Circumparabolas in Chapple's Porism

Boris Odehnal Dan Reznik University of Applied Arts, Data Science Consulting Ltd., Vienna, Austria Rio de Janeiro, Brazil

rough sketch of the talk

conditions Chapple's porisms parametrizations rational, ... technical details computation circumparabolas isogonal transformation vertices, focal points a septic and a quintic envelopes of axes Steiner cycloids ... and their envelopes porisms between ellipses traces of point foci, vertices

Poristic triangle family - Chapple's porism

Each triangle $\Delta = P_1 P_2 P_3$ has an incircle *i* and a circumcircle *u*.

 $X_1, X_3 \dots$ incenter, circumcenter $d = \overline{X_1 X_3} \dots$ central distance [19,20] $r, R \dots$ inradius, circumradius Euler triangle equation $d^2 = R^2 - 2rR$

poristic triangle family:

 $\forall P_1 \in u \exists P_{2,3} \in u : [P_i, P_j]$ tangent to *i* Two such circles always allow for the construction of a smooth one-parameter family of interscribed triangles. [1,4,5,18,19,21]

Traversing the poristic triangle family is not a rigid body motion. Traces of centers, numerical invariants, ... derived in: [8–11,15,16,17,22–24].

Isogonal conjugation and circumparabolas

[14,19,20]

isogonal conjugation:

a quadratic Cremona transformation

Reflections of the Cevians of some point P in the (interior) angle bisectors concur in the isogonal conjugate $\iota(P)$ of P.

The isogonal images of points Q on u are the ideal points (points at infinity).

The isogonal image of a straight line is a conic (in general).

 \implies The isogonal images of *u*'s tangents are circumparabolas of any triangle interscribed between *i* and *u*.

Circumparabolas

The isogonal images $\iota(Q)$ of points Q on u are the ideal points (points at infinity).

The circumparabolas p_i of a triangle $\Delta = P_1 P_2 P_3$ are the isogonal images of the tangents t_i of Δ 's circumcircle u.

For each triangle pose there are three degenerate parabolas (ideal points in the direction of the sides of the triangle).

[8.9.14.21]

circumcircle *u*, incircle *i*

u:
$$(x - d)^2 + y^2 = R^2$$
, *i*: $x^2 + y^2 = r^2$, $R > r > 0$, $d^2 = R^2 - 2rR$

rational parametrization of u

$$\mathbf{u} = (R\cos\tau + d, R\sin\tau) \ \tau \in \mathbb{R}$$
$$\cos\tau = \frac{1-T^2}{1+T^2}, \quad \sin\tau = \frac{2T}{1+T^2}, \ T \in \mathbb{R}$$

poristic triangle family $\Delta = P_1 P_2 P_3$

 $P_1 = \mathbf{u}(T)$ rational, P_2 , P_3 not rational

 $Q = \mathbf{u}(U)$ pivot for parabola, $U \in \mathbb{R}$ $A = \iota(Q)$ ideal point of parabola (isogonal image of Q) yields the ideal points of parabolas $A = 0: T^{3}\delta^{2} - \delta(\delta + 2\sigma)T^{2}U - \sigma(2\delta + \sigma)T + \sigma^{2}U: -T^{3}U\delta^{2} - \delta(\delta + 2\sigma)T^{2} + \sigma(2\delta + \sigma)TU + \sigma$ (homogeneous coordinates, $\sigma = R + d$, $\delta = R - d$)

... rational as well as many other things!

What are foci and vertices?

[6,7,14]

The construction of foci and vertices shows the simplest way to their computation.

Aparabola's point at infinity A^{\perp} absolute polue of A =vertex tangent's point at infinityaparabola's axisVparabola's vertex $I, J = \overline{I}$ absolute points of Eucl. geom. $[I, B_1], [J, B_2]$ parabola's isotropic tangentsFparabola's focus

F is real since $F = [I, B_1] \cap [J, B_2] = [I, B_1] \cap \overline{[I, B_1]}.$

Loci of vertices and foci of circumparabolas

Independent of porisms:

The vertices of all circumparabolas lie on a septic curve \mathcal{V} . [13]

The foci of all circumparabolas lie on a quintic curve \mathcal{F} . [12]

In connection with porisms: The manifold of all circumparabolas of the triangles in a poristic family is a quadratic cone in the Veronese manifold.

Axes of circumparabolas

[2,3,6,7,25]

While the circumparabola ptraverses the family of all circumparabolas (variable U) of a fixed triangle in the poristic family (fixed T), its axes envelop a Steiner cycloid s.

Focal trace & envelope of axes

Over poristic triangles (variable T), if U (and thus, Q) is fixed, the foci of circumparabolas (for fixed U) move on a straight line.

Over poristic triangles (variable T), if U (and thus, Q) is fixed, the axes pass through a fixed point Z.

Envelope of the Steiner cycloids

[2,3,6,7,25]

Over poristic triangles, the Steiner cycloids as envelopes of the axes of the circumparabolas envelop two ellipses e_i and e_c . The triangles' incenter X_1 and circumcenter X_3 are the real foci of e_i . X_{1364} is the center of e_i . [19,20]

This yields another porism:

If it is possible to draw a Steiner hypocycloid with its three cusps on e_c and thrice tangent to e_i for one choice of a cusp on e_c , then it is possible for any choice.

Vertices of circumparabolas

The poristic trace of the vertices of the circumparabolas is a rational cubic C. The cubics' isolated nodes are located on the ellipse e_i . [2,3,6,7,25]

Literature I

- [1] M. Berger: Geometry. 1–2, Springer, Berlin, 1987.
- [2] E. Brieskorn, H. Knörrer: *Planar Algebraic Curves.* Birkhäuser, Basel, 1986.
- [3] W. Burau: Algebraische Kurven und Flächen. I Algebraische Kurven der Ebene. De Gruyter, Berlin, 1962.
- [4] A. del Centina: *Poncelet's Porism: a long story of renewed discoveries, I.* Arch. Hist. Exact Sci. **70**/1 (2016), 1–122.
- [5] W. Chapple: An essay on the properties of triangles inscribed in and circumscribed about two given circles. Misc. Curiosa Math. 4 (1746), 117–124.
- [6] J.L. Coolidge: A Treatise on Algebraic Plane Curves. Dover Publications, New York, 1959.
- [7] K. Fladt: *Analytische Geometrie spezieller ebener Kurven*. Akademische Verlagsgesellschaft, Frankfurt am Main, 1962.
- [8] R.A. Garcia, B. Odehnal, D. Reznik: Loci of Poncelet Triangles in the General Closure Case.
 J. Geom. 113:17 (2021), 1–17.
- [9] R.A. Garcia, B. Odehnal, D. Reznik: *Poncelet porisms in hyperbolic pencils of circles*. J. Geom. Graphics 25/2 (2021), 205–225
- [10] R.A. Garcia, D. Reznik: Loci of the Brocard points over selected triangle families. Intl. J. Geom. 11/2 (2022), 35–45.
- [11] R.A. Garcia, D. Reznik, J. Koiller: New properties of triangular orbits in elliptic billiards. Am. Math. Mon. 128/10 (2021), 898–910.
- [12] B. Gibert: Higher Degree Related Curves. Available at: https://bernard-gibert.pagesperso-orange.fr/curves/q077.html
- [13] B. Gibert: Higher Degree Related Curves. Available at: https://bernard-gibert.pagesperso-orange.fr/curves/q079.html

Literature II

- [14] G. Glaeser, H. Stachel, B. Odehnal: *The Universe of Concis.* From the ancient Greeks to 21st century developments. Springer-Spektrum, Springer-Verlag, Heidelberg, 2016.
- [15] M. Helman, R.A. Garcia, D. Reznik: *Intriguing invariants of centers of ellipse-inscribed tri*angles. J. Geom. **112**:2 (2021), paper no. 28, 22 p.
- [16] M. Helman, D. Laurain, R. Garcia, D. Reznik: *Invariant Center Power and Elliptic Loci of* Poncelet Triangles. J. Dyn. Control Syst. 2021. doi: 10.1007/s10883-021-09580-z
- [17] D. Jaud, D. Reznik, R. Garcia: *Poncelet plectra: harmonious curves in cosine space.* Beitr. Algebra Geom. 2021. doi: 10.1007/s13366-021-00596-x
- [18] S.M. Kerawala: *Poncelet Porism in Two Circles.* Bull. Calcutta Math. Soc. **39** (1947), 85–105.
- [19] C. Kimberling: Triangle Centers and Central Triangles. (Congressus Numerantium Vol. 129) Utilitas Mathematica Publishing, Winnipeg, 1998.
- [20] C. Kimberling: Encyclopedia of Triangle Centers. Available at: http://faculty.evansville.edu/ck6/encyclopedia
- [21] B. Odehnal: *Poristic Loci of Triangle Centers.* J. Geom. Graphics **15**/1 (2011), 45–67.
- [22] D. Reznik, R.A. Garcia, J, Koiller: *The ballet of triangle centers on the elliptic billiard*.
 J. Geom. Graph. 24/1 (2020), 79–101.
- [23] D. Reznik, R.A. Garcia, J. Koiller: *Fifty new invariants of N-periodics in the elliptic billiard*. Arnold Mathematical Journal **7**/3 (2021), 1–15.
- [24] D. Reznik: Poncelet Parabola Pirouettes. Math. Intelligencer (to appear), arXiv:2110.06356
- [25] H. Wieleitner: Spezielle ebene Kurven. G.J. Göschen'sche Verlagshandlung, Leipzig, 1908.

Thank You For Your Attention!