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Abstract. We show that Frégier’s theorem allows for some gener-
alizations within the framework of projective geometry. This also
contains the notion of non-Euclidean versions of Frégier’s theorem and
Frégier conics. Two different generalizations of Frégier’s theorem shall
be considered: (1) The involution of right angles is replaced with an
arbitrary involution induced by some polarity. (2) The envelopes of
chords of a conic whose endpoints are assigned in a projective mapping
(not involutive) are conics.
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1 Introduction
Let c be a conic and assume that P is a point on c. Then, let (g, g′) be a
pair of lines through P such that g and g′ are orthogonal (in the Euclidean
sense). Further, let Q = c∩ g \ {P} and Q′ = c∩ g′ \ {P}. Now, Frégier’s
theorem states (cf. [1, 2]):
The chords [Q,Q′] pass through a single point F (the Frégier point of P
with respect to1 c) independent of the choice of g.

Generalizations to non-Euclidean Frégier conics have been studied in
[4]. Quadratic transformations based on Frégier’s constructions are de-
fined and investigated in [5, 6] along with higher dimensional analogues.
The fact that the ordinary Euclidean Frégier conics are the only conic
shaped generalized offsets to conics is shown in [3]. Especially in the lat-
ter article, the right angle which is a substantial ingredient for Frégier’s
theorem was replaced with an arbitrary fixed angle φ. It turned out that
the thus defined chords [Q,Q′] envelop conics (the generalized Frégier
conics) cφ assigned to the point P and w.r.t. c. If the angle φ traces the
open interval ]0, π

2
[, then the generalized Frégier conics cφ trace a pencil of

conics of the third kind (to which c also belongs, see [3]) and the ordinary
Frégier point is the only real point of a singular conic in the Frégier pencil.

In the following, we generalize Frégier’s theorem by replacing fixed
angles at first by an involutive mapping induced by some polarity in Sec.
2. There are six different types of such Frégier constructions depending on
whether the polarity is elliptic or hyperbolic, and then, since a hyperbolic
polarity is always that of a conic d, we have to distinguish between the five
different types of pencils spanned by c and d. For special assumptions on
the polarity, this yields the non-Euclidean notion (cf. [4]) of Frégier conics

1We shall write w.r.t. short hand for with respect to.



as by-catch. This immediately raises the question: What happens if we
look at the chords of a conic c whose endpoints are assigned in an arbitrary
projective mapping acting on c? This will be described in Sec. 3.

2 Polarities instead of the right angle
The right angles appearing in Frégier’s construction as well as the constant
angles in the Frégier variant described in [3] induce special projective
mappings on the underlying regular conic c with the polarity γ. Now, we
may assume that in the pencil around the pivot point P ∈ c an arbitrary
involution is acting. The involution shall be induced by an arbitrary
polarity δ which assigns to each line g ∋ P a unique line g′ ∋ P by

g′ = [δ⋆(g), P ],

where δ⋆ is the adjoint mapping of the polarity δ. The lines g and g′

intersect c in P and each in a further point Q ∈ g and Q′ ∈ g′. Now, we
can state and prove:

Theorem 2.1. Let c be a regular conic, let P be a point on c, and let
further δ be a regular polarity (different from that w.r.t. c). Now, consider
the projective and involutive mapping α in the pencil of lines around P
that sends each line g to the line g′ = [P, δ⋆(g)]. If now Q and Q′ are
defined as above, then the chords [Q,Q′] pass through a single point F (the
generalized Frégier point of P w.r.t. c).

Proof. The generalized Frégier point F is simply the center of the involu-
tion α lifted to the conic c (see [2]).
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Fig. 1: Left: A Frégier point F defined by means of a generic involution
induced by a polarity w.r.t. a conic d. Center and right: Frégier conics e
of a conic c in a hyperbolic and an elliptic plane.

The polarity δ may either be that of a conic d with real points (hyper-
bolic polarity) or that of an empty conic (elliptic polarity). The case of the



elliptic polarity causes no special cases since there no real self-conjugate
points w.r.t. δ. In the case of the polarity w.r.t. a real conic d, we have
to distinguish between five cases, according to the type of pencil spanned
by c and d. We are able to show:

Theorem 2.2. The construction of the generalized Frégier conic from
Thm. 2.1 does not depend on the type of pencil spanned by c and d.

Proof. We just lay down what is necessary in order to give a synthetic
proof. First, it means no restriction to assume that c is given by x0x2 −
x2

1
= 0. The polarity δ shall be that of a conic d that spans a pencil of 1.,

. . . , 5. kind with c. Therefore, we can assume that the equations of the
conics d in the pencil of type are given by d = c + λsi (we identify the
conic with its equation), where si is the equation of a singular conic in the
pencil of the i-th kind and can be chosen as: s1 : x1(px0−(1+p)x1+x2),
s2 : x2(x2 − x0), s3 : x2

1
= 0, s4 : x2(x1 − x2) = 0, and s5 : x2

2
= 0. In

any case, the pivot point P can be given by 1 : t : t2 (with t 6= 0, 1,∞).
In s1, p 6= 0, 1,∞ guarantees that c and s1 really span a pencil of the 1.
kind. Further, Q = 1 : u : u2 (with u 6= p, t, 0, 1,∞). For a special but
proper choice of µ, we obtain a regular conic d in the pencil, and thus, a
polarity δ. Then, g = [P,Q] and we are able to compute the pole δ⋆(g) of g
w.r.t. all conics in the pencil (variable λ 6= 0). Finally, g′ = [P, δ⋆(g)] and
Q′ = g′ ∩ c \ {P}. Then, we can show that [Q,Q′] passes through a point
F (independent of Q, i.e., the parameter u). For variable pivot point P
(i.e., variable t), the points F trace a conic, the generalized Frégier conic
e of c w.r.t. δ. It can be shown that e passes through the base points of
the pencil only if they are at least of multiplicity two by intersecting e
and c.

Fig. 2 shows a generalized Frégier conic e (red) of a conic c (blue) w.r.t.
to the polarity δ of a regular conic d (magenta) which, together with c,
spans a pencil of the first, second, third, fourth, or fifth kind.
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Fig. 2: The generalized Frégier conics e according to Thm. 2.1 pass
through base points of the pencil λc+µd only if these are at least two-fold.



2.1 Non-Euclidean versions

We assume that the polarity w.r.t. to c and the polarity δ have a common
polar triangle, i.e., the corresponding bilinear forms can be diagonalized
simultaneously. Thus, we can assume that c is given by x2

1
/a2+x2

2
/b2 = x2

0

(with a, b 6= 0 and a 6= b). The case b2 < 0 needs a separate discussion.
In the hyperbolic case, δ’s self-conjugate points can be given by ω : x2

1
+

x2
2 = x2

0. The conic ω can be viewed as the absolute conic of hyperbolic
geometry. Therefore, for any point P = 1 + t2 : a(1 − t2) : 2bt (with
t ∈ R ∪ {∞}), the Frégier point

Fh=(a2b2−a2−b2)(1+t2) : a(a2b2+a2−b2)(t2−1) : −2bt(a2b2−a2+b2)

in the sense of hyperbolic geometry traces the hyperbolic Frégier conic

x2

0 =
(a2b2−a2−b2)2

a2(a2b2+a2−b2)2
x2

1 +
(a2b2−a2−b2)2

b2(a2b2−a2+b2)2
x2

2.

The hyperbolic Frégier conic is regular if, and only if, (a2b2−a2+b2)(a2b2+
a2 − b2)(a2b2 − a2 − b2) 6= 0. This leads to a three-branched variety of
singular hyperbolic Frégier conics which are studied in detail in [4].

The conic ω : x2

0
+ x2

1
+ x2

2
= 0 is empty (over the real numbers)

and can serve as the absolute conic of elliptic geometry. Then, the point
P = 1 + t2 : a(1 − t2) : 2bt on the conic c : x2

1
/a2 + x2

2
/b2 = x2

0
defines

the elliptic Frégier point

Fe = (a2b2+a2+b2)(1+t2) : a(a2b2−a2+b2)(t2−1) : −2bt(a2b2+a2−b2)

which traces the elliptic Frégier conic

x2

0 =
(a2b2+a2+b2)2

a2(a2b2−a2+b2)2
x2

1 +
(a2b2+a2+b2)2

b2(a2b2+a2−b2)2
x2

2.

The elliptic Frégier conic is regular if, and only if, (a2b2−a2+b2)(a2b2+
a2−b2) 6= 0. (The factor a2b2+a2+b2 cannot vanish under the above made
assumptions.) However, in elliptic geometry, the singular Frégier conics
of a given conic can only be arranged in two groups (for details see [4]).
Fig. 1 shows the generalized Frégier conic (in the sense of Thm. 2.1) for a
hyperbolic (center) and an elliptic polarity (right). The curves e can be
viewed as the Frégier conics of the conic c in the hyperbolic and elliptic
plane.

2.2 Euclidean and pseudo-Euclidean Frégier conics

A singular polarity, i.e., an involutive mapping on a straight line l can
also be the basis of the Frégier construction. If l is chosen as the line at
infinity, then the involutive mapping α : l → l can either be hyperbolic



or elliptic. In the first case, we can consider this Frégier construction as
the pseudo-Euclidean version, while in the second case, α acting on l can
serve as the absolute polarity of Euclidean geometry which leads to the
well-known Euclidean version.

3 Arbitrary (non-involutive) projective mappings
In what follows, we shall replace the involutive projective mapping α
acting on c with an arbitrary projective mapping β : c → c. Such a
mapping is uniquely defined by prescribing three pairs of assigned points,
i.e., three by two points A,A′, B,B′, C, C′ ∈ c with A′ = α(A)′, B′ =
α(B), and C′ = α(C). We can show the following result:

Theorem 3.1. The chords [X,α(X)] of c joining each point with its
projective image envelop a conic f which spans with c a pencil of conics
of the third kind if α is elliptic or hyperbolic. In the case of a parabolic
projectivity α, the conics c and f span a pencil of the fifth kind, i.e., they
hyperosculate each other.

Proof. It means no loss of generality to assume that c is given by the
homogeneous equation x0x2 − x2

2
= 0. Further, we can assume that

A = 1 : 0 : 0, B = 1 : 1 : 1, C = 0 : 0 : 1 and A′ = 1 : u : u2,
B′ = 1 : v : v2, C′ = 1 : w : w2 (with u, v, w 6= 0, 1,∞, u 6= v 6= w 6=
u). Then, the axis a of the projectivity α (which contains the points
[A,B′] ∩ [A′, B], [A,C′] ∩ [A′, C], [B,C′] ∩ [B′, C]) has the homogeneous
coordinates a = uu : ww−u : −w, where u = v−w, v = w−u, w = u−v.
Hence, a point X = 1 : t : t2 (with t 6= u, v, w, 0, 1,∞) is mapped to

X ′ = (tw + u)2 : (tw + u)(tww + uu) : (tww + uu)2.

The chords s = [X,X ′] with homogeneous coordinates

s = t(tww + uu) : −t2w − t(ww + u)− uu : tw + u

envelop the conic

e : xT





u2u2 uu(ww−u) −uw(v + w)
uu(ww−u) w2((u+w)2+4u−4w+4) −w(ww−u)
−uw(v + w) −w(ww−u) w2



x=0,

The conics c and e span a pencil of the third kind with the repeated line
a as a singular conic in the pencil. The common points of a and c are
the fixed points of α. The projectivity α is parabolic if, and only if, a is
tangent to c, and then, c and e hyperosculate each other, i.e., they span
a pencil of the fifth kind.

Figure 3 shows the three possible cases: an elliptic projectivity (left), a
hyperbolic projectivity (in the middle), and a parabolic projectivity where
pα touches c and e (which are hyperosculating at the common point).
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Fig. 3: The chords of c envelop a conic e provided that the endpoints
are assigned in a projective mapping α. If α is elliptic or hyperbolic, the
pencil spanned by c and e is of the third kind. A pencil of the fifth kind
is obtained if α is parabolic.

4 Conclusion
We have shown two variations of Frégier’s theorem. Both can be for-
mulated in terms of projective geometry. The mathematical approach
towards these generalizations are formulated in terms of polynomial equa-
tions and rational parametrizations. At no instant, extensions or assump-
tions on characteristic of underlying fields are necessary which makes the
computations possible within the framework of finite fields. Hence, these
results are universal in the sense of [7].
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