Projective Parallelians and related Porisms

Boris Odehnal

University of Applied Arts Vienna

overview

Euclidean parallelians just a special case

parallelian conics in- and circumscribed, tangent conics

porisms triangles, hexagons, ...

projective view on some Euclidean objects:

Steiner in- & circumconic, Steiner deltoid

elliptic curves and special pivot point

special cases Euclidean version, Yff conics, ...

parallelians and the parallelian conic ${\cal P}$

The parallelians $1, \ldots, 6$ lie on a single conic \mathcal{P} , parallelian conic. proof:

1, . . . , 6 fulfill the Pappos criterion

$$[1, 2] \cap [4, 5] = P = U$$

$$[2,3] \cap [5,6] = C = V.$$

It remains to show that

$$[3, 4] \cap [6, 1] = W \in [U, V]$$

$$63V \sim 14U$$
 and $[6, 3] \parallel [1, 4], \dots$

 \implies \exists central similarity with center

$$[6, 1] \cap [3, 4] = W$$

and
$$6 \mapsto 1$$
, $3 \mapsto 4$, $V \mapsto U$.

 \implies *U*, *V*, *W* are collinear.

projective in nature

replace ideal line ω with some line g

ideal points of [A, B], ... $\Longrightarrow C^* = [B, C] \cap g$... 1, ..., 6 ... g-parallelians of P

1, . . . , 6 lie on the g-parallelian conic \mathcal{P} proof:

labelling of g-parallelians already indicates that g equals the Pascal axis

236145 is tangent to the g-parallelian inconic \mathcal{I} proof:

define
$$l_1 = [2, 3], l_2 = [3, 6], ...$$

 $[l_1 \cap l_2, l_4 \cap l_5] = [P, A^*], ...$
 $\implies P$ is the Pascal point

236145 hexagon interscribed to $\mathcal P$ and $\mathcal I\Longrightarrow\exists$ a hexagon porism

g-Steiner inconic

parallelian conics: in-, circum-, tangent, and ...

The points $T_{ij} := t_i \cap t_j$ with $(ij) \in \{(2,3), (3,6), (6,1), (1,4), (4,5), (5,2)\}$ lie on a single conic \mathcal{T} , the g-parallelian tangent conic.

 $\mathcal T$ is the polar image of $\mathcal I$ w.r.t. $\mathcal P$. $\mathcal U$ is the polar image of $\mathcal P$ w.r.t. $\mathcal T$.

The existence of a single interscribed hexagon between pairs of conics $(\mathcal{I}, \mathcal{P})$, $(\mathcal{P}, \mathcal{T})$, $(\mathcal{T}, \mathcal{U})$, ... guarantees the existence of poristic families of hexagons between any pair of subsequent conics.

regularity of \mathcal{P} , g-Steiner circumconic and g-anticomplentary triangle

The g-parallelian conic \mathcal{P} is singular \iff pivot P on g-Steiner circumconic \mathcal{C} .

The "vertices" of singular g-parallelian conics \mathcal{P} lie on the three-cusp-quartic \mathcal{Q} . $\mathcal{Q} = \text{polar image of } \mathcal{C}^{\star} \text{ w.r.t. } \Delta$ $\Longrightarrow \mathcal{Q} = g$ -Steiner deltoid cusp tangents concur in g's Δ -pole G

The pivots on the sides of the g-anticomplentary triangle $\Delta_a = A''B''C''$ produce singular g-parallelian tangent conics \mathcal{T} .

a pencil of the thrid kind

making \mathcal{T} a g-parabola

$\mathcal T$ tangent to g

tangent triangles – triangle and hexagon porisms

porisms of triangles, quadrilaterals, ...

The triangles built by triangles at A^* , B^* , C^* are perspective to each other and Δ with common perspectrix g and its Δ -pole as common perspector.

repeated polarization ...

- ... produces a chain of nested porisms.
- 1. chain generated by $(\mathcal{P}, \mathcal{T})$, family of hexagons
- 2. chain genearted by $(\mathcal{D}, \mathcal{P})$, family of triangles
- 3. chain genearted by $(\mathcal{D}, \mathcal{J})$, family of hexagons
- \implies The *g*-parallelians give rise to three different and independent chains of porisms!

Are there more universal porisms? except colllinear images of Yff pencil

Thank You for Your Attention!

some references

- [1] E. Brieskorn, M. Knörrer: *Plane Algebraic Curves*. Birkhäuser, Basel, 1986.
- [2] A. del Centina: Poncelet's Porism: a long story of renewed discoveries I. Arch. Hist. Exact Sci. 70/1 (2016), 1–122.
- [3] J.L. Coolidge: A Treatise on Algebraic Plane Curves. Dover Publications, New York, 1959.
- [4] L. Flatto: *Poncelet's theorem*. American Mathematical Society, Providence, RI, 2008.
- [5] L. Halbeisen, N. Hungerbühler: *The exponential pencil of conics.* Beitr. Algebra Geom. **59** (2018), 549–571.
- [6] C. Kimberling: *Triangle Centers and Central Triangles.* (Congressus Numerantium Vo. 129) Utilitas Mathematica Publishing, Winnipeg, 1998.
- [7] C. Kimberling: Yff conics. J. Geom. Graphics 12/1 (2008), 23–34.
- [8] C. Kimberling: *Encyclopedia of Triangle Centers*. Available at: https://faculty.evansville.edu/ck6/encyclopedia/ETC.html
- [9] H. Koncul, B. Odehnal: Conics and Transformations defined by the Parallelians of a Triangle. Submitted.
- [10] B. Odehnal: *Universal Porisms and Yff Conics*. KoG **28**/28, (2024) 11–24.
- [11] H. Stachel, G. Glaeser, B. Odehnal: *The Universe of Conics.* From the Ancient Greeks to 21st century developments (2nd edition), Springer-Verlag, Berlin Heidelberg, 2024.
- [12] N.J. Wildberger: Divine Proportions: Rational Trigonometry to Universal Geometry. Wild Egg Pty. Ltd., Australia, 2005.