Rectification of an Edgy Photograph

Boris Odehnal & Johannes Porsch

University of Applied Arts Vienna

rough sketch of the talk

edgy photographmotivationimage portionsgood and bad choicebasic knowledgegeometric reconstructionconjugate diametersrectification of a circle, elliptic involutionsnaive approachand why it failedgeometry succeedsat last

The edgy photograph

"Ramp and Hyphen" by Paul Neagu. The picture was taken during an exhibition in Glasgow (Scotland) in 1978 (with kind permission of Toni Neagu) [8].
© Bildrecht, Wien 2022

Why do we use/prefer the constructive approach?

[4,5,6,11,12,13,14]

simplicity

needs only paper and pencil
geometric knowledge vs. algorithms
plea for (descriptive) geometry
Geometric knowledge is endangered of getting lost.

Good and badly chosen portions

 V_X

improperly chosen portion of the image perspective image with circles marking the traces of the viewing cones with semi apertures 45° , 30° , 15° , 7.5°

properly chosen display window

The basic techniques

- 1. determine principal vanishing points, i.e., vanishing points V_X , V_y , V_z of a triple of mutually orthogonal lines
- 2. principle point H = orthocenter of $V_X V_y V_z$
- 3. (eye) distance *d* via side view, distance circle *o*
- 4. measurement points = centers of perspective collineations that rectify planar figures

This allows for the construction of measurement points for any plane and any line. For example: M_1 (horizontal planes $|| \pi_1 = [x, y]$), M_y (y-direction in $\pi_2 = [y, z]$), ...

The basic techniques

[1,2,7,9,10,15,16]

Geometric rectification is only up to scale. It does not fail with perfect images.

> The rectification uses perspective collineations with measurement points for their centers and the vanishing lines (image of a plane's ideal line) as their vanishing lines.

Perspective collineations are sources of inaccuracies.

Collineations that rectify images in different planes have to be made consistent.

Conjugate diameters

The center M of a conic c is the pole of the ideal line ω w.r.t. c.

Each line through M is a diameter of c.

 (d_1, d_2) is a pair of conjugate diameters of a conic *c* if d_1 and d_2 are conjugate w.r.t. *c*, *i.e.*, d_i contains d_i 's pole D_i . Conjugate diameters of a circle are orthogonal.

Orthogonality / diameters not preserved.

Persp. images of pairs of ideal points of conjugate diameters are pairs of points in an elliptic involution on the vanishing line.

[3,10]

Conjugate diameters

The measurement point M for the rectification that maps a conic c^c to a circle is the Laguerre point M of the elliptic involution on the vanishing line.

From *M*, conjugate pairs have to be seen at right angles. \implies *M* is a common point of Thales circles on conjuate vanishing points.

Solutions on both sides can serve as Measurement points.

[3,10]

First attempt

Second attempt

Top view of "Ramp and Hyphen"

Literature

- [1] H. Brauner, W. Kickinger: *Baugeometrie II.* Bauverlag GmbH, Wiesbaden Berlin, 1982.
- [2] H. Brauner: Lehrbuch der konstruktiven Geometrie. Springer-Verlag, Wien, 1986.
- [3] G. Glaeser, H. Stachel, B. Odehnal: *The Universe of Concis.* From the ancient Greeks to 21st century developments. Springer-Verlag, Heidelberg, 2016.
- [4] R.I. Hartley: Theory and practice of projective rectification. Intern. J. of Computer Vision, 35/2 (1999) 1–16.
- [5] R.I. Hartley, A. Zisserman: *Multiple View Geometry in computer vision*. Cambridge University Press, 2003.
- [6] G. Gutruf, H. Stachel: The Hidden Geometry in Vermeer's 'The Art of Painting'.
 - J. Geom. Graphics **14**/2 (2010), 187–201.
- [7] F. Hohenberg: *H. Konstruktive Geometrie in der Technik.* 3rd ed., Springer-Verlag, Wien, 1966.
- [8] Paul Neagu Homepage. Available at: http://www.paulneaguhyphen.com/paul-neagu-sculptor-painter-graphic-artist-poet-1938-2004/ paul-neagu-art/
- [9] B. Odehnal: *Central Projections and Distances.* KoG 18 (2014), 28–35.
- [10] B. Odehnal, H. Stachel, G. Glaeser: *The Universe of Quadrics*. Springer-Verlag, Heidelberg, 2020.
- [11] L.G. Shapiro, G.C. Stockman: *Computer Vision*. Prentice Hall, 2001.
- H. Stachel: What is Descriptive Geometry for? In: DSG-CK Dresden Symposium Geometrie: konstruktiv & kinematisch, Feb. 27 – March 1, 2003, Dresden/Germany. TU Dresden, 2003 (ISBN 3-86005-394-9): pp. 327-336.
- [13] H. Stachel: Descriptive Geometry Meets Computer Vision The Geometry of Two Images.
 J. Geom. Graphics 10/2 (2006), 137–153.
- [14] H. Stachel: The geometry behind the numerical reconstruction of two photos. Proc. ICEGD 2007, 2nd Intern. Conf. on Engineering Graphics and Design, June 7–10, 2007, Galati/Romania (ISBN 978-973-667-252-1): 193–196.
- [15] J. Szabó, H. Stachel, H. Vogel: A theorem on central axonometry. Sitzungsber., Abt. II, Österr. Akad. Wiss., math.-naturwiss. Kl. 203 (2004), 3–11.
- [16] W. Wunderlich: Darstellende Geometrie II. Bibliographisches Institut, Zürich, 1967.

Thank You For Your Attention!