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What is a dimension? What means higher dimensional?

e number of independent coordinates or variables

(x,v), (xX,y,2), ..., (X1, X2, ..., Xn)

coordinates of points in the plane, in 3-space, ..., n-space

homogeneous coordinates:

XQiX1: ... Xpn ~ AXQIAX]:...:XXp (A #0) (Only the ratio matters.)

e number of basis vectors or basis polynomials
b; =(1,0,0,0), b, =(0,1,0,0), ...,
{1,x,...,x} ... basis in the space of univariate polynomials of degree n
becomes more complicated If each component can be a collection of
polynomials — module over a polynomial ring
There Is always a vector space around.

e number of degrees of freedom

in kinematic chains, mechanisms, algebraic curves/surfaces . ..
e Higher dimensional means more than three,

more than in the space of our perception!






basic objects and their dimensions

object‘point line curve plane surface ... hyperplane
dimension| 0 1 1 2 2 ... n-1

These numbers refer to the dimensions of a line, ... considered as a point space.
Here the dimension equals the number of coordinates to determine a point in space.
The table above looks different if we do not consider points to be the basic objects.

3-dim. space 4-dim. space 5-dim. space

These are just images showing some projections of cuboid corners and a cuboid.

Be careful: Sometimes images of higher dimensional objects are misleading!



simple objects and their dimensions [3,10]

points / lines in a plane:
2-dimensional geometry,  3-dimensional geometry,  5-dimensional geometry,
P=(xp.yp). I: §+%= 1 center + radius = 3 dof art2aix-+2ay+asx*+2asxy-+asy® =0

circles (incl. lines, points):  conics (in a plane):

space of dimension

planar algebraic curves of degree n n(n+3) %4

k-dimensional subspaces of a projective n-space  (n— k)(k +1) Gr, «
d+1

d-dim. alg. varieties of deg. D In projective space ﬁ kl;[l(D + k)

Within a geometry of a certain dimension,
we can find geometries of even higher dimensions!



familiar objects and their dimensions

The weather Is at least an 8-dimensional phenomenon:

place (x1, X, X3), time t, temperature T, air pressure p, ...
% + div(pv) =0
dv __
pqr = PF = Vp+nAv

pcpdt = AAT

9 w2y, OV, VW) 4 50
iV V= 50x1.3) +vV \IJ+poca—X1
09 _  0(V,9)

AT OV 2
Ot = 0(x1.x3) Th Oxq +XxV°O

M. Roskar
Wheather forecast is just solving these equations.



less classical, but more popular objects - fractals

Dimensions are rather computed than counted and are no longer integers!

Hausdorff dimension of the Menger sponge

~ log20
~ log3

d = 2.7/2683 ...

Hausdorff dimension of Koch's snowflake

log 4
d=-9%_10619. ..
log 3




less simple, but more useful

oriented

lines in 3-space
4-dim. geometry

oriented

spheres in 3-space
4-dim. geometry

X

~+ | oriented
7 line elements (L, P)
5-dim. geometry

oriented flags
P < (P, L, ) in 3-space
6-dim. geometry



Dimensions need not be finite!

e spaces of functions - Hilbert space
Fourier series, space of polynomial series, . ..

e T[he solutions of delay differential equations constitute an
infinite dimensional vector space!

Eg. f(t+1)— %f(t) — f(t) =0 (7 € R") is solved by
o
> AeePxtwith p =1 — LW(k, 7¢27) and A, € C

k=—00

A more geometric curiosity: The Hilbert cube (rather cuboid) is a
cuboid with side lengths 1, % % %, %
on consecutive orthogonal edges

and has a diagonal with the finite lenght
Viti+d+h+m+. = /@=%







we have seen ...

Some geometric objects depend on a certain/fixed number of constants.

Why not use them as coordinates?

circle in R? point In R2/1
sphere In R3 — point In R3.1

sphere in R” +— point in R™1

R™1 . cyclographic image space, or. circle k: center M = (xp, yp), radius r
model space for the geometry of — point K = (xp, vy, 1) € R
oriented spheres in Euclidean n-space. pos. or. k — sgn(r) = +1

— Geometric objects that are usually described by an equation (or a set of equations)
can be represented by just one point iIn some model spacel



What makes a good model?

% The transition from the original object to its image in the model space,

*

*

and vice versa, should be as simple as possible: X4
e e.g., cyclographic mapping k > (X YL F). % »
lowest possible dimension of the model space:

® c.g., a slice model of line space with,
L — (x1, X2, X3, X4) is possible,

but limited In its applications ¢!

Almost all relations between objects should also be displayed in the model space:
e c.g., Intersection of lines, oriented contact of spheres, ...

e ... with help of a polar form or a metric

Transformations of the objects should induce simple transformations

(preferably linear ones) in the model space:

e c.g., Minkowski transformations in R
collinear transformations in models of various other geometries



good models [20,22,23,26,29,32,34]

% line geometry
e oriented line L <— point (I, 1) € R\ {o} = P
(I,1) ... Pliicker coordinates of L
M3 . (LT) =0 ...Pliicker's quadric C P°
Intersecting lines <+ conjugate points w.r.t. MS'
pencils, ruled planes, stars «—
lines, planes (1. & 2. kind) C M3
collineations in P3 +— auto-collineations of /\/lér
e with |[l|| = 1 = Euclidean model N
e allowing | = 0 = projective model \
% line element geometry (partial flags)
e or. line element (L, P) = or. line L + point Pe L
(LT, A) € R7\ {o} 2 P° ... Pliicker coordinates of (L, P)
with [l =1and X := (p,I) = FP
/\/IS . (I,L1) =0 ... quadratic cone C IP® as model surface

Equiform motions induce auto-collineations of /\/IS.



good models [4,6,9]

*

sphere geometry

e cyclographic model: oriented sphere SCR" — point S
rRML (n + 1)-dimensional Minkowski space, cyclographic model
affine space with pseudo-Euclidean metric

dpe(K, L) = die(K, L) dpe = 0 <= or. contact

e spherical model: stereographic projection onto S x12+ . —l—x,%: 1

sphere SCR” +—  sphere S'CS”
subsequent polarity w.r.t. S™: , ‘
sphere S'CS" +— point S” c Rt 477 1 |
tetra-cyclic, penta-spherical, .. .space A\Q..




good models [2,4,21,32]

e Lie's quadric — quadric model
stereographic projection R 1 —
LgH X2 .—I—X,%—X%_H—X%_'_z:()

LOFL Lie's quadric

e Or. contact <— conjugacy w.r.t.

e sphere-preserving contact transformations

+— auto-collineations of LSH

e Lie's line-sphere-mapping relates /\/lér and Lg.

It Is just a projective collineation!

n+1
L2

% geometry of flags (complete flags)

e Or. flag F = (P, L, ¢) in Eucl. 3-space with
P € L C ¢ determines a Cartesian frame.

e coordinates of an or. flag F=(I, 1,1, \) e R10
with M2 - (L) =(,)=0 & |lI||=|l]|=1

° I\/lg3 admits a rational parametrization.

e 7/, =1(1,0,0;0,0,0;0,0,1,0,) — F determines a Euclidean motion.

e Euclidean motions induce automorphic collineations of /\/lg.







surface recognition and reconstruction - line geometry [27,33]

The path normals (n, n) of a one-parameter subgroup of the Euclidean group form a
linear complex of lines ¢ = (c, ©), I.e., (c,n) 4+ (¢c,n) = 0.

The complex C = (c, €) determines a helical motion with pitch p = (c, €)(c,c) ™! # 0.

3D scans of the articulate surfaces
of the human ankle joint

estimation of surface normals
(n;,n;) from the point cloud

C = (c,€) — eigenvector of

n.'

Z _/:—|— (n/,ﬁ/)ER6X6
/ /
with the largest eigenvalue.

According to Gray's anatomy,
It would be a pure rotation.

—> Gliding of articulate
surfaces along each other
forces them to perform a he-
lical motion.




surface recognition and reconstruction - line element geometry [16,22]

The path normal elements (n,n, v) of a uniform equiform motion form a
linear complex (¢, €, y) of line elements, i.e., (c,n) + (¢, n) +yv =0.

Eigenanalysis of a 7 x 7-matrix makes 11 classes of surfaces cognoscible:

helical surfaces, surfaces of rev.,

generic cylinders and cones.




Hermite interpolation of /with ruled surfaces

In any model of line geometry, a ruled surface appears as a curve.
—> Ruled surface interpolation is simplified to curve interpolation.

line geometric Hermite data:
rulings,

contact projectivities,
osculating quadrics, . ...

G2- and G3-interpolation

of ruled surface data

could hardly be achieved in a different
way, If at all.




Hermite interpolation of /with channel surfaces

In any model of sphere geometry, a channel surface appears as a curve.
—> Channel surface interpolation is simplified to curve interpolation.

sphere geometric Hermite data:
spheres,

tangent cones,

osculating Dupin cyclides, . ...

G2- & G3-interpolation
of channel surface data

could also be achieved within
the cyclographic model.




adapted subdivision schemes [5,8,24]

The standard subdivision schemes are defined for data in affine spaces.
One round of a combined scheme consists of subdivision in the (ambient) model space
and a subsequent projection onto the model manifold (L4, /\//5“, /\/lg, SO(3), ...).

A

...which is a six-dimensional cone with a one-dimensional vertex.
After an initial approximation of the characteristic circles on a discrete channel surface,
this family of circles can be refined by a combined subdivision scheme.



adapted subdivision schemes [5,8,24]

Ruled surfaces can be refined with combined schemes in at least two ways:

e S|ERP for the director cone +
+ ordinary subdivision for the

striction curve |

e subdivision in the model space +

+ projection onto /\/lgr Ny




adapted and combined schemes

[24,29,31]
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polating a sequence
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[24,29,31]

adapted and combined schemes

Or. flags determine
Euclidean motions.
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we have not seen

e donut — coffee cup

Shape spaces serve as models for moving and deforming objects.

A moving and deforming object Is represented by a point in some shape space.
The transformation donut — coffee cup Is a curve in shape space.

The dimension of the shape space depends on the complexity (resolution)

of the object.

e really high dimensional spaces

Grassmannians Gr, x, Veronese V), and Segre SZ manifolds occupy lots of space
and serve as models for the geometries of k-dimensional subspaces in projective
n-space, forms of degree n in k variables, products of and mappings between
projective spaces.

e flag manifolds, exterior algebras, ...

... have applications in kinematics and physics.
Geometry in Study’s quadric serves curious phenomena: triality, . ..



we have seen and learned

e Complicated geometric objects can be represented by points.

e Relations between objects can be translated into metric properties of points
In the model space.

e Computations become simple or even possible in higher dimensional spaces.

e [ransformations of the original objects can be transferred to linear transformations
In the model space.

e Everything should be linear, a vector space, ...
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