14th International Conference on Geometry and Graphics, August 5 – 9, 2010, Kyoto, Japan

Equioptic Points of a Triangle

Boris Odehnal

Vienna University of Technology

outline

- ◊ equioptic point / curve
- \diamond equioptic circle
- \diamond triangle
- ◊ equioptic points of a triangle
- ♦ special cases
- \diamond the common radical axis and some related triangle centers
- \diamond more equioptic points

equioptic curve

 $\begin{array}{l} X \text{ is a point on the equioptic curve} \\ e \text{ of two curves } c_1 \text{ and } c_2 \\ & \longleftrightarrow \\ c_1 \text{ and } c_2 \text{ are seen under equal} \\ \text{ angles from } X \end{array}$

equioptic circle

The equioptic curve of two circles ist the Thales circle of the segment bounded by the internal and external center of similitude, cf. [2].

triangle - notations

triangle $\Delta = (A, B, C)$ incenter X_1 , excenters I_j incircle Γ , excircles Γ_j vertices of $\Delta =$ internal centers of similitude of excircles

external centers of similitude

Theorem.

The external centers of similitude of the excircles are collinear.

Proof.

Obviously $S_{12} = [A, B] \cap [I_1, I_2].$

We see that (I_2, I_1, C, S_{12}) and (A, B, S_3, S_{12}) form harmonic quadrupels.

Cyclically reordering $\iff S_{31} \in [S_{12}, S_{23}]$ and $[S_{12}, S_{23}]$ is the polar of X_1 with respect to Δ and its excentral triangle.

centers of equioptic circles

Theorem.

The centers T_{ij} of the equioptic circles are collinear.

Proof.

 T_{12} = midpoint of *C* and S_{12} . Use trilinear coordinates in order to compute T_{ij} and show linear dependencies.

equioptic points

Observation.

The three equioptic circles of the excircles have up to two (real) common points.

some centers

Theorem.

The three equioptic circles e_{ij} of Δ 's excircles Γ_i and Γ_j belong to a pencil of circles and thus there are up to two (real) equioptic points.

Theorem.

The common radical axis carries Δ 's centers with Kimberling number, cf. [1]:

4, 9, 10, 19, 40, 71, 169, 242, 281, 516, 573, 966, 1276, 1277, 1512, 1542, 1544, 1753, 1766, 1826, 1839, 1842, 1855, 1861, 1869, 1890, 2183, 2270, 2333, 2345, 2354, 2550, 2551, 3496, 3501.

two special cases – unique equioptic points

$$\angle ACB = 2 \arcsin(\sqrt{3} - 1) \approx 94.117^{\circ}$$

 $\omega = 2 \arcsin\left(\frac{3-\sqrt{3}}{2}\right) \approx 76.688^{\circ}$

10

a unique equioptic point

A **generic triangle** has a unique equioptic point if and only if

$$6a^2b^2c^2 + 4\sum_{cyclic}(a^3b(b^2 - \hat{a}c)) =$$

$$= \sum_{cyclic} (a^{6} + 2\hat{a}a^{5} - a^{4}(\hat{a}^{2} + 4bc)).$$

Right angled triangles cannot have unique equioptic points.

more circles - more centers of similitude

 S_i = internal center of similitude of Γ_i and Γ

 Δ 's *i*-th vertex = external center of similitude of Γ and Γ_i

 S_i , S_j , and S_{ij} are collinear

triplets of incircle and two excircles

Theorem.

The centers T_i , T_j , T_{ij} of the three equioptic circles e_i , e_j , e_{ij} of any triplet $(\Gamma_i, \Gamma_j, \Gamma)$ are collinear.

Theorem.

Any triplet (e_i, e_j, e_{ij}) of equipptic circles has a common radical axis r_k .

Theorem.

Any triplet $(\Gamma_i, \Gamma_j, \Gamma)$ has up to two equioptic points.

all together

Theorem.

The three radical axes r_k are concurrent in a new triangle center G.

references

[1] C. Kimberling: Encyclopedia of triangle centers. Available at: http://www.faculty.evansville.edu/ck6/encyclopedia/ECT.hml

[2] B. Odehnal: *Equioptic curves of conic sections*. J. Geom. Graphics **14**/1 (2010), 29–43.

Thank You for Your Attention!