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the next 15+ε minutes (ε>>0)

conchoids | modification of the classical definition

basic properties | of the conchoid transform within quadrics

line geometric version | linear and quadratic transformations

sphere geometric version | linear: three basic types

further ideas | Study’s quadric, Möbius geometry



conchoids in the plane - definition
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F , l , d . . . focus, directrix, offset

c , c . . . two branches of the conchoid

The conchoid is the set of points

at distance d from l measured on

lines through F .

F , l , δ . . . focus, directrix, cross ratio

cδ(l) . . . δ-conchoid of l

The δ-conchoid transform X of L ∈ l

is determined such that

cr(F,∞, L, X) = δ.

Does not look spectacular, but allows a generalization to other geometries and

preserves the type of the geometric object to be transformed.

1



conchoids on quadrics

More general than before:

Definition: Let Pi (i ∈ {0, 1, 2} be three

non-collinear points on a quadric Q s. t. π :=

[P0, P1, P2] 6⊂ Q and π be not tangential to Q.

Then, the uniquely defined point Pδ ∈ π ∩ Q

with cr(P0, P1, P2, Pδ) = δ is called the δ-

conchoid transform of either Pi w. r. t. any

pair (Pj , Pk) (i 6= j, k ; j 6= k) and Pj and Pk
are called the foci of the conchoid transform.
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If we allow any permutation of (i , j, k), then the cross ratio is one of
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δ
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1
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,
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δ
,
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.

In the following, we keep the ordering P0, P1, P2; and Pδ be the conchoid transform

of P2 w. r. t. P0 and P1.
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conchoid transformation

Theorem: Let Ω : Fn+1 × Fn+1 → F be a symmetric bilinear form on the vector

space Fn+1 (F be a commutative field with charF 6= 2) and Q : Ω(x, x) = 0 be the

equation of a quadric Q ⊂ Pn(F) and let further δ ∈ F ∪ {∞}. Then, the intrinsic

conchoid transform of P2 within Q w.r.t. P0, P1 reads

pδ = δ(δ − 1)Ω12p0 + (1− δ)Ω02p1 + δΩ01p2. (⋆)

pi . . . coordinate vector of Pi , Ωi j := Ω(pi ,pj)

Proof: Project the line [P1, P2] from P0 onto Q, observe that (⋆) returns P1, P2, P0
for δ = 0, 1,∞, and show that Pδ ∈ Q by showing Ω(pδ,pδ) = 0 for all δ ∈ F∪{∞}.

The cross ratio can be replaced by a homogeneous coordinate d0 : d1 6= 0 : 0 on the

conic [P0, P1, P2] ∩Q via δ = d1d
−1
0 (d0 6= 0, otherwise δ =∞ and Pδ = P0).
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conchoid transformation

Theorem: For any two fixed Pi 6= Pj the con-

choid transform Pδ of Pk in any regular quadric

Q : Ω(x, x) = 0 can be extended to an auto-

morphic collineation of Q.

Proof: Assume that P0, P1 are the (fixed) foci

of the conchoid transform (⋆) and assume P2 =

x. Then, Ω02 and Ω12 are linear in x and neither

is a scalar factor of P2 = x in (⋆).

The generalized conchoid transform is involutive if, and only if, δ = −1.
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conchoid transformation - line geometry

The line geometric conchoid transform takes place within Plücker’s quadric

M42 : 〈l, l〉 = l1l4 + l2l5 + l3l6 = 0.

l = (l1, l2, l3), l = (l4, l5, l6) . . . direction, momentum of a line L,

(l1, . . . , l6) . . . Plücker coordinates of L

The line geom. conchoid transform preserves ruled

surfaces, congruences, and even complexes of lines.

The fibres of the line geom. conchoid transform cor-

respond to the conics in M42 , and are, thus, reguli:

that family of rulings on the “fibre quadric” that con-

tains P0, P1, and P2.

P0 P1

P2

Pδ
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conchoid transformation - line geometry

Two types of line geometric conchoid transforms:

(1) P0 ∩ P1 = ∅ ⇐⇒ Ω01 6= 0 and (2) P0 ∩ P1 = S ⇐⇒ Ω01 = 0

in the followig: Bi = i th canonical base point

(1) P0 = B1, P1 = B4, P2 = L = (l1, . . . , l6)

Lδ = (δ
2l1, δl2, δl3, l4, δl5, δl6) . . . collineation

κ with matrix M = diag(δ2, δ, δ, 1, δ, δ)

f := [P0, P1] . . . fixed, but not point wise

κ|f :L
f →L′, (κ|f ){P0,P1}=diag(δ

2, 1)

F := [B2, B3, B5, B6] . . . fixed point wise

t = [Lf , LF ] ∋ L . . . unique “Treffgerade”

P0

P1
B2

B3

B5

B6

f

FLtLf

LF

L′
L0

L1
Lδ

κ|f

L0, L1 . . . projections of L from P0, P1 to [L′, LF ]

cr(L′, LF , L0, Lδ) = δ
−1 or cr(L′, LF , L1, Lδ) = δ.

(2) κ is just a projection onto the 1-dimensional subspace [P0, P1].
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conchoid transformation - line geometry

Example 1:

focal lines: P0=(0,−1, 2, 0,−2,−1), P1=(0, 0, 1, 1, 0, 0), cross ratio: δ = −12

ruled surface: P2(t) = (t
2 + t, t − t2, 2,−t2 − t, t2 − t, t4 + t2) with t ∈ R

fibre quadric F : at t0 =
1
2

P0

P2(t0)

P1

P2(t)

P0 P1P2

F

F
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conchoid transformation - line geometry

Example 2:

Torsality is preserved under

the line geometric conchoid

transform.

The tangent developable of
(

t, 12t
2, 13t

3
)

transforms via (1)

to the tangent developable of
(

1
δt,
1
2δt
2, 13t

3
)

for any admissible

cross ratio δ ∈ R⋆.

Only x- and y -coordinates are

scaled with δ−1.

The relative position of P0 and P1 w. r. t. the ruled surface matters.
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conchoid transformation - a quadratic transformation in line space

P0 = (0, 1, k, 0,−ek, e) with (e, k ∈ R),

P1 = (l1, . . . , l6), P2 = (0, 0, 0, l1, l2, l3)

li : I ⊂ R → R ⇐⇒ P1(t) : I → M
4
2 is

a ruled surface.

The focal line P1 traverses a ruled surface

and the line geometric conchoid transform

is applied to P1’s absolute polar (line)

(polar w. r. t. the absolute quadric).

P2 7→ Pδ is obviously quadratic in the lis.

P0

P1

Pδ

Cylinders are mapped to cylinders.App. 1

Cylinders of revolution are mapped to elliptic

cylinders.
P0

P1
Pδ
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conchoid transformation - a quadratic transformation in line space

The two ruled surfaces on one ruled quadric are mapped to two different ruled surfaces.

Example 3:

The hyperbolic paraboloid xy = z

carries

x1(u, v) = (u, 0, 0)+w(0, 1, u),

x2(u, v) = (0, u, 0)+w(1, 0, u).

With P0 = (0, 1, k, 0,−ek, e),

e, k ∈ R, they are mapped to two

different cubic ruled surfaces.

Ruled quadrics are mapped to quartic ruled surfaces (in general).
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conchoid transformation - sphere geometry

The sphere geometric conchoid transform is a conchoid transform within Lie’s quadric

L42 : s
2
1 + s

2
2 + s

2
3 + s

2
4 − s

2
5 − s

2
6 = 0.

(s1, . . . , s6) . . . Lie coordinates of a sphere S: 1
s6−s4

(s1, s2, s3) . . . center, s5
s6−s4

. . . radius

of the sphere (s6 − s4)(x
2 + y2 + z2)− 2(s1x + s2y + s3z) + (s6 + s4) = 0

The sphere geometric conchoid transforms

preserves channel surfaces, . . . .

The fibres of the sphere geom. conchoid

transform are one family of spheres that

envelope a Dupin cyclide.

distinguished spheres

s6 − s4 = 0 . . . planes (r =∞),

s5 = 0 . . . points (r = 0, isotropic cone)

(0, 0, 0, 1, 0, 1) . . . plane at infinity

S0

S1

S2

Sδ
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conchoid transformation - sphere geometry

Some special spheres can serve as focal spheres of the linear sph. conchoid transform:

Γ0 : x
2 + y2 + z2 = 0 (0, 0, 0, 1, 0,−1) isotropic cone with vertex (0, 0, 0)

ω : x0 = 0 (0, 0, 0, 1, 0, 1) plane at infinity = flat sphere

S20 : x
2 + y2 + z2 = 1 (0, 0, 0, 1, 1, 0) Euclidean unit sphere

Choosing the focal pair (S0, S1) as (Γ0, ω), (Γ0,S
2
0), (ω,S

2
0) yields three special types

of linear sphere conchoid transforms.

They all show up as automorphic collineations of L42 with a fixed line f (not point

wise) and a fixed three space F (pointwise) and induce sphere preserving contact

transformations.

Their action is similar to that of the collineation (1) given on slide 6.
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conchoid transformation - sphere geometry

S0 S1 transformation

Γ0 ω equiform transformation,

scaling factor δ−1 →

Γ0 S20 inversion ↓

ω S20 Laguerre transformation,
m 7→ δm, r 7→ δr + δ − 1 ց

Note: Dupin cyclides are the sphere geometric analoga to ruled quadrics.
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conchoid transformation - sphere geometry - some quadratic transformations

We replace the focal line S1 by some sphere that is related to the sphere S2 to be

transformed. If S2 7→ S1 is linear in si , then S2 7→ Sδ is quadratic in si .

S0 . . . one of Γ0, ω, S20

S1 . . . e.g. the polar plane of S2 w. r. t. some point
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finally . . .

Study’s quadric is a model for the set of Euclidean motions in R3.

What is the conchoid transform of a Euclidean motion?

Möbius geometry in the plane or on the sphere:

Cross ratios of four complex numbers can characterize concyclic points.

A conchoid transform is straight forward.

Singular quadrics (like the Blaschke cylinder (cone)) . . .
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Thank You For Your Patience!
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Appendix 1

The quadratic conchoid transform maps cylinders to cylinders.

Proof: Let P0 = (0, 1, k, 0,−ek, e) with e, k ∈ R (const.) and P1 = (v1, v2, v3, v4, v5, v6)

be the Plücker representation of a cylinder, i.e., p1 = (v1, v2, v3) ∈ R
3 s. t. ‖p1‖ = 1

and p1 = const., further p1, ṗ1 : I ⊂ R → R
3 are not constant. Then, P2 =

(o,p1) = const. and Ω12 = 1. Since p0 = const., Ω02 = const. We insert into

(1) and compute only pδ = δ(δ − 1)p0 + (1 − δ)〈p0,p1〉 = const. which makes

Pδ : I ⊂ R → M
4
2 the Plücker representation of cylinder since pδ : I ⊂ R → R

3 is

not constant.
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