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basics and definitions



What is a dimension? What means higher dimensional?

• number of independent coordinates or variables

(x, y), (x, y , z), . . . , (x1, x2, . . . , xn)

coordinates of points in the plane, in 3-space, . . . , n-space

homogeneous coordinates:

x0 :x1 : . . . :xn ∼ λx0 :λx1 : . . . : λxn (λ 6= 0) (Only the ratio matters.)

• number of basis vectors or basis polynomials

b1 = (1, 0, 0, 0), b2 = (0, 1, 0, 0), . . . ,

{1, x, . . . , xn} . . . basis in the space of univariate polynomials of degree n

becomes more complicated if each component can be a collection of

polynomials −→ module over a polynomial ring

There is always a vector space around.

• number of degrees of freedom

in kinematic chains, mechanisms, algebraic curves/surfaces . . .

• Higher dimensional means more than three,

more than in the space of our perception!
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examples



basic objects and their dimensions

object point line curve plane surface . . . hyperplane

dimension 0 1 1 2 2 . . . n − 1

These numbers refer to the dimensions of a line, . . . considered as a point space.

Here the dimension equals the number of coordinates to determine a point in space.

The table above looks different if we do not consider points to be the basic objects.

x1

x2

x3

x1

x2

x3
x4

3-dim. space 4-dim. space 5-dim. space

These are just images showing some projections of cuboid corners and a cuboid.

Be careful: Sometimes images of higher dimensional objects are misleading!
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simple objects and their dimensions [3,10]

points / lines in a plane:
2-dimensional geometry,

P =(xP , yP ), l :
x
a+
y
b=1

circles (incl. lines, points):
3-dimensional geometry,

center + radius = 3 dof

conics (in a plane):
5-dimensional geometry,

a0+2a1x+2a2y+a3x
2+2a4xy+a5y

2=0

space of dimension

planar algebraic curves of degree n 1
2n(n + 3) Vn2

k-dimensional subspaces of a projective n-space (n − k)(k + 1) Grn,k

d-dim. alg. varieties of deg. D in projective space 1
(1+d)!

d+1∏
k=1

(D + k)

Within a geometry of a certain dimension,

we can find geometries of even higher dimensions!
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familiar objects and their dimensions

The weather is at least an 8-dimensional phenomenon:

place (x1, x2, x3), time t, temperature T , air pressure p, . . .
conservation

∂ρ
∂t + div(ρv) = 0

ρdvdt = ρF −∇p + η∆v impulse,

M. Roskar

ρcP
dT
dt = λ∆T

∂
∂t∇2Ψ=−

∂(Ψ,∇2Ψ)
∂(x1,x3)

+ν∇4Ψ+ρα∂Θ∂x1
∂Θ
∂t = −

∂(Ψ,Θ)
∂(x1,x3)

+ ∆Th
∂Ψ
∂x1
+ χ∇2Θ

Wheather forecast is just solving these equations.
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less classical, but more popular objects - fractals

Dimensions are rather computed than counted and are no longer integers!

Hausdorff dimension of the Menger sponge

d =
log 20

log 3
= 2.72683 . . .

Hausdorff dimension of Koch’s snowflake

d =
log 4

log 3
= 1.2619 . . .
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less simple, but more useful

oriented

lines in 3-space

4-dim. geometry

L
P

oriented

line elements (L, P )

5-dim. geometry

oriented

spheres in 3-space

4-dim. geometry
L

P π

oriented flags

(P, L, π) in 3-space

6-dim. geometry
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Dimensions need not be finite!

• spaces of functions - Hilbert space

Fourier series, space of polynomial series, . . .

• The solutions of delay differential equations constitute an

infinite dimensional vector space!

E.g. f (t+τ)− ddt f (t)− f (t) = 0 (τ ∈ R⋆) is solved by
∞∑

k=−∞
λke
pk ·t with pk = 1− 1τW(k, τe2τ ) and λk ∈ C

• . . .

A more geometric curiosity: The Hilbert cube (rather cuboid) is a

cuboid with side lengths 1, 12,
1
3,
1
4,
1
5, . . .

on consecutive orthogonal edges

and has a diagonal with the finite lenght√
1 + 14 +

1
9 +

1
16 +

1
25 + . . . =

√
ζ(2) = π√

6
.
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model spaces



we have seen . . .

Some geometric objects depend on a certain/fixed number of constants.

Why not use them as coordinates?

circle in R2 7→ point in R2,1

sphere in R3 7→ point in R3,1
... ...

sphere in Rn 7→ point in Rn,1
~k

K

x1

x2

x3

Rn,1 . . . cyclographic image space,

model space for the geometry of

oriented spheres in Euclidean n-space.

or. circle ~k : center M = (xM, yM), radius r

7→ point K = (xM, yM, r) ∈ R2,1,
pos. or. k −→ sgn(r) = +1

=⇒ Geometric objects that are usually described by an equation (or a set of equations)

can be represented by just one point in some model space!
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What makes a good model? [3,4,20,26]

⋆ The transition from the original object to its image in the model space,

and vice versa, should be as simple as possible:

• e.g., cyclographic mapping ~k 7→ (xM, yM, r).
⋆ lowest possible dimension of the model space:

• e.g., a slice model of line space with,

L 7→ (x1, x2, x3, x4) is possible,

but limited in its applications
x1

x2

x3

x4

L

⋆ Almost all relations between objects should also be displayed in the model space:

• e.g., intersection of lines, oriented contact of spheres, . . .

• . . . with help of a polar form or a metric

⋆ Transformations of the objects should induce simple transformations

(preferably linear ones) in the model space:

• e.g., Minkowski transformations in Rn,1,

collinear transformations in models of various other geometries
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good models [20,22,23,26,29,32,34]

L

P

p

l

l = p× l

λ
F

x1
x2

x3

⋆ line geometry

• oriented line L ←→ point (l, l) ∈ R6\{o} ∼= P5
(l, l) . . . Plücker coordinates of L

M42 : 〈l, l〉 = 0 . . . Plücker’s quadric ⊂ P5
intersecting lines ↔ conjugate points w.r.t. M42
pencils, ruled planes, stars ←→

lines, planes (1. & 2. kind) ⊂ M42
collineations in P3 ←→ auto-collineations of M42
• with ‖l‖ = 1 =⇒ Euclidean model

• allowing l = o =⇒ projective model

⋆ line element geometry (partial flags)

• or. line element (L, P ) = or. line L + point P∈L
(l, l, λ) ∈ R7 \ {o} ∼= P6 . . . Plücker coordinates of (L, P )

with ‖l‖ = 1 and λ := 〈p, l〉 = FP
M52 : 〈l, l〉 = 0 . . . quadratic cone ⊂ P6 as model surface

Equiform motions induce auto-collineations of M52 .
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good models [4,6,9]

⋆ sphere geometry

• cyclographic model: oriented sphere ~S ⊂ Rn 7→ point S

Rn,1 . . . (n + 1)-dimensional Minkowski space, cyclographic model
affine space with pseudo-Euclidean metric

dpe(K,L) = dt(~K, ~L) dpe = 0 ⇐⇒ or. contact

~K ~L

K
L

dpe

dt

~K ~L

K

L

• spherical model: stereographic projection onto Sn : x21+ . . .+x
2
n =1

i sphere S⊂Rn 7→ sphere S′⊂Sn
subsequent polarity w.r.t. Sn:

sphere S′⊂Sn 7→ point S′′⊂Rn+1
tetra-cyclic, penta-spherical, . . . space Rn

Sn

S

S′
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good models [2,4,21,32]

• Lie’s quadric – quadric model

stereographic projection Rn+1 → Ln+12
Ln+12 : x21+. . .+x

2
n−x2n+1−x2n+2=0

Ln+12 . . . Lie’s quadric

• or. contact ←→ conjugacy w.r.t. Ln+12
• sphere-preserving contact transformations

←→ auto-collineations of Ln+12
• Lie’s line-sphere-mapping relates M42 and L42.

It is just a projective collineation!

L

P

p

l

l = p× l

γ

ϕl̂

⋆ geometry of flags (complete flags)

• Or. flag F = (P , L, ϕ) in Eucl. 3-space with
P ∈ L ⊂ ϕ determines a Cartesian frame.

• coordinates of an or. flag F=(l, l, l̂, λ)∈R10
with M65 : 〈l, l〉=〈l, l̂〉=0 & ‖l‖= ‖̂l‖=1
• M65 admits a rational parametrization.

• F0 = (1, 0, 0; 0, 0, 0; 0, 0, 1, 0, ) 7→ F determines a Euclidean motion.

• Euclidean motions induce automorphic collineations of M65 .
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applications –

– that’s what they are good for

– that’s what they can be used for



surface recognition and reconstruction - line geometry [27,33]

The path normals (n,n) of a one-parameter subgroup of the Euclidean group form a

linear complex of lines C = (c, c), i.e., 〈c,n〉+ 〈c,n〉 = 0.
The complex C = (c, c) determines a helical motion with pitch p = 〈c, c〉〈c, c〉−1 6= 0.

3D scans of the articulate surfaces
of the human ankle joint

estimation of surface normals
(ni ,ni) from the point cloud

C = (c, c) → eigenvector of

∑
i

(
ni
T

ni
T

)
(ni ,ni)∈R6×6

with the largest eigenvalue.

=⇒ Gliding of articulate

surfaces along each other

forces them to perform a he-

lical motion.

According to Gray’s anatomy,

it would be a pure rotation.
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surface recognition and reconstruction - line element geometry [16,22]

The path normal elements (n,n, ν) of a uniform equiform motion form a

linear complex (c, c, γ) of line elements, i.e., 〈c,n〉+ 〈c,n〉+ γν = 0.
Eigenanalysis of a 7× 7-matrix makes 11 classes of surfaces cognoscible:

planes, spheres, spiral cones,

cylinders of rev., spiral cylinders,

cones of rev., spiral surfaces,

helical surfaces, surfaces of rev.,

generic cylinders and cones.

Reconstruction with the best fitting uniform equiform motion.
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Hermite interpolation of/with ruled surfaces [17,24,25]

In any model of line geometry, a ruled surface appears as a curve.

=⇒ Ruled surface interpolation is simplified to curve interpolation.

line geometric Hermite data:

rulings,

contact projectivities,

osculating quadrics, . . . .

G2- and G3-interpolation

of ruled surface data

could hardly be achieved in a different

way, if at all.
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Hermite interpolation of/with channel surfaces [25]

In any model of sphere geometry, a channel surface appears as a curve.

=⇒ Channel surface interpolation is simplified to curve interpolation.

sphere geometric Hermite data:

spheres,

tangent cones,

osculating Dupin cyclides, . . . .

G2- & G3-interpolation

of channel surface data

could also be achieved within

the cyclographic model.
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adapted subdivision schemes [5,8,24]

The standard subdivision schemes are defined for data in affine spaces.
One round of a combined scheme consists of subdivision in the (ambient) model space
and a subsequent projection onto the model manifold (L42, M

4
2 , M

6
5 , SO(3), . . . ).

This works even on the manifold of circles in Euclidean three-space . . .

. . . which is a six-dimensional cone with a one-dimensional vertex.
After an initial approximation of the characteristic circles on a discrete channel surface,
this family of circles can be refined by a combined subdivision scheme.
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adapted subdivision schemes [5,8,24]

Ruled surfaces can be refined with combined schemes in at least two ways:

• SLERP for the director cone +

+ ordinary subdivision for the

striction curve ↓
• subdivision in the model space +

+ projection onto M42 ց

6



adapted and combined schemes [24,29,31]

Or. flags determine

Euclidean motions.

A combined scheme

consists of subdivison

and projection to the

group (manifold) of

Euclidean motions.

interpolating schemes

preferred

=⇒ in the limit:

a smooth motion inter-

polating a sequence

of given poses
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a view on more



we have not seen [1,3,7,11 – 15, 18,19,28,29,30]

• donut 7→ coffee cup

Shape spaces serve as models for moving and deforming objects.

A moving and deforming object is represented by a point in some shape space.

The transformation donut 7→ coffee cup is a curve in shape space.

The dimension of the shape space depends on the complexity (resolution)

of the object.

• really high dimensional spaces

Grassmannians Grn,k , Veronese Vnk , and Segre Snk manifolds occupy lots of space

and serve as models for the geometries of k-dimensional subspaces in projective

n-space, forms of degree n in k variables, products of and mappings between

projective spaces.

• flag manifolds, exterior algebras, . . .

. . . have applications in kinematics and physics.

Geometry in Study’s quadric serves curious phenomena: triality, . . .
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we have seen and learned

• Complicated geometric objects can be represented by points.

• Relations between objects can be translated into metric properties of points

in the model space.

• Computations become simple or even possible in higher dimensional spaces.

• Transformations of the original objects can be transferred to linear transformations

in the model space.

• Everything should be linear, a vector space, . . .
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Thank You For Your
Attention, Interest, Patience, . . . !


