
A special family of triangles
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Abstract

We study the one-parameter family of triangles that emerges if one side line traces a
pencil of lines and the opposite angle is fixed. A description of the traces of triangle
centers and the pair of Brocard points in terms of parametrizations and equations is given.
The envelopes of the families of circumcircles and nine-point circles are determined. Our
approach even allows us to consider and treat the triangle family as a two-parameter family
of triangles, i.e., the (interior) angle opposite to the pencil, which is in the beginning fixed,
may also change.
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1 Introduction

1.1 Related and prior work

Triangle geometry is rich with elegant results and deep relationships between points, lines,
angles, circles and related curves. The study of triangles and their families even nowadays
attracts many geometers. Some results in this area, especially for the Euclidean plane can
be found in [1, 2, 8, 9, 10, 12] while [3, 4, 5] deal with the situation in the isotropic plane.

1.2 Contributions and aims of the present paper

We intend to approach some results of this particular family of triangles in an analytical
way. This is because of two reasons: 1. A synthetic approach is already given in [12].
There is no reason to repeat this and nothing can be added. 2. The synthetic approach
is limited, though very elegant, and gives some geometric insight into the problem. We
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shall omit the discussion of traces and loci of midpoints of changing segments, envelopes of
bisectors of angles and segments and all other objects that are not “central” in the sense of
[6, 7]. There is only one exception: In Sec. 3.2, we shall have a look at the bicentric pair of
Brocard points. They are closely related to some important triangle centers. Further, we
determine and discuss the envelopes of special central circles. The envelope of the Euler
line appears to be rather unspectacular and is, therefore, not discussed. The envelopes
of circles can be determined much easier in a suitable analytic approach than with the
synthetic approach.

In Sec. 2, we shall build the analytical environment, i.e., we introduce coordinates
in a way that we are able to get through the computations in the present paper. This
allows us to parametrize the triangle family under consideration, and further, enables us
to give the first results. In particular, we can show that all centers (and points) on the
Euler line forming a fixed affine ratio with the centroid and the circumcenter move on
hyperbolae. In Sec. 3, the envelopes of the families of circumcircles and and nine-point
circles are determined. Then, we move over to the Brocard points and some triangle
centers related to them. Finally, in Sec. 4, we shall give the equations of the traces some
more triangle centers. As can be expected, some triangle centers run on quartic curves,
some on curves of much higher degree. This seems to depend on the algebraic complexity
of the construction of the respective centers. Sec. 5 poses open questions and gives hints
towards future work.

2 Analytical framework

We assume that the vertex A of the triangle ∆ = ABC coincides with the origin of a
Cartesian coordinate system. The line [A,B] shall be the x-axis of the frame and the
line [C,A] (which encloses the angle 0 < α < π with the x-axis) is given by the equation
x sinα− y cosα = 0 as indicated in Fig. 2 (left).

The pencil of lines carrying the third side of ∆ shall be centered at P = (ξ, η) with
η 6= 0 (i.e., P 6∈ [A,B]) and ξ sinα− η cosα 6= 0 (i.e., P 6∈ [C,A]).

Now, we assume that φ ∈ R is a coordinate in the pencil of lines about P and
(cosφ, sinφ) ∈ S1 is a unit normal vector of the side line [B,C] ∋ P . Hence, an equation of
[B,C] is given by x cosφ+ y sinφ = d, where d := ξ cosφ+ η sinφ is the support function
of [B,C].

The remaining vertices of the triangle ∆ are then found as the intersection of [B,C]
with [A,B] and [C,A]. So, the three vertices of ∆ are parametrized by

A = (0, 0), B =
d

cosφ
(1, 0) , C =

d

cos(α− φ)
(cosα, sinα) . (1)

This describes a one-parameter family T of triangles. Allowing further α to trace S1, we
have parametrized a two-parameter family of triangles.

In principle, the parameter φ is allowed to trace S1 freely. However, φ = π
2 ,

3π
2 result

in an open triangle AB1C1 (cf. Fig. 2, right), the vertex B1 is at infinity and [B,C]
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Figure 1: Coordinate frame and geometric meaning of parameters (left), degenerate
triangles in the pencil (right).

is either anti-parallel to [A,B] (if φ = π
2 ) or parallel to [A,B] (if φ = 3

2π). If φ =
arctan η

ξ
, arctan η

ξ
+ π, the line carrying [B0, C0] passes through A and the corresponding

two triangles ∆0 = AB0C0 are point-shaped (see also Fig. 2). Finally, if φ = α+ π
2 , α+

3π
2 ,

we get the second pair of open triangles AB2C2 (cf. Fig. 2).
All loci of points (and especially centers) related to the triangles in the family T are

traced twice, since ∆(φ) = AB(φ)C(φ) = ∆(φ + π) = AB(φ + π)C(φ + π) agree as
congruent triangles with differently oriented side line [B,C].

Now, the analytical representation (1) allows us to formulate:

Theorem 2.1. The centroid X2, the circumcenter X3, and the orthocenter X4 of ∆ run

on hyperbolae, while [B,C] traverses the pencil about P .

Proof. A parametrization of the centroid X2 in terms of the underlying Cartesian coor-
dinates is obtained as the arithmetic mean of the coordinate vectors (1) of ∆’s vertices.
This yields

X2(φ) =
d

3 cos φ cos(α− φ)
(2 cosα cosφ+ sinα sinφ, sinα cosφ) (2)

which, after implicitization, i.e., after the elimination of the parameter φ results in

H2 : 3xy sinα− 3y2 cosα+ (2η cosα− ξ sinα)y − xη sinα = 0.

It is rather elementary to check that H2 is a hyperbola (for admissible α, ξ, and η), see
[13, 11]. The asymptotes of H2 are parallel to [A,B] and [C,A].

It is elementary to determine the circumcenter X3 of all triangles in the family. Along
the same elementary and constructive way, we obtain

X3(φ) =
d

2 cosφ

(

1,
sin(α− φ)

cos(α− φ)

)

, (3)
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Figure 2: The hyperbolae H2, H3, H4 as the orbits of the centroid X2, the circum-
center X3, and the orthocenter X4 of the triangles in the pencil of triangles.

and further, by eliminating φ, an implicit equation

H3 : 2x2 cosα+ 2xy sinα− (ξ cosα+ η sinα)x− (ξ sinα− η cosα)y = 0.

of a hyperbola (for admissible α, ξ, and η). The conical locus of all circumcenters passes
through the ideal points of the lines orthogonal to [A,B] and [C,A], and thus, the asymp-
totes are orthogonal to lines [A,B] and [C,A]. The hyperbola H3 is centered at

1

2 sin2 α

(

sinα(ξ sinα− η cosα), η(1 + cos2 α)− ξ cosα sinα
)

. (4)

In order to complete the proof, we determine the orthocenter X4 of ∆ and find

X4(φ) =
d cosα

cosφ cos(α − φ)
(cosφ, sin φ) ,

a parametrization annihilating the equation

H4 : x
2 cosα+ xy sinα− ηy cosα− ξx cosα = 0.

H4 describes a hyperbola centered at
(

η
cosα

sinα
, ξ

cosα

sinα
− η

cos2 α

sin2 α

)

, (5)
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and passing through the ideal points of the normals to the fixed side lines of the triangles
in the family.

We shall also note that the centers (4) of the hyperbolae housing the circumcenters of
the triangles in the family trace the parabola

8x2 − 6ξx− 2yη + ξ2 + η2 = 0

if the triangles’ interior angle α traces S1. The centers (5) of the hyperbolae generated
by the orthocenters run on the parabola

2x2 − ξx+ ηy = 0.

The parabolae as loci of centers of the hyperbolic orbits fit well with a much larger concept.
So far, we have considered the orbits of three centers which are collinear, i.e., they lie on
the Euler line. In this respect, we can show the following result:

Theorem 2.2. Any but two points on the Euler line moves on hyperbolae while the moving

triangle side traverses its pencil. The exceptional points move on the interior and exterior

angle bisector through A and deliver the only degenerate conical loci of points on the Euler

line. The centers of the hyperbolae move on a parabola if the angle α at A traverses S1.

Proof. The parametrizations (2) and (3) of the orbits of X2 and X3 can be used to
parametrize the range of points on the Euler line L2,3 and we have

L2,3(w) = X2(1− w) +X3w, w ∈ R. (6)

We eliminate the parameter φ in the pencil of lines about P . For the sake of simplicity,
we replace the trigonometric functions of α by their rational equivalents:

cosα =
1− a2

1 + a2
, sinα =

2a

1 + a2
.

Then, we find the quadratic equation of the orbits of the points on L2,3(w):

6
(

(w(3a4−2a2+3)+8a2)x+(4aw(1−a2)+4a(a2−1))y
)(

3(a2−1)wx−2a(w+2)y
)

+(w(3a2−1)+4)(w(a2−3)−4a2)
(

3w(a2−1)ξ−2a(w+2)η
)

x

−
(

2a(w+2)ξ − (w(a2−1)−4(a2−1))η
)

y = 0

This is the equation of a hyperbola, since it shares the ideal points with the lines

(w(3a4 − 2a2 + 3) + 8a2)x+ (4wa(1 − a2) + 4a(a2 − 1))y = 0,
3w(a2 − 1)x− 2a(w + 2)y = 0.

The hyperbolae degenerate if

w ∈

{

4

1− 3a2
,

4a2

a2 − 3

}
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and become either the repeated line ay + x = 0 or the repeated line ax − y = 0. Since
a = tan α

2 , these repeated lines are the interior and exterior angle bisector of ∆ at A.
The centers of the hyperbolae depending on the angle α are given by

1

12a2
(

a(w(3a2η+2aξ−3η)+4aξ), w(3a(a2−1)ξ + (3a4−4a2+3)η)+4a2η
)

,

which clearly shows that for a fixed angle α (a family of triangles with a common angle
at A), the centers of the orbits of points L2,3(w) trace a straight line. However, we aim at
the description of the locus of the orbits of the centers for varying α. For that purpose,
we eliminate α (or a) and obtain the parabolae

72x2 − 6ξ(w + 8)x− 18wηy + 3w2η2 − w2ξ2 + 6wη2 + 2wξ2 + 8ξ2 = 0

that touch the ideal line in the ideal point of y-axis.

3 Some envelopes

3.1 The one-parameter family of circumcircles

We have already found an analytic representation (cf. (3)) of the circumcenters of the
triangles in the family T . An equation of the one-parameter family of circumcircles of
the triangles in T can be obtained, since the radius function equals R = X3A. The
circumcircles have the equations

U : cosφ cos(α− φ)(x2 + y2)− d cos(α− φ)x− d sin(α− φ)x = 0, (7)

where d = d(φ) is the support function of the line [B,C] which still depends on φ (a fact
that should be taken into account when it comes to the computation of the envelope).

The envelope of the circles (7) is now found by first differentiating U with respect
to φ and the subsequent elimination of φ from both U and ∂U/∂φ. The elimination is
simplified by replacing cosφ and sinφ by their rational equivalents. Besides some constant
factors, the resultant of U and ∂U/∂φ contains the factors

(x2 + y2)2, ((x− ξ)2 + (y − η)2)2,

which can be canceled, for they describe two pairs of isotropic lines (of Euclidean Geome-
try, cf. [13, p. 253]). Any isotropic line splits off with multiplicity two from the envelope.

The essential part of the resultant yields the equation

EU : sin2 α(x2 + y2)2

−2(x2+y2)
(

sinα(ξ sinα−η cosα)x+(η(1+cos2 α)−ξ sinα cosα)y
)

+((η cosα− ξ sinα)x+ (ξ cosα+ η sinα)y)2 = 0.

(8)

We can summarize the results in:
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Figure 3: The envelope EU of the one-parameter family of circumcircles always has
a cusp at A.

Theorem 3.1. The envelope of the circumcircles of all triangles in the one-parameter

triangle family T is a rational and bicircular quartic curve EU with ordinary double points

at the absolute points of Euclidean geometry and a cusp of the second kind at the point A.
The tangent to the super-linear branch at A is given by the equation

(η cosα− ξ sinα)x+ (ξ cosα+ η sinα)y = 0

and encloses the angle |α− ψ| with the line [A,P ], where ψ = ∠PAB.

Fig. 3 shows the quartic curve EU for a specific choice of α.
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The computation of the nine-point circles as the circumcircles of the medial triangles
of the totality of triangles in T is nearby. Their equations are

N : 2 cosφ cos(α − φ)(x2 + y2)
−d(2 cosφ cosα+ cos(α− φ))x− d(sin(α+ φ))y + d2 cosα = 0

and the envelope EN is computed in the same way as the envelope of the circumcircles.
This results in

EN : 4 sin2 α(x2 + y2)2

−4(x2 + y2)
(

sinα(η cosα+ ξ sinα)x+ (ξ cosα sinα+ η(1− 3 cos2 α))y
)

+(η cosα+ ξ sinα)2x2 − 2(3η cosα− ξ sinα)(ξ cosα− η sinα)xy
+(ξ2 cos2 α+ 6ξη cosα sinα+ (1− 9 cos2 α)η2)y2 = 0

where the equations of the two pairs of repeated isotropic lines about (12ξ,
1
2η) and

(cosα(ξ cosα+ η sinα), cosα(ξ sinα− η cosα)) are cut out.
Summarizing, we can state:

Theorem 3.2. The envelope of the nine-point circles of the triangles in the family T is

a rational and bicircular quartic EN with an ordinary node at A.

If P is chosen on [B,C], then η cosα − ξ sinα = 0 and the quartic EN becomes a
repeated circle centered at ξ

2 (1,− cot(2α)) and with radius 1
2ξcosec(2α).

Fig. 3.1 shows the envelope EN of the one-parameter family of nine-point circle for a
specific choice of α.

3.2 Bicentric pairs

We shall have look at a special pair of bicentric points instead of browsing through a huge
collection. The special pair shall be the pair of Brocard points.

The first Brocard point B1 is common to the three circles bA, bB , bC , where bC touches
[B,C] at B and passes through A (the other circles are obtained by cyclically replacing
the ingredients). In order to determine the second Brocard point, we look for the meet
of the circles cA, cB , and cC , where cC touches [A,B] at A and passes through B and
the other circles are constructed by cyclical shifts of points and tangents. We omit the
lengthy representations of B1 and B2 and give the locus of the 1st Brocard points of the
triangles in the pencil of triangles by the equation

B1 : sin4 α(x2 + y2)2

+sin2 α(x2+y2)
(

sinα(η cosα−ξ sinα)x+((cos2 α−2)η−cos α sinαξ)y
)

+
(

η sinα(ξ sinα− η cosα)x+ (ξ2 sin2 α− ξη sinα cosα+ η2)y
)2

= 0

The locus of the 2nd Brocard points of the triangles in the one-parameter family can
be described by

B2 : sin4 α(x2+y2)2−sin2 α(x2+y2)
(

2ξ sin2 αx−(2ξ sinα cosα−η)y
)

− sin4 α(ξ2+η2)x2−sinα(2 sin2 α cosαξ2−sinαξη+cosα(2 cos2 α−3)η2)xy

+cosα(sin2 α cosαξ2−sinαξη+cosα(1 + sin2 α)η2)y2 = 0
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Figure 4: The envelope EN of the one-parameter family of nine-point circles has an
ordinary double point at A. The locus of the nine-point centers X5 of the triangle
family is a hyperbola H5 according to Thm. 2.2.

We can summarize in:

Theorem 3.3. The 1st and 2nd Brocard points of the triangles in the family T trace

rational and bicircular quartic curves B1 and B2 with ordinary double points at A. B1 one

touches the line [A,B], B2 touches the line [C,A] at A.

Fig. 3.2 shows the two bicircular quartics occurring as the loci of the two Brocard
points of the triangles in the one-parameter family T of triangles inscribed in the angle
at A.

From [6, 7] we know, that the midpoint of the segment B1B2 is the center X39, called
the Brocard midpoint. Further, the Brocard circle b is now well-defined as the circumcircle
of ∆’s circumcenter X3 and the two Brocard points. The center of b is the triangle center
X182 usually referred to as the Midpoint of the Brocard Diameter (cf. [6]). Finally, the
Symmedian point X6 is the reflection of X3 in X182. Fig. 3.2 shows the traces of the
triangle centers Xi with i ∈ {3, 6, 39, 182}.
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Figure 5: The loci B1 and B2 of the Brocard two points of all triangles in the family
are quartic curves sharing the double point at A.

Hence, the orbits of the centers Xi with i = 3, 6, 39, 182 can now be parametrized and
the computation of their orbits is straight forward. Surprisingly, we find the following
result:

Theorem 3.4. The locus of all Symmedian points of the triangles in the one-parameter

family is an ellipse.

Proof. The circumcenter X3 is already determined (cf. (3)) and a parametrization of the
orbits of the Brocard points B1 and B2 was computed prior to their implicit equations.
Hence, the Brocard midpoint X39 which is the midpoint of B1 and B2 is well-defined.
(An equation of the quartic curve parametrized by X39(φ) can then be determined by
eliminating the parameter φ. We skip this, because it will not deliver essentially new
insight.) The circumcenter of X3 and the two Brocard points B1, B2 equals the center
X182 – the midpoint of the Brocard diameter –, which traces a quartic curve passing
through the ideal points of the normals to [A,B] and [C,A]. Now, the reflection of X3 in
X182 results in the Symmedian point:

X6(φ)=

(

d(cos(2α−φ)+3 cos φ)

cos(2α−2φ)−cos 2α+cos 2φ+3
,

d(sin(2α−φ)+sin φ)

cos(2α−2φ)−cos 2α+cos 2φ+3

)

,

10



AAAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBB

C

b X3

X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6X6

X39X39X39X39X39X39X39X39X39X39X39X39X39X39X39X39X39

X182X182X182X182X182X182X182X182X182X182X182X182X182X182X182X182X182

B1

B1

B2

B2

H3

H3

E6

C182

C182

C39

P

Figure 6: The Brocard points B1 and B2 move on their respective quartics. Mean-
while, the Brocard midpoint X39 and the center X182 of the Brocard circle trace
their own quartics. The Symmedian point X6 has an ellipse E6 for its orbit.

where we have used the abbreviation d = ξ cosφ + η sinφ once again. The points X6(φ)
lie on the conic

E6 : 2(1− cos 2α)x2 − 6 sin 2αxy + 4(2 + cos 2α)y2

+(ξ(cos 2α− 1) + η sin 2α)x + (ξ sin 2α− η(3 + cos 2α))y = 0,
(9)

which is an ellipse independent of the choice of α 6= 0, π and for any admissible choice of
P = (ξ, η).
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The center of E6 equals

1

14−2 cos(2α)

(

(ξ cos(2α)+η sin(2α)+5ξ), (ξ sin(2α)−η cos(2α)+3η)
)

.

If α is allowed to run through S1, the latter is a parametrization of an ellipse e6 with the
equation

e6 : 8x2 − 6ξx+ ξ2 + 24y2 − 10ηy + η2 = 0

centered at
(

3
8ξ,

5
24η

)

with principal axes lengths 1
24

√

3η2 + 9ξ2, 1
24

√

η2 + 3ξ2. The el-

lipses E6 pass through A = (0, 0) independent of the choice of α and envelop an elliptic
quartic H6 if α traces the unit circle. Fig. 3.2 shows some ellipses as orbits of the Sym-
median point for triangle pencils with triangle sides [B,C] passing through P and various
choices of α = ∠[C,A], [A,B].

A

P

α

[C,A]

[A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B][A,B]

H6

H6

E6E6E6E6E6E6E6E6E6E6E6E6E6E6E6
E6E6

e6e6e6e6e6e6e6e6e6e6e6e6e6e6
e6e6e6

Figure 7: Some ellipses E6 and the envelope H6 of the ellipses E6. The quartic H6 is
the boundary of the area of all possible Symmedian points X6 of the two-parameter
family of triangles (variable α and [B,C] sweeps the pencil about P ).

We can collect the latter results in:

Theorem 3.5. The ellipses E6 as loci of the Symmedian point X6 of all triangles with

fixed α at A and side lines [B,C] tracing the pencil about P envelop an elliptic quartic

H6 with an ordinary double point at A and at the ideal point of [A,B].

Proof. We only have to determine an equation of the envelope of all E6 given in (9). This
can be done in the same as in the case of the envelope of the circumcircles and we find

12y2(x2+4y2)−4y(ηx2+3ξηxy+10ηy2)+η2x2+6ξηxy+(8η2−ξ2)y2=0.

The ordinary double at A is obvious (no terms of degree lower than 2) and the double
point the ideal point of [A,B] has the two tangents η + 6y = 0 and η − 2y = 0.

Fig. 3.2 illustrates the contents of Thm. 3.5.
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4 Traces of some more centers

There are some more triangle centers that can be reached with our analytical approach.
The course of the incenter is rather unspectacular, since the pair of angle bisectors at A
is fixed once α is chosen. The incenter X1 allows for the analytical representation

X1 = d

(

1 + cosα

cos(α− φ) + cosφ+ sinα
,

sinα

cos(α− φ) + cosφ+ sinα

)

. (10)

Similarly, we can give the coordinates of the excenters. Note that the incenter and the
excenter that lies on the exterior angle bisector through A interchange their roles as [B,C]
is rotating around P and forms the triangle “left” to A. This phenomenon frequently
occurs when triangles smoothly change their shapes and orientations (or turn from acute
to obtuse), see for example [1, 14].

The representation of the incenter given in (10) leads to the vertices Ai ∈ [B,C]
(cyclic) of the intouch triangle ∆i

Ai =
d

cos(α−φ)+cos φ+sinα
(cosφ sinα+ cosα+ 1, d sinα(1 + sinα)) ,

Bi =
d(1+cosα)

cos(α−φ)+cos φ+sinα
(cosα, sinα) , Ci =

d(1+cosα)
cos(α−φ)+cos φ+sinα

(1, 0) .
(11)

Further, we shall give the coordinates of the excenter A1 opposite to A

A1=

(

d(cos(α+φ)+cos φ−sinα)−η sinα

2 cosφ(cos φ−sinα)
,

− sinα(d(1+sin φ)+η)

cosφ cos(α+φ)−sinφ−cosα−1

)

and skip the other two because of the complexity of their coordinate representation, and
moreover, because X1 and A1 together with the vertices (1) of ∆ are sufficient in order
to find the remaining excenters (if at all necessary).

4.1 Gergonne and Nagel point

The perspector of ∆ and its intouch triangle ∆i referred to as the Gergonne point X7

(cf. [6, 7]). With (11), we can find a parametrization of the curve of Gergonne points
corresponding to the triangles in T . Then, we implicitize and find

C7 : y
(

2ax+ (a2 − 1)y
)(

4x2 + 6axy + (1 + 3a2)y2
)

−4y
(

2ax+ (a2 − 1)y
)(

(aη + 2ξ)x+ (aξ + (1 + a2)η)y
)

−4
(

a2η2x2 − 2a(ξ2 + aξη + η2)xy + (ξ2 + (1 − a2)η2)y2
)

= 0.

The isotomic conjugate of X7 is the Nagel point X8 (cf. [6, 7]). In other words, the
Nagel point is also the perspector of ∆ and its extouch triangle ∆e. This leads to a
parametrization, and consequently, to the implicit equation

C8 : y(2ax− y)
(

2ax+ (a2 − 1)y
)(

2a3x− (3a2 + 1)y
)

−4a2y
(

2ax+ (a2 − 1)y
)(

a(2aξ − η)x+ ((1 + a2)η − aξ)y
)

−4a4
(

a2η2x2 − 2a(ξ2 + aξη + η2)xy + (ξ2 + (1− a2)η2)y2
)

= 0.
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Both curves C7 and C8 have an ordinary node at A, since A can be viewed as a “singular”
triangle in T . Fig. 4.4 shows the curves C7 and C8.

The quadratic factors in the inhomogeneous equations of C7 and C8 agree up to the
constant factor a4. Thus, the two quartics also share the tangents at the common double
point A.

4.2 Mittenpunkt

The MittenpunktX9 is the perspector of the medial triangle ∆m and the excentral triangle
∆e (see [6, 7]). With (1) and the excenters deduced from (10), we find a parametrization
of the trace of the Mittenpunkt, and further, the equation

C9 : y(1 + a2)
(

2ax+ (1 + a2)y
)(

4x2 + 6axy + (1 + 3a2)y2
)

−4a3ηx3−4a
(

2(1 + a2)ξ+3a3η
)

x2y−2
(

(1+a2)(5a2−2)ξ+a(6a4+a2+1)η
)

xy2

−2
(

a(2a2−1)(a2+1)ξ− (2a6+2a2+1)η
)

y3

a2η
(

2aξ + (a2 − 1)η
)

x2 + 2a
(

(1 + a2)ξ2 + 2a3ξη + (1 + a4)η2
)

xy

+
(

(a4 − 1)ξ2 + 2a5ξη + (a6 − 1)η2
)

y2 = 0.

For a specific assumption on α, an example of the quartic curve housing all poses of the
Mittenpunkt of the triangles in the family T is shown in Fig. 4.4.

For the very special choice of a = − ξ
η
, i.e., P is chosen on the exterior angle bisector

at A, the double point of C9 at A becomes a tacnode with the tangent ηy + ξx = 0
(orthogonal to [A,P ] passing through A).

4.3 de Longchamps point, Bevan point, Spieker point

As a point on the Euler line, the de Longchamps point X20 travels on a hyperbola (ac-
cording to Thm. 2.1) with the equation

H20 : 2
(

cos(3α) + 7 cosα
)

x2 +
(

3 sin(3α) + 7 sinα
)

xy

−
(

cos(3α)− cosα
)

y2 +
(

η(sin(3α) − 3 sinα) + 2ξ(cos(3α) − 2 cosα)
)

y

+ξ
(

sin(3α) − 3 sinα
)

x = 0

which is centered at

M20=

(

1

sinα
(ξ sinα−2η cosα),

1

cos(2α)−1
(2ξ sin(2α)−3η(cos(2α)−5)

)

.

The equation of the hyperbola H20 can also be found by substituting w = 4 into (6) and
the corresponding implicit equation. The orbit of the centers of all H20 for varying angle
α is the parabola with vertex (ξ/2, (4η2 − ξ2)/(4η)), axis parallel to the y-axis, and the
semi-latus rectum η/2.
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We find the Spieker point X10 as the midpoint of the orthocenter X4 and the Bevan
point X40, cf. [7]. Alternatively, but more intricate from the computational point of view,
we could determine X10 as the incenter of the medial triangle ∆m. According to [7], the
Bevan point is the midpoint of the Nagel point X8 and the de Longchamps point X20.
Hence, X10 = 1

2(X4 + X40) and X40 = 1
2 (X8 + X20). Since X20 = X4(∆a) (orthocenter

of the anti-complementary triangle), X20 is the reflection of X4 in X3, and consequently,
X20 = 2X3 − X4. Thus, X10 = 1

2(X4 +
1
2(X8 + X20)) = 1

2(X4 +
1
2(X8 + 2X3 − X4)) =

1
4(2X3−X4+X8), which leads to a parametrization of the one-parameter family of Spieker
points defined by the triangles in the triangle family T .

The implicitization of the parametrization of the Spieker point X10(φ) shows that it
traces the sextic curve C10 with the equation

C10 : 210(1 + a2)
(

2ax+ (a2 − 1)y
)2(

4x2 + 6axy + (1 + 3a2)y2
)

−28(1 + a2)y
(

2ax+ (a2 − 1)y
)(

4aη(6a2 + 5)x3

+
(

4a(13a2 + 15)ξ + 2(37a4 + 23a2 − 10)η
)

x2y
+
(

(64a4 + 56a2 − 20)ξ + a(75a4 + 52a2 − 15)η
)

xy2

+
(

a(25a4 + 24a2 − 5)ξ + (a2 − 1)(25a4 + 38a2 + 15)η
)

y3
)

+ . . . = 0

up to constant coefficients.
If P is chosen on the exterior angle bisector at A, the ordinary node at A becomes a

tacnode. The choice of P ∈ [C,A] causes C10 split into a quartic curve and the repeated
line [C,A].

The sextic equation of the orbit C40 of the Bevan point X40 starts with

C40 :
(

(a2−1)x−ay
)(

2(a2−1)x−3ay
)(

(1+a4)x+a(1−a2)y
)

·
(

2(a4 + a2 + 1)x+ a(1− a2)y
)(

4x2 + 6axy + (1 + 3a2)y2
)

+ . . . = 0,

where constant factors are cut out. The double point at A behaves in a way similar to
that on C7, C8, and C9 depending on the choice of P .

4.4 Feuerbach point and its (X1, X5)-harmonic conjugate X12

The Feuerbach point X11 is the point of contact of the nine-point circle and the incircle
i of ∆. Since we have already found X1, we also can give an equation of the incircle.
Furthermore, the nine-point center X5 is the midpoint of X3X4, the equation of the
nine-point circle n (as the circumcircle of the medial triangle) is then also nearby. The
computation of the one and only common point of i and n yields a parametrization of the
family of all nine-point centers and the subsequent elimination of the parameter φ yields
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X5X5X5X5X5X5X5X5X5X5X5X5X5X5X5X5X5

Figure 8: The trace of the Feuerbach point X11 is a quartic curve. The same holds
true for X12, the harmonic conjugate of X11 with respect to (X1, X5).

an equation of the nine-point orbit as

C11 : (x2 + y2)
(

8a3x+ (3a4 − 6a2 − 1)y
)(

(1 + 3a2)y − 2ax
)

+8a3(2aξ + (1− a2)η)x3 − 4a((5a4 + 2a2 + 1)ξ + 2a(a2 − 1)(a2 − 2)η)x2y
−2((a2 − 1)(3a4 + 1)ξ + 4a(4a4 + a2 − 1)η)xy2

+(4a(1 − a2)(3a2 + 1)ξ − 2(9a6 − 17a4 − a2 + 1)η)y3

−(4a4ξ2 − 4a3(a2 − 1)ξη + a2(a2 − 1)2η2)x2

+(2a(2a4 + 1)ξ2 + 2a2(2a4 − 2a2 + 3)ξη + 2a(7a4 − 4a2 + 1)η2)xy
+((3a2 + 1)(a2 − 1)ξ2 + 12a3(a2 − 1)ξη + (9a6 − 19a4 + 7a2 − 1)η2)y2 = 0,

which is a circular quartic curve. The curve C11 has three ordinary double points: at A,
and further, at

1

η sin α
2 +ξ cos

α
2

(

cos
α

2
, sin

α

2

)

and

(

ξ cosα−η sinα−2ξ

2 cosα−3
,
3η cosα−ξ sinα−2η

2 cosα−3

)

.

The harmonic conjugate of X11 with respect to X1 and X12 is known as the center X12.
We shall not write down its implicit equation due to its length. However, the curve C12
is a rational quartic with an ordinary double point at A and two further ordinary double
points.

5 Conclusion and future work

The synthetic in approach [12] is by far the most elegant approach. Nevertheless, in some
cases it is limited and the algebraic approach can succeed then. This requires a proper
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C40 C40

H20

H20

C8

C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8
C8C8C8C8

C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8
C8C8C8C8 C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8C8

C8C8C8C8C7

C7

C9

C9

Figure 9: The orbits of X7, X8, and X9 (Gergonne and Nagel point, Mittenpunkt)
are quartic curves. The curve C10 is a sextic housing all poses of the Spieker point
X10, while X40 moves on a quartic C40 and the trace of the de Longchamps point
X20 is a hyperbola H20 according to Thm. 2.2.

Ansatz, i.e., a suitable way to parametrize the moving and changing objects. We will not
claim that there is a unique Ansatz that does the job.

We have seen that triangle centers on the Euler line move on hyperbolae while the
triangles vary in the family T . Although, the Symmedian point X6 is (in general) not
located on the Euler line, it moves on an ellipse. It is so far the only point off the Euler
line we know to move on a conic, and even on an ellipse. It remains unclear whether there
are some more centers behaving that way.
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