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overview

Euclidean parallelians just a special case
parallelian conics in- and circumscribed, tangent conics
porisms triangles, hexagons, . . .
projective view on some Euclidean objects:

Steiner in- & circumconic, Steiner deltoid
elliptic curves and special pivot point

special cases Euclidean version, Yff conics, . . .

2



parallelians and the parallelian conic P
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triangle ∆ = ABC, pivot point P /∈ ∆⋆

[1, 2] ‖ [C,A], [1, 2] ∋ P (cyclic)

The parallelians 1, . . . , 6

lie on a single conic P, parallelian conic.

proof:

1, . . . , 6 fulfill the Pappos criterion

[1, 2] ∩ [4, 5]=P =U,

[2, 3] ∩ [5, 6]=C=V .

It remains to show that

[3, 4] ∩ [6, 1]=W ∈ [U, V ]

63V ∼ 14U and [6, 3] ‖ [1, 4], . . .

=⇒ ∃ central similarity with center

[6, 1] ∩ [3, 4]=W

and 6 7→ 1, 3 7→ 4, V 7→ U.

=⇒ U, V,W are collinear.
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projective in nature
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replace ideal line ω with some line g ideal points of [A,B], . . .=⇒ C⋆ = [B,C] ∩ g . . .

1, . . . , 6 . . . g-parallelians of P

1, . . . , 6 lie on the g-parallelian conic P

proof:

labelling of g-parallelians already indicates

that g equals the Pascal axis
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236145 hexagon interscribed to P and I =⇒ ∃ a hexagon porism
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g-Steiner inconic
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The locus of pivot points P such that P touches g

is an inconic S of ∆.

If g = ω, then S = Steiner inellipse,

contact points of S and ∆⋆ are the

harmonic conjugates of

C⋆ w.r.t. (A,B) (cyclic).
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parallelian conics: in-, circum-, tangent, and . . .
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The points Ti j :=ti∩tj with (i j) ∈

{(2, 3), (3, 6), (6, 1), (1, 4), (4, 5), (5, 2)}

lie on a single conic T ,

the g-parallelian tangent conic.

T is the polar image of I w.r.t. P .

U is the polar image of P w.r.t. T .

The existence of a single interscribed hexagon between pairs of conics (I,P),

(P,T ), (T ,U), . . . guarantees the existence of poristic families of hexagons between

any pair of subsequent conics.
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regularity of P, g-Steiner circumconic and g-anticomplentary triangle

A B

CCCCCCCCCCCCCCCCC

G

A⋆

B⋆

C⋆

A′′

B′′

C′′

g
C

Q

The g-parallelian conic P is singular

⇐⇒ pivot P on g-Steiner circumconic C.

The “vertices” of singular g-parallelian

conics P lie on the three-cusp-quartic Q.

Q = polar image of C⋆ w.r.t. ∆

=⇒ Q = g-Steiner deltoid

cusp tangents concur in g’s ∆-pole G

The pivots on the sides of the

g-anticomplentary triangle ∆a = A
′′B′′C′′

produce singular g-parallelian tangent co-

nics T .
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a pencil of the thrid kind
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The conics I, P, T , U , . . . lie in a pencil of the 3rd kind.

common pole P ,
common polar p = [A⋆⋆, B⋆⋆, C⋆⋆] with
A⋆⋆ as the harmonic conjugate of P
w.r.t. to (3, 4), . . .

=⇒
This allows for a simple linear construction of p.
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making T a g-parabola
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Choosing the pivot point P on the elliptic sextic ST
=⇒ g-parallelian conic T is tangent to g

A, B, C are tacnodes on ST with tangents

through A⋆, B⋆, C⋆

A, B, C are flat points on a linear branch of ST

harm. conjugates DA of A⋆ w.r.t. (B,C) (cyclic)

are further double points with tangents

through A⋆⋆ = g ∩ [A,DA] (cyclic)
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T tangent to g
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tangent triangles – triangle and hexagon porisms
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tangents of P at 1, 3, 5 −→ triangle ∆U = U1U2U3
tangents of P at 2, 4, 6 −→ triangle ∆V = V1V2V3

∆U , ∆V equipped with a common circumconic D

(D,P) allow for a triangle porism

hexagon U1V1U2V2U3V3 has an inconic J

(D,J ) allow for a hexagon porism
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porisms of triangles, quadrilaterals, . . .
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Choosing the pivot P on the elliptic cubic C3
=⇒ triangle porism between J and P

Choosing the pivot P on the elliptic cubic C4
=⇒ quadrangle porism between J and P

The triangles built by triangles at A⋆, B⋆, C⋆ are perspective to each other and ∆
with common perspectrix g and its ∆-pole as common perspector.
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repeated polarization . . .

. . . produces a chain of nested porisms.

1. chain generated by (P, T ), family of hexagons

2. chain genearted by (D,P), family of triangles

3. chain genearted by (D,J ), family of hexagons

=⇒ The g-parallelians give rise to three

different and independent chains of porisms!

Are there more universal porisms?
except colllinear images of Yff pencil
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Thank You for Your Attention!
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