20th Scientific-Professional Colloquium on Geometry and Graphics | Fužine, Croatia, September 3 – 7, 2017

Generalized Conchoids

Boris Odehnal University of Applied Arts Vienna

the next 15+ ε minutes ($\varepsilon \gg 0$)

conchoids basic properties line geometric version sphere geometric version further ideas modification of the classical definition of the conchoid transform within quadrics linear and quadratic transformations linear: three basic types Study's quadric, Möbius geometry

conchoids in the plane - definition

F, I, d ... focus, directrix, offset c, \overline{c} ... two branches of the conchoid

The conchoid is the set of points at distance *d* from *l* measured on lines through *F*.

F, I, δ ... focus, directrix, cross ratio $c_{\delta}(I) \ldots \delta$ -conchoid of I

The δ -conchoid transform X of $L \in I$ is determined such that $cr(F, \infty, L, X) = \delta$.

Does not look spectacular, but allows a generalization to other geometries and preserves the type of the geometric object to be transformed.

More general than before:

Definition: Let P_i $(i \in \{0, 1, 2\}$ be three non-collinear points on a quadric Q s. t. $\pi :=$ $[P_0, P_1, P_2] \not\subset Q$ and π be not tangential to Q. Then, the uniquely defined point $P_{\delta} \in \pi \cap Q$ with $\operatorname{cr}(P_0, P_1, P_2, P_{\delta}) = \delta$ is called the δ **conchoid transform** of either P_i w. r. t. any pair (P_j, P_k) $(i \neq j, k; j \neq k)$ and P_j and P_k are called the **foci** of the conchoid transform.

If we allow any permutation of (i, j, k), then **the** cross ratio is one of

$$\delta, \frac{1}{\delta}, 1-\delta, \frac{1}{1-\delta}, \frac{\delta-1}{\delta}, \frac{\delta}{\delta-1}.$$

In the following, we keep the ordering P_0 , P_1 , P_2 ; and P_δ be the conchoid transform of P_2 w. r. t. P_0 and P_1 .

conchoid transformation

Theorem: Let Ω : $\mathbb{F}^{n+1} \times \mathbb{F}^{n+1} \to \mathbb{F}$ be a symmetric bilinear form on the vector space \mathbb{F}^{n+1} (\mathbb{F} be a commutative field with char $\mathbb{F} \neq 2$) and \mathcal{Q} : $\Omega(\mathbf{x}, \mathbf{x}) = 0$ be the equation of a quadric $\mathcal{Q} \subset \mathbb{P}^n(\mathbb{F})$ and let further $\delta \in \mathbb{F} \cup \{\infty\}$. Then, the intrinsic conchoid transform of P_2 within \mathcal{Q} w.r.t. P_0 , P_1 reads

$$\mathbf{p}_{\delta} = \delta(\delta - 1)\Omega_{12}\mathbf{p}_0 + (1 - \delta)\Omega_{02}\mathbf{p}_1 + \delta\Omega_{01}\mathbf{p}_2. \qquad (\star$$

 $\mathbf{p}_i \dots \text{coordinate vector of } P_i, \qquad \Omega_{ij} := \Omega(\mathbf{p}_i, \mathbf{p}_j)$

Proof: Project the line $[P_1, P_2]$ from P_0 onto Q, observe that (\star) returns P_1, P_2, P_0 for $\delta = 0, 1, \infty$, and show that $P_{\delta} \in Q$ by showing $\Omega(\mathbf{p}_{\delta}, \mathbf{p}_{\delta}) = 0$ for all $\delta \in \mathbb{F} \cup \{\infty\}$.

The cross ratio can be replaced by a homogeneous coordinate $d_0: d_1 \neq 0: 0$ on the conic $[P_0, P_1, P_2] \cap Q$ via $\delta = d_1 d_0^{-1}$ ($d_0 \neq 0$, otherwise $\delta = \infty$ and $P_{\delta} = P_0$).

conchoid transformation

Theorem: For any two fixed $P_i \neq P_j$ the conchoid transform P_{δ} of P_k in any regular quadric Q: $\Omega(\mathbf{x}, \mathbf{x}) = 0$ can be extended to an automorphic collineation of Q.

Proof: Assume that P_0 , P_1 are the (fixed) foci of the conchoid transform (*) and assume $P_2 =$ **x**. Then, Ω_{02} and Ω_{12} are linear in **x** and neither is a scalar factor of $P_2 =$ **x** in (*).

The generalized conchoid transform is involutive if, and only if, $\delta = -1$.

The line geometric conchoid transform takes place within Plücker's quadric

$$M_2^4$$
: $\langle \mathbf{I}, \bar{\mathbf{I}} \rangle = l_1 l_4 + l_2 l_5 + l_3 l_6 = 0.$

 $\mathbf{I} = (l_1, l_2, l_3), \ \bar{\mathbf{I}} = (l_4, l_5, l_6) \dots \text{ direction, momentum of a line } L,$ $(l_1, \dots, l_6) \dots \text{Plücker coordinates of } L$

The line geom. conchoid transform preserves ruled surfaces, congruences, and even complexes of lines.

The fibres of the line geom. conchoid transform correspond to the conics in M_2^4 , and are, thus, reguli:

that family of rulings on the "fibre quadric" that contains P_0 , P_1 , and P_2 .

Two types of line geometric conchoid transforms:

(1) $P_0 \cap P_1 = \emptyset \iff \Omega_{01} \neq 0$ and (2) $P_0 \cap P_1 = S \iff \Omega_{01} = 0$ in the followig: $B_i = i^{\text{th}}$ canonical base point

(1) $P_0 = B_1$, $P_1 = B_4$, $P_2 = L = (l_1, \dots, l_6)$ $L_{\delta} = (\delta^2 l_1, \delta l_2, \delta l_3, l_4, \delta l_5, \delta l_6) \dots$ collineation κ with matrix $M = \text{diag}(\delta^2, \delta, \delta, 1, \delta, \delta)$ $f := [P_0, P_1] \dots$ fixed, but not point wise $\kappa|_f : L^f \to L', (\kappa|_f)_{\{P_0, P_1\}} = \text{diag}(\delta^2, 1)$ $F := [B_2, B_3, B_5, B_6] \dots$ fixed point wise $t = [L^f, L^F] \ni L \dots$ unique "Treffgerade"

 $L_0, L_1 \dots$ projections of L from P_0, P_1 to $[L', L^F]$ $\operatorname{cr}(L', L^F, L_0, L_\delta) = \delta^{-1}$ or $\operatorname{cr}(L', L^F, L_1, L_\delta) = \delta$.

(2) κ is just a projection onto the 1-dimensional subspace $[P_0, P_1]$.

Example 1:

focal lines: $P_0 = (0, -1, 2, 0, -2, -1)$, $P_1 = (0, 0, 1, 1, 0, 0)$, cross ratio: $\delta = -\frac{1}{2}$ ruled surface: $P_2(t) = (t^2 + t, t - t^2, 2, -t^2 - t, t^2 - t, t^4 + t^2)$ with $t \in \mathbb{R}$ fibre quadric \mathcal{F} : at $t_0 = \frac{1}{2}$

Example 2:

Torsality is preserved under the line geometric conchoid transform.

The tangent developable of $\left(t, \frac{1}{2}t^2, \frac{1}{3}t^3\right)$ transforms via (1) to the tangent developable of $\left(\frac{1}{\delta}t, \frac{1}{2\delta}t^2, \frac{1}{3}t^3\right)$ for any admissible cross ratio $\delta \in \mathbb{R}^*$.

Only x- and y-coordinates are scaled with δ^{-1} .

The relative position of P_0 and P_1 w. r. t. the ruled surface matters.

conchoid transformation - a quadratic transformation in line space

 $P_{0} = (0, 1, k, 0, -ek, e) \text{ with } (e, k \in \mathbb{R}),$ $P_{1} = (I_{1}, \dots, I_{6}), P_{2} = (0, 0, 0, I_{1}, I_{2}, I_{3})$ $I_{i} : I \subset \mathbb{R} \to \mathbb{R} \iff P_{1}(t) : I \to M_{2}^{4} \text{ is a ruled surface.}$

The focal line P_1 traverses a ruled surface and the line geometric conchoid transform is applied to P_1 's **absolute polar** (line) (polar w. r. t. the absolute quadric).

 $P_2 \mapsto P_{\delta}$ is obviously quadratic in the I_i s.

Cylinders are mapped to cylinders. App. 1

Cylinders of revolution are mapped to elliptic cylinders.

conchoid transformation - a quadratic transformation in line space

The two ruled surfaces on one ruled quadric are mapped to two different ruled surfaces.

Example 3:

The hyperbolic paraboloid xy = z carries

 $\mathbf{x}_1(u, v) = (u, 0, 0) + w(0, 1, u),$ $\mathbf{x}_2(u, v) = (0, u, 0) + w(1, 0, u).$ With $P_0 = (0, 1, k, 0, -ek, e),$ $e, k \in \mathbb{R}$, they are mapped to two different cubic ruled surfaces.

Ruled quadrics are mapped to quartic ruled surfaces (in general).

conchoid transformation - sphere geometry

The sphere geometric conchoid transform is a conchoid transform within Lie's quadric

$$L_2^4: \ s_1^2 + s_2^2 + s_3^2 + s_4^2 - s_5^2 - s_6^2 = 0.$$

 $(s_1, \ldots, s_6) \ldots$ Lie coordinates of a sphere $S: \frac{1}{s_6 - s_4}(s_1, s_2, s_3) \ldots$ center, $\frac{s_5}{s_6 - s_4} \ldots$ radius of the sphere $(s_6 - s_4)(x^2 + y^2 + z^2) - 2(s_1x + s_2y + s_3z) + (s_6 + s_4) = 0$ The sphere geometric conchoid transforms preserves channel surfaces,

The fibres of the sphere geom. conchoid transform are one family of spheres that envelope a Dupin cyclide.

distinguished spheres

 $s_6 - s_4 = 0 \dots$ planes $(r = \infty)$, $s_5 = 0 \dots$ points (r = 0, isotropic cone) $(0, 0, 0, 1, 0, 1) \dots$ plane at infinity

conchoid transformation - sphere geometry

Some special spheres can serve as focal spheres of the linear sph. conchoid transform:

$\Gamma_0: \ x^2 + y^2 + z^2 = 0$	(0,0,0,1,0,-1)	isotropic cone with vertex (0, 0, 0)
$\omega: x_0 = 0$	(0,0,0,1,0,1)	plane at infinity = flat sphere
$S_0^2: \ x^2 + y^2 + z^2 = 1$	(0,0,0,1,1,0)	Euclidean unit sphere

Choosing the focal pair (S_0, S_1) as (Γ_0, ω) , (Γ_0, S_0^2) , (ω, S_0^2) yields three special types of linear sphere conchoid transforms.

They all show up as automorphic collineations of L_2^4 with a fixed line f (not point wise) and a fixed three space F (pointwise) and induce sphere preserving contact transformations.

Their action is similar to that of the collineation (1) given on slide 6.

conchoid transformation - sphere geometry

S 0	S ₁	transformation	
Γ	ω	equiform transformation,	
		scaling factor $\delta^{-1} ightarrow$	
Γ ₀	S_{0}^{2}	inversion \downarrow	
ω	S_0^2	Laguerre transformation,	
		$\mathbf{m} \mapsto \delta \mathbf{m}, \ r \mapsto \delta r + \delta - 1 \searrow$	

Note: Dupin cyclides are the sphere geometric analoga to ruled quadrics.

conchoid transformation - sphere geometry - some quadratic transformations

We replace the focal line S_1 by some sphere that is related to the sphere S_2 to be transformed. If $S_2 \mapsto S_1$ is linear in s_i , then $S_2 \mapsto S_\delta$ is quadratic in s_i .

 $S_0 \dots$ one of Γ_0 , ω , S_0^2

 $S_1 \ldots e.g.$ the polar plane of S_2 w. r. t. some point

finally ...

Study's quadric is a model for the set of Euclidean motions in \mathbb{R}^3 . What is the conchoid transform of a Euclidean motion?

Möbius geometry in the plane or on the sphere: Cross ratios of four complex numbers can characterize concyclic points. A conchoid transform is straight forward.

Singular quadrics (like the Blaschke cylinder (cone)) ...

More or less related work

- A. Albano, M. Roggero: *Conchoidal transform of two plane curves.* Applicable Algebra in Engineering, Communication and Computing 21/4 (2010), 309–328.
- M. Hamann, B. Odehnal: *Conchoidal ruled surfaces.* Proc. 15th Internat. Conf. Geometry & Graphics, Aug. 1–5, 2012, Montreal/Canada, article No. 089.
- [3] M. Peternell, D. Gruber, J. Sendra: Conchoid surfaces of rational ruled surfaces. CAGD 28 (2011), 427–435.
- [4] M. Peternell, D. Gruber, J. Sendra: *Conchoid surfaces of spheres.* CAGD **30** (2013), 35–44.
- [5] M. Peternell, L. Gotthart, J. Sendra, J.R. Sendra: Offsets, Conchoids and Pedal Surfaces.
 J. Geom. 106 (2015), 321–339.
- [6] D. Gruber, M. Peternell: Conchoid surfaces of quadrics. J. Symb. Computation 59 (2013), 36–53.
- [7] J. Sendra, J.R. Sendra: *Rational parametrization of conchoids to algebraic curves.* Appl. Algebra Eng. Comm. Comp. 21/4 (2010), 413–428.

Thank You For Your Patience!

Appendix 1

The quadratic conchoid transform maps cylinders to cylinders.

Proof: Let $P_0 = (0, 1, k, 0, -ek, e)$ with $e, k \in \mathbb{R}$ (const.) and $P_1 = (v_1, v_2, v_3, v_4, v_5, v_6)$ be the Plücker representation of a cylinder, *i.e.*, $\mathbf{p}_1 = (v_1, v_2, v_3) \in \mathbb{R}^3$ s. t. $\|\mathbf{p}_1\| = 1$ and $\mathbf{p}_1 = \text{const.}$, further $\mathbf{\bar{p}}_1$, $\mathbf{\bar{p}}_1 : I \subset \mathbb{R} \to \mathbb{R}^3$ are not constant. Then, $P_2 =$ $(\mathbf{o}, \mathbf{p}_1) = \text{const.}$ and $\Omega_{12} = 1$. Since $\mathbf{p}_0 = \text{const.}$, $\Omega_{02} = \text{const.}$ We insert into (1) and compute only $\mathbf{p}_{\delta} = \delta(\delta - 1)\mathbf{p}_0 + (1 - \delta)\langle \mathbf{p}_0, \mathbf{\bar{p}}_1 \rangle = \text{const.}$ which makes $P_{\delta} : I \subset \mathbb{R} \to M_2^4$ the Plücker representation of cylinder since $\mathbf{\bar{p}}_{\delta} : I \subset \mathbb{R} \to \mathbb{R}^3$ is not constant.