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Poristic triangle family - Chapple’s porism

Each triangle A = Py P, P53 has an incircle /
and a circumcircle u.

X1, X3 ...Incenter, circumcenter

d = X1 X3 ...central distance [19,20]
r, R ...inradius, circumradius

Euler triangle equation d? = R? — 2rR

poristic triangle family:
VP € udPy3 € u: [P, P tangent to |
Two such circles always allow for the con-

struction of a smooth one-parameter family
of interscribed triangles. 1,45 18,19 21]

Traversing the poristic triangle family is not a rigid body motion.
Traces of centers, numerical invariants, ... derived In: [8-11,15,16,17,22-24].
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Isogonal conjugation and circumparabolas

UQ)

Isogonal conjugation:
a quadratic Cremona transformation

Reflections of the Cevians of some point
P in the (interior) angle bisectors concur
in the isogonal conjugate t(P) of P.

The isogonal images of points Q on u are
the ideal points (points at infinity).

The i1sogonal image of a straight line Is a
conic (in general).

—> T he i1sogonal images of u's tangents are circumparabolas of any triangle

Interscribed between 1/ and u.



Circumparabolas

The isogonal images t(Q) of points
Q on u are the ideal points (points at
infinity).

The circumparabolas p; of a triangle
A = Py P> P35 are the isogonal images of
the tangents t; of A's circumcircle u.

For each triangle pose there are three
degenerate parabolas (ideal points in the
direction of the sides of the triangle).



Computational approach towards porisms [8,9,14,21]

circumcircle u, incircle 1
u: (x—d?2+y?=R?% i xX>+y°=r? R>r>0,d=R?-2rR
rational parametrization of u

u=(RcosT+d, Rsint) TeR

1-T2 oo _ 2T
T2 smT—HTZ,TER

poristic triangle family A = P{ P> P3

COST =

P; = u(T) rational, P>, P3 not rational

Q = u(U) pivot for parabola, UeR

A = 1(Q) ideal point of parabola (isogonal image of Q)

ylelds the ideal points of parabolas

A =0: T36°-0(0420)T?U-0(26+0)T+o2U : —T3U°~0(5420) T o (204+0) T Uto
(homogeneous coordinates, c = R+ d, 0 = R — d)

... rational as well as many other things!



What are foci and vertices? [6,7,14]

The construction of foci and vertices shows the simplest way to their computation.

J=T w A At

A parabola’s point at infinity

AL absolute polue of A =

vertex tangent’s point at infinity

parabola’s axis

parabola’s vertex

CJ=1 absolute points of Eucl. geom.

I, B1], [J, Bo] parabola’s isotropic tangents
parabola’s focus

< L

O real point
* complex point
— complex line
— real line

ﬁ'_l\

F Is real since
F = [/, Bl] M [J, 82] = [/, Bl] M [/, Bl].



Loci of vertices and foci of circumparabolas

Independent of porisms:

The vertices of all circumparabolas lie
on a septic curve V. [13]

The foci of all circumparabolas lie on a
quintic curve F. [12]

In connection with porisms: The manifold of all circumparabolas of the triangles in a
poristic family is a quadratic cone in the Veronese manifold.



Axes of circumparabolas [2,3,6,7,25]

While the circumparabola p
traverses the family of all

circumparabolas (variable U)

of a fixed triangle in the pori-
stic family (fixed T), its axes
envelop a Steiner cycloid s.




Focal trace & envelope of axes

Over poristic triangles (variable T), if
U (and thus, Q) is fixed, the foci of
circumparabolas (for fixed U) move
on a straight line.

Over poristic triangles (variable T), if
U (and thus, Q) is fixed, the axes pass
through a fixed point Z.

10



Envelope of the Steiner cycloids [2,3,6,7,25]

Over poristic triangles, the Steiner cycloids
as envelopes of the axes of the circumpa-

rabolas envelop two ellipses e; and ec.

The triangles’ incenter X1 and circumcen-
ter X3 are the real foci of €. X1364 Is the
center of e;. [19,20]

This yields another porism:
If It Is possible to draw a Steiner hypocycloid with its three cusps on e~ and thrice
tangent to e; for one choice of a cusp on ec, then it is possible for any choice.
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Vertices of circumparabolas

v |

The poristic trace of the vertices of the circumparabolas is a rational cubic C.

<
»\!4.

/

The cubics’ isolated nodes are located on the ellipse e;. [2,3,6,7,25]
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Thank You For Your Attention!
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