Higher dimensional geometries: What are they good for?

Boris Odehnal

University of Applied Arts Vienna

the next 30+ ε minutes ($\varepsilon \gg 0$)

dimension(s) examples models of geometries examples a view on more basics and definitions - not too mathematical natural, simple, familiar, and not so trivial ones creating models and good models where higher dimensional geometries apply to some hints to other models

basics and definitions

What is a dimension? What means higher dimensional?

• number of independent coordinates or variables

 $(x, y), (x, y, z), \dots, (x_1, x_2, \dots, x_n)$ coordinates of points in the plane, in 3-space, ..., *n*-space homogeneous coordinates:

 $x_0: x_1: \ldots: x_n \sim \lambda x_0: \lambda x_1: \ldots: \lambda x_n \quad (\lambda \neq 0)$ (Only the ratio matters.) number of basis vectors or basis polynomials

 $\mathbf{b}_1 = (1, 0, 0, 0), \ \mathbf{b}_2 = (0, 1, 0, 0), \dots,$ $\{1, x, \dots, x^n\}$... basis in the space of univariate polynomials of degree *n* becomes more complicated if each component can be a collection of polynomials \longrightarrow module over a polynomial ring

There is always a vector space around.

• number of degrees of freedom

in kinematic chains, mechanisms, algebraic curves/surfaces ...

• Higher dimensional means more than three,

more than in the space of our perception!

basic objects and their dimensions

object	point	line	curve	plane	surface	 hyperplane
dimension	0	1	1	2	2	 n-1

These numbers refer to the dimensions of a line, ... considered as a point space. Here the dimension equals the number of coordinates to determine a point in space. The table above looks different if we do not consider points to be the basic objects.

These are just images showing some *projections* of cuboid corners and a cuboid. Be careful: Sometimes images of higher dimensional objects are misleading!

simple objects and their dimensions

sp	pace of	dimension	
p	anar algebraic curves of degree <i>n</i>	$\frac{1}{2}n(n+3)$	V_2^n
k-	-dimensional subspaces of a projective <i>n</i> -space	(n-k)(k+1)	Gr _{n,k}
d-	-dim. alg. varieties of deg. D in projective space	$\frac{1}{(1+d)!} \prod_{k=1}^{d+1} (D+k)$	

Within a geometry of a certain dimension, we can find geometries of even higher dimensions!

[3,10]

familiar objects and their dimensions

The weather is at least an 8-dimensional phenomenon: place (x_1, x_2, x_3) , time t, temperature T, air pressure p, ...

Wheather forecast is just solving these equations.

less classical, but more popular objects - fractals

Dimensions are rather computed than counted and are no longer integers!

Hausdorff dimension of the Menger sponge

$$d = \frac{\log 20}{\log 3} = 2.72683\dots$$

Hausdorff dimension of Koch's snowflake

$$d = \frac{\log 4}{\log 3} = 1.2619\dots$$

less simple, but more useful

Dimensions need not be finite!

- spaces of functions Hilbert space Fourier series, space of polynomial series, ...
- The solutions of delay differential equations constitute an infinite dimensional vector space!
 E.g. f(t+τ) d/dt f(t) f(t) = 0 (τ ∈ ℝ*) is solved by ∑ λ_ke^{p_k·t} with p_k = 1 - 1/τ W(k, τe^{2τ}) and λ_k ∈ C
 ...

A more geometric curiosity: The Hilbert cube (rather cuboid) is a cuboid with side lengths 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ...

on consecutive orthogonal edges

and has a diagonal with the finite lenght

$$\sqrt{1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\ldots}=\sqrt{\zeta(2)}=\frac{\pi}{\sqrt{6}}.$$

model spaces

we have seen ...

Some geometric objects depend on a certain/fixed number of constants. Why not use them as coordinates?

circle in $\mathbb{R}^2 \mapsto \text{point in } \mathbb{R}^{2,1}$ sphere in $\mathbb{R}^3 \mapsto \text{point in } \mathbb{R}^{3,1}$: sphere in $\mathbb{R}^n \mapsto \text{point in } \mathbb{R}^{n,1}$

 $\mathbb{R}^{n,1}$... cyclographic image space, model space for the geometry of oriented spheres in Euclidean *n*-space.

or. circle \vec{k} : center $M = (x_M, y_M)$, radius r \mapsto point $K = (x_M, y_M, r) \in \mathbb{R}^{2,1}$, pos. or. $k \longrightarrow \operatorname{sgn}(r) = +1$

 \implies Geometric objects that are usually described by an equation (or a set of equations) can be represented by just one point in some model space!

What makes a good model?

- ★ The transition from the original object to its image in the model space, and vice versa, should be as simple as possible:
 - *e.g.*, cyclographic mapping $\vec{k} \mapsto (x_M, y_M, r)$.
- \bigstar lowest possible dimension of the model space:
 - e.g., a slice model of line space with,
 L → (x₁, x₂, x₃, x₄) is possible,
 but limited in its applications

- \bigstar Almost all relations between objects should also be displayed in the model space:
 - *e.g.*, intersection of lines, oriented contact of spheres, ...
 - ... with help of a polar form or a metric
- ★ Transformations of the objects should induce simple transformations (preferably linear ones) in the model space:
 - *e.g.*, Minkowski transformations in $\mathbb{R}^{n,1}$, collinear transformations in models of various other geometries

good models

★ line geometry

oriented line L ↔ point (I, Ī) ∈ ℝ⁶ \ {o} ≅ ℙ⁵ (I, Ī) ... Plücker coordinates of L M₂⁴: ⟨I, Ī⟩ = 0 ... Plücker's quadric ⊂ ℙ⁵ intersecting lines ↔ conjugate points w.r.t. M₂⁴ pencils, ruled planes, stars ↔

lines, planes (1. & 2. kind) $\subset M_2^4$

collineations in $\mathbb{P}^3 \longleftrightarrow$ auto-collineations of M_2^4

- with $\|\mathbf{I}\| = 1 \Longrightarrow$ Euclidean model
- allowing $I = o \implies$ projective model

★ line element geometry (partial flags)

or. line element (L, P) = or. line L + point P∈L
(I, Ī, λ) ∈ ℝ⁷ \ {o} ≅ ℙ⁶ ... Plücker coordinates of (L, P) with ||I|| = 1 and λ := ⟨p, I⟩ = FP
M₂⁵ : ⟨I, Ī⟩ = 0 ... quadratic cone ⊂ ℙ⁶ as model surface Equiform motions induce auto-collineations of M₂⁵.

good models

★ sphere geometry

• cyclographic model: oriented sphere $\vec{S} \subset \mathbb{R}^n \mapsto \text{point } S$ $\mathbb{R}^{n,1} \dots (n+1)$ -dimensional Minkowski space, cyclographic model affine space with pseudo-Euclidean metric

$$d_{pe}(K, L) = d_t(\vec{K}, \vec{L})$$
 $d_{pe} = 0 \iff \text{or. contact}$

• spherical model: stereographic projection onto $S^n: x_1^2 + \ldots + x_n^2 = 1$

sphere $S \subset \mathbb{R}^n \mapsto \text{sphere } S' \subset S^n$ subsequent polarity w.r.t. S^n : sphere $S' \subset S^n \mapsto \text{point } S'' \subset \mathbb{R}^{n+1}$ tetra-cyclic, penta-spherical, ...space

good models

- Lie's quadric quadric model stereographic projection $\mathbb{R}^{n+1} \rightarrow L_2^{n+1}$ $L_2^{n+1}: x_1^2 + \ldots + x_n^2 - x_{n+1}^2 - x_{n+2}^2 = 0$ $L_2^{n+1} \ldots$ Lie's quadric
- or. contact \leftrightarrow conjugacy w.r.t. L_2^{n+1}
- sphere-preserving contact transformations \leftrightarrow auto-collineations of L_2^{n+1}
- Lie's line-sphere-mapping relates M_2^4 and L_2^4 . It is just a projective collineation!

★ geometry of flags (complete flags)

- Or. flag $\mathcal{F} = (P, L, \varphi)$ in Eucl. 3-space with $P \in L \subset \varphi$ determines a Cartesian frame.
- coordinates of an or. flag $\mathcal{F} = (\mathbf{I}, \mathbf{\bar{I}}, \hat{\mathbf{I}}, \lambda) \in \mathbb{R}^{10}$ with $M_5^6 : \langle \mathbf{I}, \mathbf{\bar{I}} \rangle = \langle \mathbf{I}, \hat{\mathbf{I}} \rangle = 0$ & $\|\mathbf{I}\| = \|\hat{\mathbf{I}}\| = 1$
- M_5^6 admits a rational parametrization.
- $\mathcal{F}_0 = (1, 0, 0; 0, 0, 0; 0, 0, 1, 0,) \mapsto \mathcal{F}$ determines a Euclidean motion.
- Euclidean motions induce automorphic collineations of M_5^6 .

5

applications – that's what they are good for - that's what they can be used for

surface recognition and reconstruction - line geometry

The path normals $(\mathbf{n}, \overline{\mathbf{n}})$ of a one-parameter subgroup of the Euclidean group form a linear complex of lines $C = (\mathbf{c}, \overline{\mathbf{c}})$, *i.e.*, $\langle \mathbf{c}, \overline{\mathbf{n}} \rangle + \langle \overline{\mathbf{c}}, \mathbf{n} \rangle = 0$.

The complex $C = (\mathbf{c}, \overline{\mathbf{c}})$ determines a helical motion with pitch $p = \langle \mathbf{c}, \overline{\mathbf{c}} \rangle \langle \mathbf{c}, \mathbf{c} \rangle^{-1} \neq 0$.

3D scans of the articulate surfaces of the human ankle joint estimation of surface normals $(\mathbf{n}_i, \overline{\mathbf{n}}_i)$ from the point cloud $\mathcal{C} = (\mathbf{c}, \overline{\mathbf{c}}) \rightarrow \text{eigenvector of}$ $\sum_i {\binom{\mathbf{n}_i^{\mathsf{T}}}{\overline{\mathbf{n}}_i^{\mathsf{T}}}} (\mathbf{n}_i, \overline{\mathbf{n}}_i) \in \mathbb{R}^{6 \times 6}$ with the largest eigenvalue.

 \implies Gliding of articulate surfaces along each other forces them to perform a helical motion.

According to Gr<u>a</u>y's anatomy, it would be a pure rotation.

[27,33]

surface recognition and reconstruction - line element geometry

The path normal elements $(\mathbf{n}, \overline{\mathbf{n}}, \nu)$ of a uniform equiform motion form a linear complex $(\mathbf{c}, \overline{\mathbf{c}}, \gamma)$ of line elements, *i.e.*, $\langle \mathbf{c}, \overline{\mathbf{n}} \rangle + \langle \overline{\mathbf{c}}, \mathbf{n} \rangle + \gamma \nu = 0$.

Eigenanalysis of a 7×7 -matrix makes 11 classes of surfaces cognoscible:

planes, spheres, spiral cones, cylinders of rev., spiral cylinders, cones of rev., spiral surfaces, helical surfaces, surfaces of rev., generic cylinders and cones.

Reconstruction with the best fitting uniform equiform motion.

[16,22]

In any model of line geometry, a ruled surface appears as a curve. \implies Ruled surface interpolation is simplified to curve interpolation.

line geometric Hermite data: rulings, contact projectivities, osculating quadrics,

 G^2 - and G^3 -interpolation of ruled surface data could hardly be achieved in a different way, if at all.

Hermite interpolation of/with channel surfaces

[25]

In any model of sphere geometry, a channel surface appears as a curve. \implies Channel surface interpolation is simplified to curve interpolation.

sphere geometric Hermite data:
spheres,
tangent cones,
osculating Dupin cyclides,

 G^2 - & G^3 -interpolation of channel surface data could also be achieved within the cyclographic model.

adapted subdivision schemes

The standard subdivision schemes are defined for data in affine spaces. One round of a combined scheme consists of subdivision in the (ambient) model space and a subsequent projection onto the model manifold $(L_2^4, M_2^4, M_5^6, SO(3), ...)$.

This works even on the manifold of circles in Euclidean three-space ...

... which is a six-dimensional cone with a one-dimensional vertex. After an initial approximation of the characteristic circles on a discrete channel surface, this family of circles can be refined by a combined subdivision scheme.

adapted subdivision schemes

Ruled surfaces can be refined with combined schemes in at least two ways:

- SLERP for the director cone +
 + ordinary subdivision for the
 striction curve ↓
- subdivision in the model space + + projection onto M_2^4 \searrow

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

CCC CCCC CCC CCCC CCC CCC <t

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

[24,29,31]

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

[24,29,31]

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

[24,29,31]

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

[24,29,31]

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

[24,29,31]

Or. flags determine Euclidean motions.

A combined scheme consists of subdivison and projection to the group (manifold) of Euclidean motions.

interpolating schemes preferred

$\bullet \ \textbf{donut} \mapsto \textbf{coffee cup}$

Shape spaces serve as models for moving and deforming objects.

A moving and deforming object is represented by a point in some shape space.

The transformation donut \mapsto coffee cup is a curve in shape space.

The dimension of the shape space depends on the complexity (resolution) of the object.

• really high dimensional spaces

Grassmannians $Gr_{n,k}$, Veronese V_k^n , and Segre S_k^n manifolds occupy lots of space and serve as models for the geometries of *k*-dimensional subspaces in projective *n*-space, forms of degree *n* in *k* variables, products of and mappings between projective spaces.

• flag manifolds, exterior algebras, ...

... have applications in kinematics and physics.

Geometry in Study's quadric serves curious phenomena: triality, ...

we have seen and learned

- Complicated geometric objects can be represented by points.
- Relations between objects can be translated into metric properties of points in the model space.
- Computations become simple or even possible in higher dimensional spaces.
- Transformations of the original objects can be transferred to linear transformations in the model space.
- Everything should be linear, a vector space, ...

references and literature - 1

- [1] L. Berzolari, K. Rohn: *Algebraische Raumkurven und abwickelbare Flächen*. B.G. Teubner, Leipzig, 1926.
- [2] W. Blaschke: Vorlesungen über Differentialgeometrie III. Springer, Berlin, 1929.
- [3] W. Burau: *Mehrdimensionale und höhere projektive Geometrie.* VEB Deutscher Verlag der Wissenschaften, Berlin, 1961.
- [4] T.E. Cecil: *Lie sphere geometry.* Springer, New York; 2nd ed. 2008.
- [5] G.M. Chaikin: *An algorithm for high speed curve generation*. Computer Graphics and Image Processing **3** (1974), 346–349.
- [6] J.L. Coolidge: A Treatise on the Circle and the Sphere. Clarendon Press, Oxford, 1916.
- [7] L. Cremona: *Elemente der projektiven Geometrie*. Verlag Cotta, Stuttgart, 1882.
- [8] N. Dyn, J.A. Gregory, D. Levin: A four-point interpolatory subdivision scheme for curve design. CAGD **4** (1987), 257–268.
- [9] O. Giering: Vorlesungen über höhere Geometrie. Vieweg, Braunschweig, 1982.
- [10] G. Glaeser, H. Stachel, B. Odehnal: *The Universe of Conics*.
 From the ancient Greeks to 21st century developments. Springer-Verlag, Heidelberg, 2016.
- [11] H. Graßmann: *Die Ausdehnungslehre.* Verlag Th. Enslin. Berlin, 1862.
- [12] H. Havlicek, B. Odehnal, M. Saniga: *Factor-group-generated polar spaces and (multi-)Qudits.* SIGMA Symm. Integrab. Geom. Meth. Appl. 5/098 (2009), 15 pp.
- [13] H. Havlicek, J. Kosiorek, B. Odehnal: A point model for the free cyclic submodules over ternions. Results Math. 63 (2013), 1071–1078.
- [14] H. Havlicek, K. List, C. Zanella: *On automorphisms of flag spaces.* Linear Multilinear Algebra **50** (2002), 241–251.
- [15] J.W.P. Hirschfeld: Projective Geometries over Finite Fields. Clarendon Press, Oxford, second edition, 1998.
- [16] M. Hofer, B. Odehnal, H. Pottmann, T. Steiner, J. Wallner: 3D shape recognition and reconstruction based on line element geometry. In: 10th IEEE Intern. Conf. Computer Vision, vol. 2, pp. 1532–1538. IEEE Computer Society, 2005, ISBN 0-7695-2334-X.
- [17] J. Hoschek, D. Lasser: Fundamentals of computer aided geometric design. A.K. Peters, Natick, MA, 1993.

references and literature - 2

- [18] D. Klawitter: *Clifford Algebras. Geometric Modelling and Chain Geometries with Application in Kinematics.* PhD thesis, TU Dresden, 2015.
- [19] J. Nash: *The imbedding problem for riemannian manifolds.* Annals of Mathematics **63** (1956), 20–63.
- [20] G. Nawratil: *Point-models for the set of oriented line-elements a survey.* Mechanism and Machine Theory **111** (2017), 118–134.
- [21] B. Odehnal: *Flags in Euclidean three-space*. Math. Pannon. **17**/1 (2006), 29–48.
- [22] B. Odehnal, H. Pottmann, J. Wallner: *Equiform kinematics and the geometry of line elements*. Beitr. Algebra Geom. **47**/2 (2006), 567–582.
- [23] B. Odehnal: *Die Linienelemente des* \mathbb{P}^3 . Österr. Akad. Wiss. math.-naturw. Kl. S.-B. II **215** (2006), 155–171.
- [24] B. Odehnal: *Subdivision algorithms for ruled surfaces.* J. Geom. Graphics **12**/1 (2008), 35–52.
- [25] B. Odehnal: *Hermite interpolation with ruled and channel surfaces.* G slovenský Časopis pre Geometriu a Grafiku 14/28 (2017), 35–58.
- [26] H. Pottmann, J. Wallner: Computational Line Geometry. Springer, Berlin Heidelberg New York, 2001.
- [27] H. Pottmann, M. Hofer, B. Odehnal, J. Wallner: *Line geom. for 3D shape understanding and reconstruction*.
 In: T. Pajdla and J. Matas (eds.), Computer Vision ECCV 2004, Part I, volume 3021 of Lecture Notes in Computer Science, pp. 297–309. Springer, 2004, ISBN 3-540-21984-6.
- [28] C. Segre: Mehrdimensionale Räume. Enzykl. Math. Wiss. Bd. 3-2-2a, B.G. Teubner, Leipzig, 1912.
- [29] E. Study: *Geometrie der Dynamen.* B.G. Teubner. Leipzig, 1903.
- [30] G. Veronese: *Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten geradliniger* Einheiten, in elementarer Form entwickelt. B.G. Teubner, Leipzig, 1894.
- [31] J. Wallner, H. Pottmann: *Intrinsic subdivision with smooth limits for graphics and animation*. ACM Trans. Graphics **25**/2 (2006), 356–374.
- [32] E.A. Weiss: *Einführung in die Liniengeometrie und Kinematik.* B.G. Teubner, Leipzig, 1935.
- [33] G. Windisch, B. Odehnal, R. Reimann, F. Anderhuber, H. Stachel: *Contact areas of the tibiotalar joint.* J. Orthopedic Research 25/11 (2007), 1481–1487.
- [34] K. Zindler: Liniengeometrie mit Anwendungen I, II. G.J. Göschen'sche Verlagshandlung, Leipzig, 1906.

Thank You For Your Attention, Interest, Patience, ...!