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Abstract

The Yff circumellipse and the Yff inellipse
of a triangle allow for a poristic family
of triangles (henceforth called Yff porism),
since the initial triangle is already an in-
terscribed triangle. Surprisingly, the Yff
porism can be parametrized by means of
rational functions, and thus, it delivers a
porism in Universal Geometry. This also
allows us to give explicit examples of poris-
tic triangle families over finite fields. Con-
sidering the Yff inellipse and Yff circumel-
lipse as the basis of an exponential pencil
of conics, we can iterate the construction
of the porism and find an infinite sequence
(and thus infinitely many) nested rational
triangle porisms over the real (and com-
plex) number field or a finite closed chain
of porisms in the case of a finite field.

Key words: Porism, inellipse, circum-
ellipse, triangle, rational porism, rational
parametrization, finite field, finite projec-
tive plane.

Sacetak

Yt cirkumelipsa i Yff inelipsa trokuta dop-
ustaju poroznu obitelj trokuta (odsada naz-
vanu Yff porizam), buduéi da je pocetni
trokut veé¢ interkriniran trokut. Iznenadu-
juce, Yff porizam se moze parametrizirati
pomocu racionalnih funkcija, i stoga daje
porizam u Univerzalnoj geometriji. To
nam takoder omogucuje da damo eksplic-
itne primjere obitelji poristickih trokuta
nad kona¢nim poljima. Uzimajuéi u obzir
Yt inelipsu i Yff cirkumelipsu kao osnovu
eksponencijalne olovke konika, mozemo
ponavljati konstrukciju porizma i pron-
ac¢i beskonacan niz (a time i beskonac¢no
mnogo) ugnijezdeni racionalni trokutni
porizmi nad realnim (i kompleksnim)
poljem brojeva ili kona¢nim zatvorenim
lancem porizmi u sluc¢ju konac¢nog polja.

Kluc¢ne rijeci: Porizam, inelipsa,
cirkumelipsa, trokut, racionalni porizam,
racionalna parametrizacija, kona¢no polje,
konac¢na projektivna ravnina.
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1 Introduction

Porisms have attracted the interest of geo-
meters in the past years anew. An exhaust-
ing overview of this topic and newer as well
as many classical results can be found in [3]
and [4]. Certain subproblems, dealing with
a detailed analysis of CHAPPLE’s porism
(the most prominent one cf. [1]) were stud-
ied in [18] and inspired further investiga-
tions of orbits and invariants in relation to
porisms in [5, 6, 7|. The isotropic version of
CHAPPLE’s porism was investigated in [12].
Not only orbits of points and centers related
with the moving triangles have gained in-
terest. The closely related topic of billiards
within ellipses, and in conics in general, was
enriched with new results. To mention only
a few, see for example [§] and a study on
Poncelet grids in [21]. Projective invariants
of Poncelet closure figures are presented in
[23, 26], the motions induced by Poncelet
closure figures are studied in [24], the di-
agonals in Poncelet grids are the subject of
interest in [25], and focal billiards are de-
scribed in [22].

In the vast majority, and especially in the
case of CHAPPLE’s porism, explicit analyti-
cal descriptions of Poncelet triangle families
involve algebraic (and by no means ratio-
nal) expressions (cf. |6, 7, 18, 20]). This
limits direct symbolic computations, and
sometimes, even graphical representations.
Even the (from the computational point of
view) simple case of the isotropic Chapple
porism studied in [12| needs square roots in
order to describe the vertices of the mov-
ing triangles. Now, the question is near:
Are there porisms that allow for rational
(or, in terms of homogeneous coordinates,

even polynomial) parametrizations? Such
porisms would then also exist in Universal
Rational Trigonometry (as defined in [28])
and would also be well-defined in planes
over finite fields.

In this article, we shall present porisms that
can be described by rational (or polyno-
mial) functions. Sec. 2 is devoted to the
basic setting and notations. In this section,
it is further shown that the tritangent and
the circumconic allow for certain porisms in
general. Then, in Sec. 3 the parametriza-
tion of the poristic triangle families inter-
scribed between Yff conics are derived and
some examples in planes over finite fields
are given in order to show different phenom-
ena that can occur in various exotic planes.
Sec. 4 shows how to find more such rational
porisms based on the Yff porism. Finally
and for the sake of completeness, Sec. 5 col-
lects some results in the Euclidean plane.

2 Porisms interscribed
between the Yff ellipses

In the plane of the initial triangle A =
ABC', we describe points and lines by ho-
mogeneous trilinear coordinates. Thus, the
vertices of A have the coordinates

A=1:0:0, B=0:1:0, C=0:0:1. (1)

Circumconics, 4.e., conics which pass
through all three vertices of A, are given
by a homogeneous equation of the form

(2)

where p,q,r € F\ {0} and F is some com-
mutative field. The conics C are always

C: pyz+qzx+rxy =0,



regular if neither of p, ¢, r vanishes, since
det HC = 2pqr, provided that charF # 2.
Here, and in the following H O shall denote
the Hessian matrix of a (trivariate) form Q.

In the beginning, [F shall be the real or com-
plex number field. Later, we also consider
finite fields F of order ¢, which we shall de-
note by GF (¢). The order ¢ can be a prime
or a prime power. Projective planes of order

q shall be denoted by PG(2, q).

A conic inscribed into A, or simply, an
inconic of A touches all side lines of A.
An inconic should rather be termed tritan-
gent conic, since the contact points with the
sides of A may also be exterior points. We
use the term inconic or inscribed just as a
simplification, though we know that such
conics are not necessarily inscribed into A
in the elementary geometric sense.

The inconics of A in the aforementioned
sense can be given by equations of the form

D: 1?22 + m2y? 4+ n?2? (3)
—2lmxy — 2mnyz — 2nlzz = 0,
where [,m,n € F\ {0}. Note that the con-
ics D are regular if neither of [, m, n van-
ishes, since det HD = 2[?m?n?, again pro-
vided that charF # 2. It is worth pointing
at the characteristic of the underlying field
as we shall see later.

The conics in the pencil spanned by C and
D are called Y[f conics (cf. [14]) among
them, we also find the permutation conics
(see [15, 19]). The existence of a poristic
triangle family interscribed between C and
D is obvious, since there exists already one
interscribed triangle, namely A. We shall
call this family the Yff porism.

Now, we shall return to the case of char[F =
0 (e.g., F 2 R,C). Any two regular conics
C, D with equations (2) and (3) allow for
poristic families of certain polygons:

Theorem 2.1. The pair (C,D) of conics
circumscribed to and inscribed into A al-
lows for a poristic family of 3n-gons for

n € N\ {0}.

Proof. The conics in the pencil spanned by
C:x'Cx=0 and D : x"Dx =0 have the
equations x'(tC + D)x = 0. In order to
apply the Cayley criterion (cf. [27, p. 432]),
we expand +/det(H(tC + D)) in a power
series S(t) = ag + a1t + ast* + .... With
the abbreviations A := Imn, 7 := pqr, and
= lp + mgq + nr, we find

S(t) = 1f(4A wt+0-12 —

8
1 mw , 1 mw?
A
32 \? 128 )\3

Hence, 03 = a; =0, 64 = a3 = i%

_|@2 a3 | _ 1 x% _|a3 a4 |
557‘0/3 a4‘7 32 22> 667‘0/4 as‘*oa
a2 as a4 ) B as a4 as . -

or=|a3 a4 as :—211\?%758: a4 as ag _212,‘{5%
a4 as ag as ae ay
69207 )

and 03, = 0 for all £ € N which confirms
the statement. O

The Cayley criterion uses the complex num-
ber field. However, the equations (2) and
(3) can be considered as conics in pro-
jective planes over arbitrary commutative
fields and the criterion can be used to test
pairs of conics whether or not they allow for
poristic polygons interscribed in between.



The square root of the cubic polynomial can
be expanded in a power series S(t) anyhow.
In [2], the Cayley criterion was used in order
to count possible cases of conic pairs allow-
ing for triangle porisms. This does neither
answer the question whether such porisms
exist nor what they look like if they exist.

As is clear from the proof of Thm. 2.1,
the pair (C,D) of conics will never allow
for interscribed quadrilaterals according to
the assumptions made on the coefficients in
their equations.

3 Parametrizing the
poristic family

3.1 Basic properties

Two conics that merely fulfill the Cayley
criterion will not immediately lead to an
explicit description of the poristic triangle
family interscribed between them. In order
to give an explicit example which later will
even allow for a generalization, we choose
p=q=r=I[l=m=n=1 which yields the Yff
circumellipse M and the Yff inellipse \.

The resulting two conics are indeed trian-
gle conics because of the cyclic symmetry of
their equations, and of course, they are Yff
conics (cf. [14]). Their equations in terms
of homogeneous trilinear coordinates do not
depend on Euclidean notions such as the
side lengths or the interior angles of the tri-
angle A:

M :xy+yz+ zx =0,

4
N 2?2+ 422 =2(xy+yz+22) =0. )

From the elementary (affine) point of view,
these conics are ellipses, the Yff ellipses.
They span a pencil of the third kind con-
sidered as a pencil of the real or complex
projective plane. The point X; =1:1:1
is the common pole and the antiorthic axis
Ly =1:1:1 (or with the homogeneous
equation x+y+z =0) is the common po-
lar of all regular conics in the pencil (see
Fig. 1). Here and in the following, the la-
belling of points (centers) and lines (cen-
tral lines) related to triangles follows the
labelling in [13, 16]. (Later, in Sec. 5, this
will be of more significance.) We shall also
use shorthand X; for the point defined by
1:1:1 and the symbol £; if we mean the
line x +y 4+ z = 0 even if they are not the
incenter and the antiorthic axis in the ele-
mentary geometric sense.

In PG(2, C), the conics M and A share the
pair of complex conjugate points 1:£:£2 and
1:e%:¢ on £y (with & being a non-trivial
cube root of unity), hence M NN = () in
the real projective plane. However, in some
finite planes, their intersection is not empty.

Figure 1: The Yff conics M and A in the
real plane.



In order to describe the vertices Py, Py, Ps
of the triangles in the poristic family, we
start with the homogeneous and polynomial
parametrization of M given by

P =—uv:u(utv):v(utv), u:v£0:0. (5)

Note that the parametrization (5) of M
makes sense over any field.

In order to find the remaining vertices P,
and Pj, we determine the polar line of P;
with respect to N which meets A in the
contact points

By =u?: (u+v)*: 02
B. = 2.,,2. 2 (6)

3 =v2:u’: (u+v)?
of the tangents from P; to N. Note that the
homogeneous representations of the contact
points are also polynomial, i.e., they do
not involve square roots. This cannot be
the case in CHAPPLE’s porism (see, e.g.,
[18, 27]). Now, we intersect the tangents
t2 = [Pl,BQ] and t3 = [Pl,Bg] with the
Yff circumellipse M and find the remain-
ing vertices P, P3 of the moving triangle
as

Po=v(u+v): —uv: u(u+v),
(7)

Py =u(u+v):v(u+v): —uv.
For the sake of completeness, we determine
the contact point By of [P, P5] and N,
which has the homogeneous coordinates
By = (u+v)*: v’ (8)
By virtue of (6) and (8), we see that the
homogeneous coordinate representation of
B, By, and B3 can be obtained from each
other by applying cyclic shifts to the coor-
dinate functions. The same holds true for

the vertices P;, P,, and P of the triangles
in the poristic family. The fact that all co-
ordinate functions of the vertices and the
contact points are polynomial has the fol-
lowing consequence:

Theorem 3.1. The Yff porism, that is the
family of triangles interscribed between the
Yff inellipse N and Y[f circumellipse M
given in (4) contains triangles whose ver-
tices allow for rational parametrizations.
The Yff porism is also well-defined over ar-
bitrary fields F with positive characteristic
not equal to 2.

Proof. The rationality is obvious: The ho-
mogeneous coordinates of the vertices P; €
M (5) and (7) as well as the contact points
B; (6) and (8) are polynomial. All polyno-
mials are well-defined over any field. O

The case char F = 2 is excluded in Thm. 3.1
since the construction of the triangles in the
poristic family uses the polar system of .
In planes of characteristic 2, polarities are
null polarities at the same time, and there-
fore, they are singular and all tangents of a
conic pass through one point, the nucleus.

It makes sense to call the Yff porism a un-
siversal porism in the sense of [28] for the
vertices of the triangles (as well as the con-
tact points) are given in terms of rational
functions. Thus, they are defined over any

finite field.

Depending on the characteristic of the un-
derlying field IF, we can prove:

Theorem 3.2. In any finite field F with
char[F # 2, the Yff porism contains at
most two degenerate triangles. In the case



char[F = 3, the Yff porism contains a single
degenerate triangle.

Proof. The vertices (5) and (7) of the trian-
gles in the Yff porism are at least collinear
if, and only if, det(p1, p2, p3) = 0 which is
equivalent to

6 = (u* 4+ uv +0v*)* =0 (9)
(where p; is a coordinate vector of P;) van-
ishes for some parameter v : v # 0: 0, i.e.,
§ = u? +uv +v* = 0. This is obviously a
quadratic equation in v : v, and depending
on the underlying field, it may have 0, 1, or
two zeros.

If charF = 3, then 1 = —2, and thus, u? +
wv + v? = u? — 2uv + v* = (u — v)? which
yields the single solution u : v =1 : 1 (with
multiplicity two). O

In Thm. 3.2, we did not explicitly state that
the order of the underlying field is a prime,
say p, different from a prime power p* with
k € N\ {0,1}. It is clear that the num-
ber of degenerate triangles in an Yff porism
will not exceed 2. If in PG(2,p) the Yff
porism already has a degenerate triangle,
then w(z) = 22 + o + 1 already has at least
one solution in GF (p) and w(z) cannot be
used for a quadratic field extension and no
additional zeros will show up with a proper
field extension.

We shall have a look at the following exam-
ples:

(1) If the underlying field F is a quadratic
extension of GF (p), the number of zeros
of § may increase if F = GF (p)[z]/(2* +
x+1). For example, there exists a unique
quadratic extension of GF (2) in order to

obtain GF (4), since z>+x+1 is the only
quadratic polynomial that has no zeros in
GF (2). Hence, in PG(2,4) the Yff porism
contains two degenerate triangles, while in
PG(2,2) the Yff porisms consists of regu-
lar triangles only. We shall come back to
PG(2,4) in Sec. 3.2.3.

(2) The quadratic polynomial 2%+ z + 1
has a single zero of multiplicity two in
GF (3). Therefore, it cannot be used for
a quadratic extension of GF (3) in order to
create GF (9). However, 22+ 1 is suitable
for the desired quadratic extension and its
zeros are not zeros of § from (9). Thus,
in GF (9) the Yff porism still has a single
degenerate triangle inherited from GF (3).
For details, we refer to Sec. 3.2.6.

(3) The example of GF (5) is to show that
there do exist quadratic field extensions so
that the Yff porism shows both, degenerate
and non-degenerate triangles. Both polyno-
mials wy (z)=2?+2+1 and wy(z) =2 +2+2
have no zeros in GF (5). Since w;(z) is an
inhomogeneous version of (9), the extension
with wi(x) delivers two degenerate trian-
gles, while the extension with wy(x) does
not.

We will come back to field extensions and
the thus created planes in Sec. 3.2.

The regularity condition for the contact tri-
angle B;ByBs equals 20 = 0. This shows
again that the case char F = 2 plays an ex-
ceptional role.

Further, we can say:
Theorem 3.3. If the Yff porism contains

a degenerate triangle, then this triangle is a
single point.



Proof. According to Thm. 3.2, the matrix
P := (p1, p2, p3) is singular if, and only if,
(9) holds, i.e., § = 0, or, likewise, tkP <
2. A triangle of the Yff porism becomes a
single point if P is of rank 1 which is the
case if, and only if, all 2 x 2 submatrices
of P are singular. The determinants of the
non-trivial 2 x 2 submatrices of P evaluate
to one of the following polynomials (up to
the coefficient -1, not playing a role even if
charF = 2):

wvd, u(u+v)d, v(u+v)d,

which vanish all, if 6 does. This is not the
case if only one of the following is true u :
v=1:0,u:v=0:1, or u+v=0.

The only larger minor is already singular by
assumption, and therefore, it does not have
to be taken into account. O

In Thm. 3.3, a distinction of the underly-
ing field is not necessary. Once § = 0, the
Y porism contains at least one degenerate
triangle, no matter, if § = 0 is caused by a
field extension or not.

Common points of M and N and degen-
erate triangles do not enter the scene inde-
pendently:

Theorem 3.4. A degenerate triangle in the
Yff porism is necessarily a common point of
M and N, and vice versa.

Proof. Assume that there is a parameter u :
v # 0:0 (with u,v € F) such that (9) is
annihilated. Then, according to Thm. 3.2,
P, = P, = P3, i.e., apose with a degenerate
triangle is reached. Inserting (5) and (7)
into (4), we see that both equations are also
fulfilled.

On the other hand, common points of M
and A can be found by eliminating one vari-
able, say, e.g. z, from both equations in (4).
This yields (z* + zy + y?)? = 0, which is
fulfilled by any of the parametrizations of
(5) and (7) if, and only if, u® + uv + v? = 0,
i.€., the points P; coincide. O

For the following 80 prime integers less than
1000 (which are in total 168), (9) has two
solutions in GF (p):

7,13,19,31,37,43,61,67,73,79,97,103, 109, 127,
139,151,157, 163, 181, 193,199, 211, 223, 229, 241,
271, 277,283,307, 313, 331, 337, 349, 367, 373, 379,
397,400, 421, 433, 439, 457, 463, 487, 499, 523, 541,
547,571,577,601, 607, 613, 619, 631, 643, 661, 673,
691,709, 727,733,739, 751, 757, 769, 787, 811, 823,
829, 853,859, 877, 883,907, 919, 937, 967, 991, 997

Thus, in PG(2, p) with one of the above p,

the Yff porism contains two degenerate tri-
angles and quadratic field extensions have
to be constructed with a polynomial differ-
ent from 22 4+ o + 1 in any case. If p = 3,
the polynomial 22 +x + 1 is not suitable for
a quadratic field extension, since then it is
a full square. For any other p # 3 and not
in the above list, a quadratic field extension
with 22 + 2 + 1 would add two degenerate
triangles to the Yff porism.

Field extensions GF (p*) with arbitrary k >
2 do not cause more degenerate triangles in
the Yff porism as long as 2> + x + 1 is not
a divisor of the extension polynomial.

The chosen conics M and N with equation
(4) have rather simple equations because of
their relative position with respect to the
underlying coordinate system. More gen-
eral forms of rational and universal porisms
can be obtained by applying collineations



to M, N, and the family of interscribed
triangles:

Theorem 3.5. The totality of universal
Yff porisms in a projective plane PG(2, p)
can be obtained by applying the full group
of reqular projective transformations to the
Yff porism determined by M and N. In
the projective plane PG(2,p), there exist
p2(p* —1)(p*—1) collinear copies of the ini-
tial Yff porism.

Proof. According to [9, p. 298|, the num-
ber of 3 x 3 matrices K with entries from
GF (p) and det K = 1 equals p?(p* —1)(p*—
1).  Since non-zero multiples of K de-
scribe the same collineation, it is admissi-
ble to normalize the transformation matri-
ces such that their determinants are equal
to unity. O

3.2 Examples of Yff porisms in
small planes

In the following, we shall describe the uni-
versal porisms in some finite projective
planes of low order, i.e., in small planes.
For details and basic information on finite
projective planes, we refer to [11].

The points (1) appear as poses of the ver-
tices Py, P, P3 of the triangles in the poris-
tic family in any projective plane over any
(finite) field. Since for any prime p (5) and
(7) evaluate to multiples of the canonical
basis vectors, we shall use the labels of the
vertices of the initial triangle A for those
poses of the points P;.

The vertices P; of the triangles have the
coordinate representations p;(ug,vg) with

i € {1,2,3} and the homogeneous parame-
ter (u,v) # (0,0) always traces the projec-
tive line PG(1,TF), i.e.,

(u, U) S {(1]}7, OF), (1]}7, 11@), ceey (OF, 1]}7)}

Note that the parameter pairs are normal-
ized, 1.e., the first coordinate is set to unity
(except the last one) which can always be
achieved. So, they are ordered numerically.
This has no geometric meaning and is done
just in order not to lose a point.

3.2.1 The minimal projective plane

The minimal projective plane is the unique
projective plane with seven points and
seven lines sometimes referred to as the
Fano plane. (Despite not showing the Fano
property: Here, the three diagonal points of
a quadrilateral are collinear.) Its algebraic
model is erected over GF (2). Although we
have emphasized at several places that the
case charF = 2 has to be excluded or at
least to be handled with care (polarities are
null polarities at the same time), we find
that the parametrizations (5) and (7) of
the points P; evaluate to meaningful expres-
sions, whence we shall have a look at it.

There is only one triangle in the family: It
is the standard triangle that plays its role in
a threefold way and it is the only non-trivial
triangle in this particular poristic family.
We collect the triangles depending on the
homogeneous parameter v : v in a table:

U:v ‘1:0 1:1 0:1
triangle‘BC’A ABC CAB -

Fig. 2 tries to illustrate the three poses of
the moving triangle.



Note that in the minimal plane the conic
M has a singular equation, since the deter-
minant of the coefficient matrix vanishes:

Moy +yz+ za=x"

o O O

11
01 |x=
00
=M

hence detM = 0 and kM = 2. Here,
we shall point out that the usual way of
extracting the coefficient matrix from a
quadratic form fails: We cannot multiply
coefficients by 2.

However, the three points on M are not
collinear as should be the case with conics.

In comparison, A” whose equation simplifies
due to the speciality of the underlying field
according to

N:a?+y*+22=0

is regular, but contains the three collinear
points

By=1:1:0, By=1:0:1, B3=0:1:1.
They also lie on the line £;. Hence, N and
L1 agree as sets of points. Note that there
is no contact between the sides of A and

N, since all tangents of N pass through its
nucleus.

3.2.2 The thirteen point plane

The unique projective plane of order three
has thirteen points and lines. It can be
modeled over GF (3). An incidence graph
and the coordinatization that we use are
shown in Fig. 3. In the thirteen point plane

o oN oFr;
oM
Q
o o O o o
1:0:0 opz 0:1:0 P§ op? P}
o o
O Q

—O0—— 0
Py

(o] —O0——0 O
Py P P}
Figure 2: The projective plane PG(2,2)
with its seven points and lines and the two
conics M and N. A special feature can be
observed here: The inconic N' = £; con-
sists of three collinear points. Superscripts
denote the pose.

PG(2,3), the two conics M and N are reg-
ular. They share precisely one point, .e.,
X; and have the line £; as common tan-
gent there.

Again, the standard triangle plays a three-
fold role for the parameter values

uw:v=1:0, v:v=1:2, v:v=0:1.

According to Thm. 3.2, the Yff porism in
PG(2,3) contains a single degenerate tri-
angle corresponding to d’s single (double)
root u : v = 1: 1. The degenerate triangle
equals the point X7, which is the only point
of intersection of M and N. This holds true
in any plane over GF (3%) with positive k.

Fig. 4 illustrates the position of M and N
in PG(2,3) relative to each other. Fig. 5
is given in order to illustrate the poristic
family in PG(2, 3).



Figure 3: The plane of order 3 with 13
points and lines is isomorphic to the pro-
jective plane PG(2, 3).

In order to track the triangle while it moves
through the poristic family, we collect the
different poses of P P,P; in the following
table:

wov | 1:0  1:1  1:2  0:1
triangle‘BCA 1:1:1 ABC CAB

3.2.3 The projective plane of order 4

The projective plane PG(2,4) of order 4
consists of 21 points and lines. The under-
lying field GF (4) is obtained from GF (2)
by the unique quadratic field extension
GF (4)=GF (2)[z]/(2*4+x+1). This clearly
shows that the Yff porism in PG(2,4) con-
tains two degenerate triangles (since the
polynomial used for the extension is an in-
homogeneous version of § from (9)). How-
ever, PG(2,4) inherits all properties from

Figure 4: Both Yff conics consist of four
non-collinear points, they intersect in X;
and share the tangent £; there.

Figure 5: The Yff porism in the 13 point
plane shows a single degenerate triangle
corresponding to uw:v=1:1 and all three
vertices fall into the point 1:1:1 (see top
right).

PG(2,2) including the singularity and reg-
ularity of conics. Only the order of the un-
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derlying field changes, not so the character-
istic.

The field GF (4) is obtained from GF (2) by
the quadratic field extension with the only
quadratic polynom w(z)=x?+z+1 that has
no zeros over GF (2). If we label the ele-
ments of GF (4) by {0,1,a,1+ a}, then we
compute modulo 2 and simplify sums and
products according to a®*+a+1=0. Fig.
6 shows an incidence diagram of PG(2,4)
with the coordinatization used in this sec-
tion.

Figure 6: The 21 point plane modeled over
GF (4) contains Fano-subplanes, and there-
fore, it doesn’t have the Fano property:
The diagonal points of quadrilaterals are
collinear mirroring the property of the alge-
braic model based on the field GF (4) whose
characteristic equals 2.

The conic M has a singular equation in
PG(2,4) (like in the case of GF (2) and for
the same reasons) and consists of the five

points

0:1:0, 1:0:0,
1:14+a:a,

l:a:1+4a,
0:0:1,

of which no three are collinear, while the
conic N has a regular equation and consists
of the five collinear points

1:1:0, 1:0:1, 0:1:1,
l:a:14a, 1:1+4a:a.

Obviously, the two Yff conics intersect in
Si=1l:a:14+a and Sy=1:1+a:a.

The diagram in Fig. 7 illustrates the rela-
tive position of the two conics M and N in
PG(2,4).

The quadratic form § = u?+ uv + v? equals
w if we substitute v = 1 and v = =x.
Hence, the two new elements in the ex-
tension GF (4) of GF (2) are zeros of 9.
Thus, in GF (4), the Yff porism contains
two degenerate triangles. The parameters
u:v=1:aand u:v=1:14a deliver the
two degenerate triangles in the Yff porism,
which coincide with the points S; and S,
(the intersections of M and N).

By virtue of (5) and (7), we find the vertices
of the triangles in the poristic family as

U 1:0 1:1 l:a
triangle | BC A ABC 1l:a:1+a
w:v 1:1+a 0:1 '
triangle | 1:14+a:a CAB

3.2.4 The planes over GF (5) and GF (7)

We shall treat the two planes over GF (5)
and GF (7) simultaneously which helps sim-
plifying the comparison. In Figs. 8 and 9,
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point of M point of N/

Figure 7: In PG(2,4), the circumconic M is
regular, while the inconic N consists of five
collinear points. Further, M and N share
two points playing the role of the degenerate
triangles in the poristic family.

we have illustrated an affine version of the
respective Yff porisms.

In both planes PG(2,5) / PG(2,7), both Y{f
conics have regular equations and consist
of 6 / 8 points where no three of them are
collinear. While M and N do not intersect
in PG(2,5), they share the two points

Si1=1:2:4 and Sy =1:4:2

in PG(2,7). Further, M and A share the
tangents S; and Sy. Thus, in PG(2,7), the
pencil spanned by M and N resembles a
pencil of the third kind as we know it from
the case F = C.

The two intersection points S; and Sy of
M and N in PG(2,7) serve as the degen-
erate triangles in the Yff porism. On the

points of N X1, points of L points of M

Figure 8: The Yff porism in an affine part of
the plane PG(2,5): MNN = 0 and the Yff
porism contains only non-degenerate trian-
gles each playing a threefold role.

contrary, degenerate triangles are missing
in the Yff porism over GF (5).

3.2.5 A cubic field extension:
the projective plane over GF (8)

The field GF (8) shall be constructed from
GF (2) by the cubic field extension with the
roots of w(x)=1z3+x+1 which is irreducible
in GF (2). This means computations are
performed modulo 2 and modulo w. The

elements of GF (8) shall be denoted by
{0,1,a,1+a,a® 1+a* at+a* 1+a+a*}.
The triangle P, P, P; with the parametriza-

tion (5) and (7) reaches the following poses
while the homogeneous parameter u : v tra-

12



1 p7 p8
PLPLPS €

points of NV points of M

X1, points of L

Figure 9: The Yff porism in an affine part
of the plane PG(2,7): M NN = {S1,5}
and the two degenerate triangles fall into
the points S; and S,.

verses PG(1, 8):

UV 1:0 1:1 l:a
triangle | BCA ABC R.15{T

Uv 1:1+a 1:a° 1:1+a°
triangle R2 SQTQ SlTl R1 TQRQ SQ ’

Uv l:a+a®> 1:14a+a’ 0:1
triangle T1 Rl Sl SQTQRQ CAB

where we have set

Ri=1:a%:1+a, Si=1:a:14+a+ad?
Ti=1:a+a*:1+a?,
Ry=1:14a+a*:a, So=1:14+a:a?,
Ty=1:1+a’*:a + a°.

There is no degenerate triangle in the Yff
porism in PG(2,8), since (9) has no zeros
in GF (8). The poristic orbit of the trian-
gle ABC splits into three suborbits and the
moving triangle changes the orbits more or

less irregularly, for it is not possible to es-
tablish an ordering in GF (8).

3.2.6 The only Desarguesian plane
of order 9

Among the four non-isomorphic projective
planes of order 9, only the plane PG(2,9) is
Desarguesian. Because of the commutativ-
ity of GF (9), the projective plane PG(2,9)
is also Pappian, and thus, the study of
conics makes sense there (cf. [27]), whence
it makes sense to consider this particular
plane of order 9. (Note that any Pappian
plane is Desarguesian, but on the contrary,
not any Desarguesian plane is Pappian, cf.
27]).

The field GF (3) shall be extended to GF (9)
by adding the roots of w(z)=xz?+1 (which
do not exist in GF (3)). It is well-known
that any other quadratic polynomial (with-
out zeros in GF (3)) leads to an isomorphic
copy of the field of order 9. We label the
nine elements of GF (9) by

{0,1,2,a,14+a,2+ a,2a,1+ 2a,2 + 2a}

and calculate modulo 3 and modulo w.
Then, (5) and (7) yield the following tri-
angles:

UV 1:0 1:1 1:2 1l:a
triangle BAC 1:1:1 ACB Ry5\T}
u:v |1:14+a 24a 2a  142a
triangle|S, 11 Ry R SoToT1 R .S1 15 RSy
u:v | 24+2a 0:1
triangleS; Ty Ry CAB

13



where we have used the abbreviations

Ri=1:24a:242a, Si=1:a:1+a,
Ti=1:142a:2a,
Ro=1:2a:142a, S;=1:14a:a,
To=1:242a:2+a,

There is only one degenerate triangle in
the poristic family. The degenerate triangle
corresponds to the parameter u: v =1:1
and is inherited from GF (3), and as such,
rather a feature of GF (3), than of GF (9).
However, char GF (9) = char GF (3) = 3.

4 More universal porsims

4.1 The tangent triangle

For the case of CHAPPLE’s porism (trian-
gles with common incircle and circumcir-
cle), it is shown that the vertices of the tan-
gent triangle A;, i.e., the triangle of tan-
gents to the circumcircle at A’s vertices,
move on an ellipse which is of course traced
thrice, while A traverses the poristic family

(see [18]).

For the tangent triangle of M in the Yff
porism, we can show:

Lemma 4.1. In any projective plane
PG(2,F) with char[F # 2, the vertices of the
tangent triangle of M trace a single conic
T, while the initial triangle traverses the
Yff porism. T is the image of N under the
harmonic homology with center Xy and axis
Ll.

Proof. When determining the vertices T; of
the tangent triangle A;, we observe that the

tangents t; of M at P, have homogeneous
coordinate vectors proportional to those of
B, given in (8) and (6). Then, for example,
Ty =ty N i3 is given by

T :u2+3uv+v2 c—? —uv+v2 cu? —uv—1?
and the others are obtained by permuting
the coordinate functions of the latter. Now,
the implicitization of the parametrization of
Ty yields

T Zx2+3yz:0

cyclic

(10)

and confirms that 7 runs on a conic. It is
easily verified that the points 75 and T3 also
trace 7 while A and A; move through the
Y porism.

We can check that cr (P, B;, X1,T;) = —1
for all © € {1,2,3}. Furthermore, by the
initial construction, it is elementary to ver-
ify that [B;, Bl Nt; = [P, Pl Nt € L4
for (i,5,k) € {(1,2,3),(2,3,1),(3,1,2)}.
Hence, the harmonic homology py, £, (with
center X; and axis £1) sends B; to T; and
maps the respective tangents of A" and T
onto each other. O

Lem. 4.1 is in particular valid in the real
and in the complex projective plane. In
planes of characteristic two (or equivalently,
in planes over fields of characteristic two),
the construction of the tangent conic must
fail for two reasons:
(1) The tangents of a conic pass through a
single point (the nucleus). If the character-
istic of the underlying plane (or field) equals
3, we have T : > 22 =0.

cyclic
(2) In the planes of characteristic 2 there
are no harmonic homologies.
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Figure 10:

[terating the Yff porism can
yield infinitely many universal porisms.

Fig. 10 illustrates the geometric relations
between pairs of subsequent conics and the
orbits of tangent triangles in the Yff pencil.

If M, N, and T denote the coordinate ma-
trices of the homogeneous equations of the
conics M, N, and T, then T = 5-M+2-N.
Hence, T is also an Yff conic (cf. [14]).

4.2 A linear family of matrices

The coefficient matrices of the conics M,
N, and T belong to the special family of
matrices that can be parametrized by

P qq
apql,;
q94q9p

L(p,q) = (11)

with entries p,q # 0 from some commu-
tative field F. The linear one-parameter
family of matrices (11) forms a straight line
in the eight-dimensional projective space of
3 x 3 matrices. Note that the coefficient
matrices of these triangle conics do also not

depend on Euclidean notions such as the
side lengths of A.

For the sake of simplicity (and since non-
zero multiples do not count), we shall as-
sume ged(p,q) = 1 (in the underlying field
under consideration). The matrices L(p, q)
are regular if, and only if|

P’ —3pg® +2¢° = (p—q)*(p+2q) # 0,

i.e.,p:q#1:1Tand p:q#—2:1. The two sin-
gular matrices in the family (11) are L(1,1)
and L(—2,1). While rkL(1,1) = 1 and
kerL(1,1) =[(1,-1,0),(1,0,—1)], we have
rkL(—2,1)=2 and ker L(—2,1)=(1,1, 1).

The regular matrices (11) form a commu-
tative group, since the multiplication obeys
the rule

L<p17Q1) ~L(p2,q2) =
= L(pip2 + 201¢2, 21G2 + p2ti + 102),

the inverses are

L(p.q) ' =L(p+q,—q) /(> + pq — 2¢*)

(provided that p?+pg—2¢* # 0, i.e., L(p, q)
is regular), and L(1,0) is the neutral ele-
ment.

4.3 More tangent triangles

The coefficient matrices of M and N of the
Yff conics in (4) are M = L(0,1) and N =
L(1,—1). For the coefficient matrix of T
from (10), we find T = L(2,3). Moreover,
the respective matrices in (4) satisfy

M- N = —2I, (12)
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as long as char F # 2. Further, we can easily
verify that

1
T=MN"'M) = —§M3. (13)

Since 7T is the polar conic of the dual conic
N* (the set of tangents of N') with respect
to M, T is a successor of N and M in the
exponential pencil of conics spanned by N

and M (cf. [10]).

According to [10], the conics in the expo-
nential pencil spanned by two regular con-
ics Cp:xTCpx=0 and C; : x'C;x =0 have
equations of the form xTC(t)x = 0 with

C(t)=C,-(C;'-Cy)' ™", teF.

Again, the case charF = 2 has to be ex-
cluded, since there M is singular. In [10],
the coordinate ¢ in the exponential pencil
was assumed to be real. By virtue of Lem.
4.1, t € F it makes sense.

With Cy = N and C; = M and by virtue of
(12), the coefficient matrices of the conics’
equations in the thus defined exponential
pencil are

C(t)= (_%)t—lMQt—l _ (_2)uN1—2u’ (14)

where t +u = 1. Here, it is more obvious
that fields F with charF = 2 do not play a
role.

Defining the matrices C; the other way
around, i.e., C; = N and Cy = M, means
to trace the pencil of conics in the opposite
direction.

In the case F = R, we can describe the
limit conics in the exponential pencil: For
t — oo, the matrices C(t) converge towards

the singular matrix L(1, 1) which describes
L, as a repeated line. The limit ¢ - —oo0
yields L(2, —1) corresponding to X as the
intersection of the pair of complex conju-
gate tangents

Z v —yz=(v+ey+ez)(v+e’y+ez)=0,

cyclic

(where € is a non-trivial third root of unity)
common to all conics in the linear and the
exponential pencil (in the case of F = C).
Obviously, C(2) evaluates to the coeflicient
matrix of the conic 7 in (10), i.e., C(2) =
—1L(2,3).

We can repeat the construction of the tan-
gent triangle now applied to 7 and the tri-
angles 117575 and, by virtue of Lem. 4.1,
we can state:

Theorem 4.1. Any pair of subsequent con-
ics in the exponential pencil spanned by N
and M allows for a universal porism of 3n-
gons, provided there are sufficiently many
points and conics in the plane under consid-
eration and the exponential parametrization
15 evaluated only at integers.

We can also give a more synthetic genera-
tion of the sequence of pairs of conics allow-
ing for rational porisms:

Theorem 4.2. Any conic in the exponen-
tial pencil together with its tangent triangle
(including the contact points) is the image
of its pre-predecessor under a harmonic ho-
mology with center X1 and axis L.
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4.4 The chain of
universal porisms

The triangle ByBy;Bj3 is perspective with
P P,P; and both are perspective with
T1T5T5. The common perspector for any
pair of triangles is the point X;. Any two
out of the three triangles share the perspec-
trix, the line £;.

According to Thm. 4.1, this is true for any
pair of triangles in the infinite chain of con-
tact and tangent triangles. In this way, we
find infinitely many nested Desargues con-
figurations with the perspector X; and per-
spectrix £;. The same holds true for the
contact triangle. These Desargues config-
urations are more special than those con-
structed in [17].

Subsequent contact and tangent triangles
are mapped to their successors by means
of a harmonic homology. Further, the co-
efficients of equations of all conics in the
pencil contain only elements of the under-
lying field and (especially in the Euclidean
case) do not depend on the triangle’s side
lengths, we have:

Theorem 4.3. Independent of the under-
lying field F (with charF # 2), the expo-

of three conics with the coefficient matri-
ces N =L(1,0), M = L(0,1), T = L(1,1)
of rank 3, 2, 1. The conic T is the repeated
line £, which agrees with N as point set.
In PG(2,2), tangent conics do not exits, to
be more precise the tangent triangle of M
collapses to a point as can be seen by eval-
uating the parametrization of T given prior
o (10). So, there is only a triad of triangles
forming the one and only poristic family.
(as explained in Section 3.2.1).

@ point of
@ point of M
® point of T

Figure 11: The chain of Yff porisms in
PG(2,3) contains three poristic triangle
families: (i) between N and M, (ii) be-
tween M and 7, and (iii) between T and

nential pencil of conics spanned by N and A, The point X; plays the role of the de-

M contains at most as many poristic 3n-
gon families as there are pairs of subsequent
conics in the exponential pencil of conics.

The number of poristic triangle families in
the Yff pencil is equal to the number of
points on a line if F = R, C. In the case
of finite fields we have to distinguish sev-
eral cases:

(1) If charF = 2, the Yff pencil consists

generate triangle in each porism. The line
L1 (with multiplicity two) is a degenerate
conic in the discrete exponential pencil.

(2) If char F =3, the Yff pencil contains the
four conics defined by the coefficient matri-
ces N=L(1,2), M =L(0,1), T = L(1,0),
and further L(1,1). The latter is of rank
1 and corresponds to the repeated line £;
as a singular conic. The tangent triangle
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of M moves on 7 and passes one instant of
degeneracy, which is again the point X cor-
responding to u : v = 1: 1. Since there are
only 3 regular conics in the pencil, we find
only 3 different Yff porisms in PG(2,3) (up
to collineations). Fig. 11 shows one particu-
lar pose in each of the three nested poristic
families.

(3) Let us now assume that charF # 2,3 is
a prime p. Then it is rather elementary to
verify that the coefficient matrices of the
conics in the pencil are matrices propor-
tional to

L(gﬁ—4%gﬁ+2o,kew.

(Note the denominator.) The base 4p can
never be a generator of the multiplicative
group in some GF (p), for odd powers of 2
cannot be reached. Hence, the number of
conics in the Yff pencil is at most £(p — 1).

In Tab. 1, we have collected those primes
17 < p < 2011 for which in PG(2,p) the
number y of conics in the discrete exponen-
tial pencil and of Yff porisms is less than

s(p—1).

In the case of a prime p = F(k) = 22" +1,
we have observed that y(p) = 2% if k €
{1,2,3,4}. Unfortunately, the projective
plane of order F'(0) = 3 does not fit. Since
no prime F(k) with & > 5 is known (as to
October 2024), it is therefore also unclear,
whether there do exist further finite projec-
tive planes of Fermat prime order F'(k) that
allow for only 2% Yff porisms.

Applying Thm. 3.5 to all results in this sec-
tion leads to all possible variants of chains of
rational Yff porisms in finite planes. Thms.

17 31 41 43 73] 89
4 5 100 7 9 11

97/ 109 113
241 18] 14

229| 233| 241
29 12} 38

127) 137 151} 157 193] 223
T 34 15 26| 48] 37

251| 257 277 281| 283 307
25§ 47 35 47 51

313| 331 337
78 15 21

353| 397| 401| 409) 431 433| 439 449 457

441 22/ 100| 102| 43| 36| 73] 112 38

499 521f 569 571 577 593| 601) 617 631
83| 130 142 57| 72| T4 25 77 45

641| 643| 673| 683 691 727 733 739 761
42| 107 24 11| 115 121f 122} 123| 190

769 809 811| 827 881 911| 919 929 937
192| 202| 135 214 55 91} 153| 232 117

953 971 977 9971009 1013|1021{1033|1049
341 97 244] 166| 252| 46| 170] 129| 131

1051/1069|1093|1097]1103| 1129[1153|1163(1181
175 170] 182 137 29| 282 144] 83| 118

1193/1201]1217)1249]1289(1297 {1321|1327|1361
149) 150] 76| 78 161] 324 | 30 221] 340

1399(1409|1423|1429(1433(1459 {1471{1481|1489
233| 352| 237 42| 179 243 | 245| 185 372

1553(1579/1597/1601{1609(1613 {1627/1657| 1697
97| 263| 266| 200] 201| 26| 271 46| 424

1699(1709/17211723|1753(1777 (17891801 1811
283| 122 215 287 73] 37| 298] 25 181

1831/1873|1889|1913|1933(1993 {199912003{2011

< U UIWNUIWUIWU|WNU|WUTU|WTU|IWTU|IWTVI<WT|<T|<WT|< T

305| 468| 236| 239) 322| 498 | 333| 143| 201

Table 1: Orders p of planes PG(2,p) in
which the number y of subsequent regular
conics and porisms in the discrete exponen-
tial Yff pencil is less than 1(p — 1).

4.1, 4.2, and 4.3 remain valid if we apply
any regular projective transformation to N,
M, and the interscribed triangle family.
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5 Some Euclidean proper-
ties of the Yff porism

For the sake of completeness, we shall end
the study of the Yff pencil and Yff porism
by adding some results concerning the Eu-
clidean plane. We restrict ourselves to a
small number of moving points.

5.1 Some central orbits

With the parametrization of the triangles
in the poristic family from (5) and (7) we
can immediately determine the orbits of tri-
angle centers. Many of them turn out to
be centers which still does not answer the
question raised in [5] why there are so many
elliptic orbits. Of course, since each trian-
gle vertex takes the role of any other vertex,
the orbits of centers are traced three times
by the corresponding center. We can state:

Theorem 5.1. The orbits of the triangle
centers X; of a triangle A traversing the Yff
porism in the Euclidean plane with Kimber-
ling indices 1 = {2,3,4,5,6} are ellipses.

Proof. The centroid X, is the harmonic
conjugate of the ideal line w := a : b : ¢,
i.e., the pole of w with respect to A. Hence,
we obtain a parametrization of the one-
parameter family of centroids with triangle
center function

be(u® + v8) + 3bcuv(ut + v?)
+(b—c)(b+c—2a) (vt —u*)uv
—(3a® — 8ab + 2ac + b* — 4c*)u'v?
—(3a* + 2ab — 8ac — 4b* + *)uv?
—(6a*—6ab—6ac—3b*+5bc—3c)v3u?

1.e., the second and third coordinate func-
tion can be obtained by cyclically replacing
a, b, ¢, while we keep the parameters u and
v in their place.

Implicitization of the latter parametrization
yields the quadratic trivariate form

OQZ E

cyclic

—(2a(b+c) — b% + bc — 2

ala + b+ c)z?

Jyz =0,

which is the equation of a conic centered at
the yet unknown triangle center with the
generating trilinear center function

2(b + c)a* — (3b* + 5bc + 3c*)a
+(b+ ¢)(b* — 3bc + 2).

The orbits of the circumcenter, the ortho-
center, the nine-point center, and the sym-
median point are determined in the same
way, once a parametrization of the respec-
tive centers is known. The circumcenter
X3 is the center of the circumircle U of
A = P, P, P; with the equation

U: > rauv(u + v) (bc(b —c)(u® —v?)

cyclic
+((b+c)a* —abe—b*+2b%c—bc* —¢
+((b+c)a2—abc—b3—620+2602—C3)uv2>
+(a2bc (u?+v?) (ut —u?
+a((b+c)a®+3abc— (b— c)(62+c ))uPv
—a((b+c)a*—3abc—(b—c)(b*+c?) ) uv
—(a*—(3b—2¢)a —2(b2+c) 2
+(30* —4b*c+bc?

)UU

—2c%)a+(b* —c*)*)utv?

—(a*+(2b—3c)a® - (b2+c ) 2
— (203 —b?c+4bc* —3c2)a+ (V? — *)?)uPo?
—(+2a*—(b+c)a? —(4b2—5bc+402)a2

(c+b)(b*—4bc+c?)a+ 2(b*—

)y
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Now, it is rather elementary to determine
the center of U as the pole of w with respect
to U. We omit writing down the rather
lengthy parametrization of the circumcen-
ters. The elimination of the homogeneous
parameter u : v # 0 : 0 yields the equa-
tion of an ellipse centered at the unknown
triangle center

C5 = a((b+ c)a* — (20 + 5bc + 2¢?)a®+
4be(b + c)a*+
(26 + 3¢ — 4b*c® + bc3 + 2¢t)a
—(b—c)*(b+c)®) =

The orthocenter X, is the intersection of
A’s altitudes. Note that in terms of trilin-
ear coordinates, the homogeneous trilinear
coordinates of the altitudes are found as

h, = Pr X G(pz X pj)
with (4,7, k) € Js, where
J3 = {(17 27 3)7 (27 37 ]-)7 (37 ]" 2)}’

and p; are homogeneous coordinate vectors
of the vertices P;, and G is the singular 3x 3
matrix

1 —cosC —cosB
G = —cosC 1 —cos A
—cosB —cosB 1

ruling the orthogonality in A’s plane (cf.
[13, p. 29]). We recall that the cosines of A’s
interior angles can be expressed in terms of
its side lengths as rational functions:

cos A= (b* + —a?)/(2bc) (cyclic).
The intersection of any two altitudes re-

sults in a rather lengthy homogeneous
parametrization of the orthocenter’s trace,

which after implicitization, again results in
a conic C, with the equation

C4: 21: x2a(a2_b2_02)
(a* (b +)a’ (B +-e2)at (be) (b—c)?)

—((L*+bc+c?)at
—2(b? —?)?a*+ (b —be+c?) (b —c*)?)yz=0

centered at the yet unknown triangle center
with the trilinear center function

Cy=(b?—be+c?)a* — 2(b+c)(b*—be+c?)a’
+2bc(b—c)?a?
+2(b+c)(D*—be+c*) (b—c)?a
— (b =3bc+c*)(b* —c*)? :: .

In order to verify the statement for Xj,
we recall that the nine-point center is the
circumcenter of the medial triangle A,, =
My MsMs with M; being the midpoint of
the segments M;M; (again with (7,7, k) €
J3). Note that the midpoint of the seg-
ment M;Mj, is the harmonic conjugate of
the ideal point of the line [M;, M| with re-
spect to M; and Mj,.

The symmedian point X is the perspector
of A and its tangent triangle A, = 111573
whose vertices T} are the intersections of the
tangents ¢; and t; of the circumcircle U at
P; and Py. O

In a similar way, we can show that Xz5 (the
isotomic conjugate of X;) traces the conic

Crs o > 2?a(a* + 0>+ &) — ((B*+c*)a?
cyclic

+2bc(b + ¢)a — be(b* — be 4+ 2¢?) )yz = 0
which is centered at Xg =0+ c—a :.

Triangle centers of the initial triangle that
lie on M trace M three times. These are
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envelope of
Euler lines

Figure 12: Top: Some triangles in the Eu-
clidean Yff porism and the traces of the tri-
angle centers X1, ..., Xs.

Bottom: Close-up of the top figure includ-
ing the envelope of the Euler lines.

the 124 triangle centers X; with Kimberling
indices (< 63000)

i € {88,100, 162, 190, 651, 653, 655, 658, 660, 662, 673, 771,
799, 823,897, 1156, 1492, 1821, 2349, 2580, 2581, 3257,
4598, 4599, 4604, 4606, 4607, 8052, 20332, 23707, 24625,
27834, 29059, 32680, 34085, 34234, 36083 — 36102,
37128 — 37143, 37202 — 37223, 38340, 40110, 43069,
43192, 43757 — 43764, 45875, 46116 — 46122, 55321,
55325, 55328, 55331, 60055 — 60057, 61240, 62535}

The same holds true for the inconic N,
where the following 24 triangle centers with
Kimberling numbers (< 63000) orbit three

times:

1 € {244, 678, 2310, 2632, 2638, 2643, 3248, 4094,
4117,10501, 24012, 41211, 42074 — 42084, 52302

Further, 204 centers lie on the antiorthic
axis L1 : * +y + 2z = 0 which have the
following Kimberling indices (< 63000):

i € {44,649, 650, 652, 654, 656, 657, 659, 661, 672, 770, 798,
822, 851,896,899, 910, 1155, 1491, 1575, 1635, 1755,
2173, 2182, 2183, 2225, 2227 — 2240, 2243 — 2247,

2252 — 2254, 2265, 2272, 2290, 2312 — 2315, 2348,
2483, 2484, 2503, 2509, 2511, 2515, 2516, 2522, 2526,
2578, 2579, 2590, 2591, 2600, 2610, 2624, 2630, 2631,
2635, 2637, 2641, 2642, 3000, 3013, 3287, 3330, 3768,
4394, 4724, 4782, 4784, 4790, 4813, 4893, 4979, 7655,
7659, 8043, 8061, 9356, 9360, 9393, 9404, 9508, 9511,
10495, 13401, 14298, 14299, 14300, 15586, 17410, 17418,
17420, 18116, 20331, 20979, 21127, 21894, 22108, 22443,
23503, 24533, 24750, 25143, 20357, 29361, 30600, 38472,
39690, 40109, 40137, 40338, 44151, 44319, 45877,

45881 — 45886, 46380 — 46393, 47777, 47810, 47811,
47826 — 47828, 47842, 48019 — 48033, 48160, 48162,
48193, 48194, 48213, 48226, 48244, 48544, 48572, 50328,
50335, 50336, 50349, 50350, 50358, 50359, 50454, 50455,
50505, 50525, 53300, 54258, 54277, 54278, 55216, 57164,
58288, 58374, 58773, 58842}

Fig. 12 (top) shows the orbits of X7, ..., X;
in the Euclidean Yff porism. The bottom of
Fig. 12 shows a close-up of the central or-
bits together with the envelope of the Euler
lines, which is a sextic curve.

6 Final remarks

The construction of further Yff porisms by
means of tracing the exponential pencil (14)
or by applying harmonic homologies to ex-
isting pairs of conics leaves open, whether
field extensions enrich the family of Yff
porisms or not. The number of points,
lines, and even conics in the extended plane
is definitely raised. This does not nec-
essarily mean that the exponential pencil
contains more members. In principle, the
parametrization of the exponential pencil
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(14) can be evaluated at any value taken
from the underlying field. However, it is
unclear if matrix powers evaluate to mean-
ingful matrices if we insert elements from
the extension of a finite field, since discrete
logarithms evaluate only to integers.
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