Rectification of an Edgy Photograph

Boris Odehnal \& Johannes Porsch

University of Applied Arts Vienna

rough sketch of the talk

edgy photograph	motivation
image portions	good and bad choice
basic knowledge	geometric reconstruction
conjugate diameters	rectification of a circle, elliptic involutions
naive approach	and why it failed
geometry succeeds	at last

The edgy photograph

"Ramp and Hyphen" by Paul Neagu. The picture was taken during an exhibition in Glasgow (Scotland) in 1978 (with kind permission of Toni Neagu)
(c) Bildrecht, Wien 2022

Why do we use/prefer the constructive approach?

simplicity
needs only paper and pencil
geometric knowledge vs. algorithms
Do algorithms check the plausibilty of results?
plea for (descriptive) geometry
Geometric knowledge is endangered of getting lost.

Good and badly chosen portions

improperly chosen portion of the image

perspective image with circles marking the traces of the viewing cones with semi apertures $45^{\circ}, 30^{\circ}, 15^{\circ}, 7.5^{\circ}$

properly chosen display window

1. determine principal vanishing points, i.e., vanishing points V_{x}, V_{y}, V_{z} of a triple of mutually orthogonal lines
2. principle point $H=$ orthocenter of $V_{x} V_{y} V_{z}$
3. (eye) distance d via side view, distance circle o
4. measurement points $=$ centers of perspective collineations that rectify planar figures

This allows for the construction of measurement points for any plane and any line. For example: M_{1} (horizontal planes $\left.\| \pi_{1}=[x, y]\right), M_{y}\left(y\right.$-direction in $\left.\pi_{2}=[y, z]\right), \ldots$

Geometric rectification is only up to scale. It does not fail with perfect images.

The rectification uses perspective collineations with measurement points for their centers and the vanishing lines (image of a plane's ideal line) as their vanishing lines.

Perspective collineations are sources of inaccuracies.

Collineations that rectify images in different planes have to be made consistent.

Conjugate diameters

The center M of a conic c is the pole of the ideal line ω w.r.t. c.

Each line through M is a diameter of c. $\left(d_{1}, d_{2}\right)$ is a pair of conjugate diameters of a conic c if d_{1} and d_{2} are conjugate w.r.t. c, i.e., d_{j} contains d_{j} 's pole D_{j}.

Conjugate diameters of a circle are orthogonal.

Orthogonality / diameters not preserved.
Persp. images of pairs of ideal points of conjugate diameters are pairs of points in an elliptic involution on the vanishing line.

Conjugate diameters

The measurement point M for the rectification that maps a conic c^{c} to a circle is the Laguerre point M of the elliptic involution on the vanishing line.

From M, conjugate pairs have to be seen at right angles. $\Longrightarrow M$ is a common point of Thales circles on conjuate vanishing points.

Solutions on both sides can serve as Measurement points.

First attempt
based on the vanishing points of
apparently orthogonal directions

1. principal point H not in the image center
2. rectification of c^{c} is an ellipse $c^{\circ} \neq$ circle

Second attempt

Top view of "Ramp and Hyphen"

Literature

[1] H. Brauner, W. Kickinger: Baugeometrie II. Bauverlag GmbH, Wiesbaden - Berlin, 1982.
[2] H. Brauner: Lehrbuch der konstruktiven Geometrie. Springer-Verlag, Wien, 1986.
[3] G. Glaeser, H. Stachel, B. Odehnal: The Universe of Concis. From the ancient Greeks to $21^{\text {st }}$ century developments. Springer-Verlag, Heidelberg, 2016.
[4] R.I. Hartley: Theory and practice of projective rectification. Intern. J. of Computer Vision, 35/2 (1999) 1-16.
[5] R.I. Hartley, A. Zisserman: Multiple View Geometry in computer vision. Cambridge University Press, 2003.
[6] G. Gutruf, H. Stachel: The Hidden Geometry in Vermeer's 'The Art of Painting'.
J. Geom. Graphics 14/2 (2010), 187-201.
[7] F. Hohenberg: H. Konstruktive Geometrie in der Technik. 3 ${ }^{\text {rd }}$ ed., Springer-Verlag, Wien, 1966.
[8] Paul Neagu Homepage. Available at:
http://www.paulneaguhyphen.com/paul-neagu-sculptor-painter-graphic-artist-poet-1938-2004/ paul-neagu-art/
[9] B. Odehnal: Central Projections and Distances. KoG 18 (2014), 28-35.
[10] B. Odehnal, H. Stachel, G. Glaeser: The Universe of Quadrics. Springer-Verlag, Heidelberg, 2020.
[11] L.G. Shapiro, G.C. Stockman: Computer Vision. Prentice Hall, 2001.
[12] H. Stachel: What is Descriptive Geometry for? In: DSG-CK Dresden Symposium Geometrie: konstruktiv \& kinematisch, Feb. 27 - March 1, 2003, Dresden/Germany. TU Dresden, 2003 (ISBN 3-86005-394-9): pp. 327-336.
[13] H. Stachel: Descriptive Geometry Meets Computer Vision - The Geometry of Two Images. J. Geom. Graphics 10/2 (2006), 137-153.
[14] H. Stachel: The geometry behind the numerical reconstruction of two photos. Proc. ICEGD 2007, $2^{\text {nd }}$ Intern. Conf. on Engineering Graphics and Design, June 7-10, 2007, Galati/Romania (ISBN 978-973-667-252-1): 193-196.
[15] J. Szabó, H. Stachel, H. Vogel: A theorem on central axonometry. Sitzungsber., Abt. II, Österr. Akad. Wiss., math.-naturwiss. KI. 203 (2004), 3-11.
[16] W. Wunderlich: Darstellende Geometrie II. Bibliographisches Institut, Zürich, 1967.

Thank You For Your Attention!

