object F = (P, L, E) carries

four different orientations. These correspond to four Eu-

clidean motions transforming the proto flag into F . Thus

the manifold of Euclidean motions is covered four times

by the set of flags (without orientations) in Euclidean

three space.

The bundles of flags with fixed plane or point component

are closely related to Non-Euclidean geometries:

Theorem 5.3

(1) The set of oriented flags through a fixed point form

an elliptic three-space.

(2) The set of flags with a fixed plane component form

a quasi elliptic three-space.

Proof: (1) Fix one oriented flag in the bundle, it

then serves as proto flag F0. The Euclidean motions

transforming F0 into any other flag F in the bundle are

rotations about the common point. It is well known that

the rotations about one fixed point form an elliptic three

space, see [1, 4, 9].

(2) Fix an oriented line element (P0, L0) in the plane

E as proto element. Now there exists a unique planar

Euclidean motion transforming the proto element in a

certain oriented line element (P, L). So any oriented

line element in E can be identyfied with a certain

planar Euclidean motion, which can be mapped to

exactly one point of a quasi-elliptic three-space (via the

Blaschke-Grünwald mapping), see [4, 7, 13]. �

Note that the elliptic three-space as well as the quasi-

elliptic three-space appearing in the above theorem are

covered more than once.

6 Final Remarks

The manifold of oriented flags in Euclidean R3 which can

also be seen as the Euclidean motion group can be used

for motion planning. Several algorithms for that are de-

veloped. Most of them use orthogonal projection onto

the group of motions. Subdivision schemes are not re-

stricted to polygons/polyhedra in Euclidean spaces they

can also be applied in any Riemannian manifold such

as the Euclidean motion group, see [17]. A manifold

with explicitly known rational parameterization of rela-

tively low degree may support subdivion algorithms.

The construction of the rational parameterization of M68
given in (8) does not use an algorithm and is mainly dis-

covered by close inspection. A similar approach works for

another algebraic manifold M55 which serves as a point

model for the set of line elements in projective space P3

[11].

It would be of interest to find techniques or algorithms

for the construction of low degree parameterizations of

such manifolds. Maybe the study of geometric properties

and a deeper insight in projective generations of such

manifolds can help to find appropriate algorithms.
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