Workshop & Autumn School: SHAPES, GEOMETRY, AND ALGEBRA

November 17 – 21, 2008, Castro Urdiales, Spain

G^k interpolation with ruled surfaces

Boris Odehnal

Vienna University of Technology

- p. 1/22

1^{st} order contact

2nd order contact

aims & motivation

- G¹ interpolation not sufficiently smooth for design purposes
- G², G³ interpolation with rational ruled surfaces reformulated as an interpolation problem of curves
- suitable model space and some geometric ideas simplify
- conditions on the solvability of interpolation problems

related work

[1] R. Dietz, J. Hoschek, B. Jüttler: *An algebraic approach to curves* and surfaces on the sphere and on other quadrics. Comp. Aided Geom. Design 10 (1993), 211-229. [2] J. Hoschek, H. Pottmann: Interpolation and approximation with developable B-spline surfaces. Mathematical Methods for Curves and Surfaces, 1995. [3] M. Peternell: G^1 -Hermite Interpolation of Ruled Surfaces. In: CAGD, Oslo 2000, Vanderbilt Univ. Press 2001. [4] H. Pottmann, G. Farin: *Developable rational Bézier and B-spline Surfaces.* Comput. Aided Geom. Design **12** (1995). [5] J. Wallner: Hopf mappings for complex quaternions. Beitr. Algebra Geom. 44 (2003), 245–262.

line geometry

line L = (l, l) ∈ ℝ⁶ ... Plücker coordinates with 0 = ⟨l, l⟩ =: ½Ω(L, L)
Klein model of line space: lines ⊂ ℙ³ → points ∈ M₂⁴ ⊂ ℙ⁵ ruled surfaces ⊂ ℙ³ → curves ⊂ M₂⁴

 $\iff \text{curve design in } M_2^4 = \text{design of ruled} \\ \text{surfaces in } \mathbb{P}^3$

- •
- •

differential geometric properties of ruled surfaces

flecnodes

 T_1

asymptotic tangents hyperosculate the ruled surface

geometric meaning of G^0 -, G^1 -, G^2 -, ... join

- $L \subset M_2^4$, $R \subset M_2^4$...curves in M_2^4 representing rational ruled surfaces, joined at $L(t_0) = R(u_0)$
 - G^0 ... sharing a ruling
 - G¹ ... sharing a ruling and all tangent planes along the common ruling
 - G² ... sharing a ruling, all tangent planes, and the osculating quadric (ruled quadric, Lie's quadric)
 - G^3 ... sharing all from above + flecnodes

rational ruled surfaces & normal curves

- rational ruled surface \longleftrightarrow rational curve in $M_2^4 \longleftrightarrow$ rational normal curve in \mathbb{P}^5 (or in a subspace) at least a linear image
- Veronese variety V_k^1 , parametrized by $(t_0^k: t_0^{k-1}t_1: \ldots: t_0t_1^{k-1}: t_0^k)$
- well known examples: $(t_0^2 : t_0 t_1 : t_1^2) \dots$ conic $(t_0^3 : t_0^2 t_1 : t_0 t_1^2 : t_1^3) \dots$ twisted cubic

rational normal curves

- normal curve $N_n = (t, t^2, ..., t^n)$, affine parameter $t = t_0 t_1^{-1}$
- N_n spans an *n*-space
- osculating subspaces $O^k(t_1)$ and $O^{n-k}(t_2)$ intersect at a point (for any $t_1 \neq t_2$)
- intersection of some quadrics
- admits a projective generation
- possess a group of automorphic collineations

rational normal curves: low degree examples

deg	span	object in line space
2	plane	regulus (ruled quadric,
		quadr. cone, tangents of a conic)
3	3-space	linear line congruence (spread)
4	hyperplane	linear line complex
5	\mathbb{P}^5	lines + linear line complexes

how to interpolate I

- hermite data $O_P^k := [P, \dot{P}, \dots, P^{(k)}]$, O_Q^k , osculating elements of order k

how to interpolate II

rewrite rational curve as Bézier curve

$$R(t) = \sum_{i=0}^{n} A_{i} b_{i}^{n}, \ A_{i} \in \mathbb{R}^{6}, \ b_{i}^{n} = \binom{n}{i} (1-t)^{n-i} t^{i}$$

endpoint interpolation yields

$$A_0 = P, \ A_1 = \frac{1}{n}((n+1)P + \pi_0\dot{P}), \ A_2 = \dots$$

how to interpolate III

• $R \subset M_2^4 \iff \overline{\Omega(R,R)} = 0$ • \implies equations for the unknowns A_i, π_i, \ldots $\Omega(A_0, A_0) = \Omega(A_0, A_1) = 0,$ $(n-1)\Omega(A_0, A_2) + n\Omega(A_1, A_1) = 0, \dots$ equations at the beginning/end are fulfilled automatically • π_0, π_1, \ldots serve as shape parameters

low degree?

- biarcs of reguli: cf. [3]
- concept of [3] does not apply to G^k , if k > 1
- cubic, quartic, quintic (rational) ruled surfaces for G^1 (certain constraints to input)
- sextic, septic, ... allow G^2 interpolation

possible or impossible?

- G^1 hermite with cubic arc: only if $[P,Q] \subset [P,\dot{P},Q,\dot{Q}] \cap M_2^4$
- G^2 hermite with quartic arc: in general O_P^2 and O_Q^2 are skew \Longrightarrow there is no quartic arc interpolating arbitrary G^2 hermite data
- lowest posssible degree for G² hermite interpolation is six

example: ruled surface patches joined with G^2 continuity

example: ruled surface patches joined with G^3 continuity

example: ruled surface patches joined with G^3 continuity

future work

- projective generation of ruled surfaces
- work out analogies to the projective generation of spatial cubics and other norm curves
- solutions of alegbraic equations are not unique
- what are useful shape parameters?

- •
- •

Thank you for your attention!