15th International Conference on Geometry and Graphics

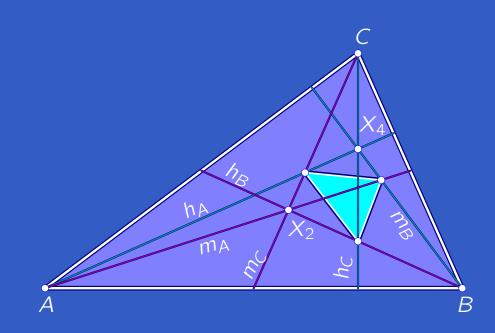
August 1 – 5, 2012, Montreal, Canada

Mixed Intersection of Cevians and Perspective Triangles

Boris Odehnal

Dresden University of Technology

A simple construction - or a mistake?

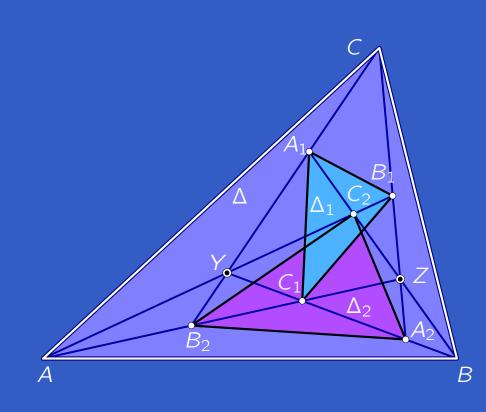


Triangle centers appear as intersections of certain Cevians.

What happens if we mix them?

Arbitrarily chosen Cevians of different centers do not concur in a single point! X_i is the Kimberling notation for the *i*-th center.

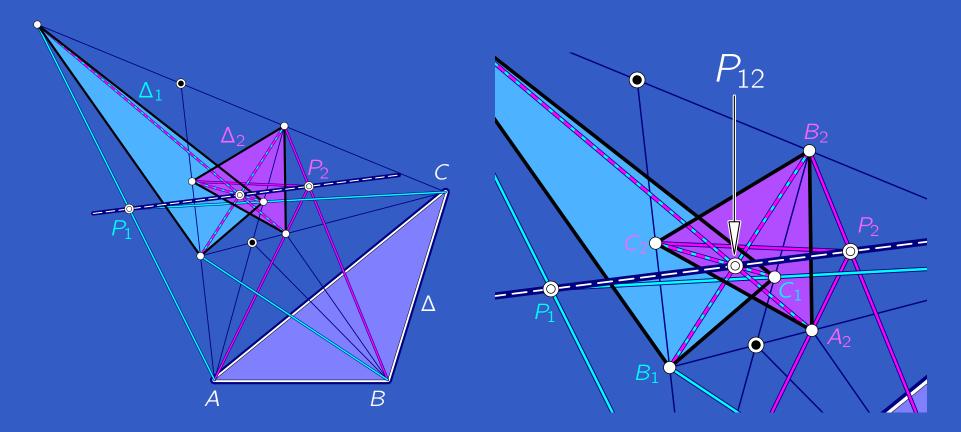
No center - what now?



Y, Z two points define $\Delta_1 = (A_1, B_1, C_1)$ $A_1 = [Y, C] \cap [Z, B]$ cyclic define $\Delta_2 = (A_2, B_2, C_2)$ $A_2 = [Y, B] \cap [Z, C]$ cyclic Both Δ_1 and Δ_2 are obviously perspective to Δ .

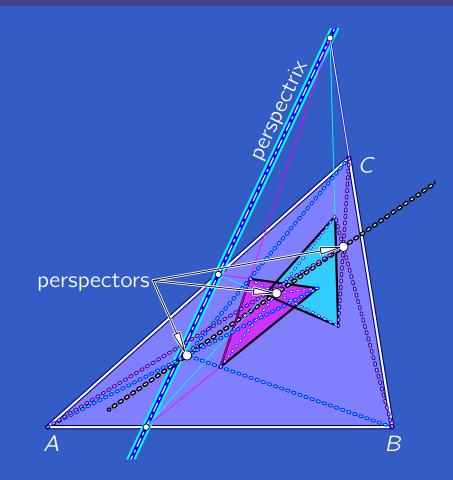
Theorem 1. $\Delta_1 \stackrel{P_1}{\stackrel{}{\scriptscriptstyle\sim}} \Delta$, $\Delta_2 \stackrel{P_2}{\stackrel{}{\scriptscriptstyle\sim}} \Delta$, $\Delta_1 \stackrel{P_{12}}{\stackrel{}{\scriptscriptstyle\sim}} \Delta_2$, properly labeled: $A \longleftrightarrow A_1$, ...

Three collinear perspectors



Theorem 2. If *Y* and *Z* are triangle centers of Δ then P_1 , P_2 , and P_{12} are collinear centers of Δ .

Three perspectors and only one perspectrix

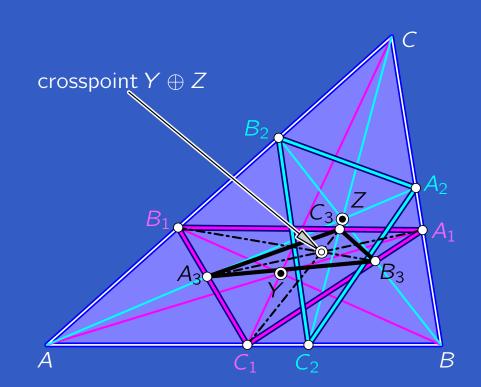


Desargues. If two triangles have a center of perspectivity then they also have a perspectrix.

Theorem 3. Any pair out of Δ , Δ_1 , Δ_2 has the same perspectrix which is a central line.

 \implies We obtain a closed chain of Desargues $(10_3, 10_3)$ -configurations.

The crosspoint of Y and Z ...



Cevian triangle of Y $\Delta_1 := (A_1, B_1, C_1)$ Cevian triangle of Z $\Delta_2 := (A_2, B_2, C_2)$ define $\Delta_3 := (A_3, B_3, C_3)$ $A_3 := [A, A_2] \cap [B_1, C_1]$ cyclic

Theorem 4. The crosspoint $Y \oplus Z$ of Y and Z is the perspector of Δ_1 and Δ_3 . (Y, Z not necessarily centers)

... euqals the perspector P_{12} .

Theorem 5. P_{12} is the crosspoint of Y and Z.

Proof. Let $Y = (\xi_0 : \xi_1 : \xi_2)$, $Z = (\eta_0 : \eta_1 : \eta_2)$ and compare the trilinear representations

 $P_{12} = (\xi_0 \eta_0 (\xi_1 \eta_2 + \xi_2 \eta_1) : \ldots : \ldots) = Y \oplus Z,$

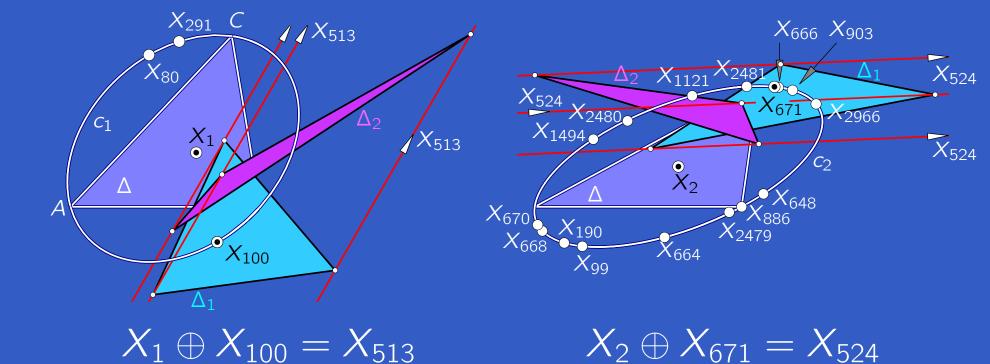
cf. C. Kimberling, ECT.

Note: The Cevian triangles do not appear in the construction of the perspectors P_1 , P_2 , and P_{12} .

\oplus -compositions of some centers yields a tool for an elementary construction of X_i with large *i*.

\oplus	1	2	3	4	5	6	7	8	9	10
1	1	37	73	65	2599	42	354	3057	55	2292
2		2	216	6	233	39	1	9	1212	1213
3			3	185	*	184	*	*	*	*
4				4	3574	51	1836	1837	1864	1834
5					5	*	*	*	*	*
6						6	*	*	2347	*
7							7	497	*	4854
8								8	210	*
9									9	*

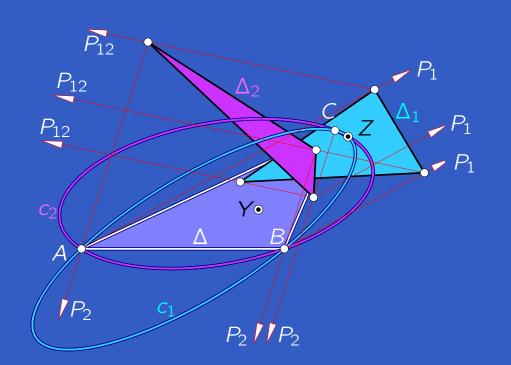
Special affine versions Desargues configurations



c₂...Steiner ellipse

For a fixed center Y there is a circumconic c_Y of points Z such that $P_{12} = Y \oplus Z$ is an ideal point.

Special affine versions Desargues configurations



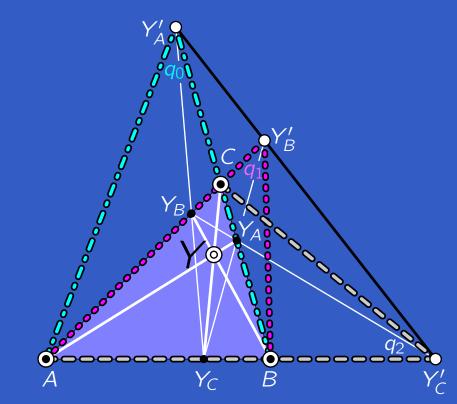
Theorem 6. For any fixed center *Y* there exists exactly one center *Z* such that P_1 , P_2 , and P_{12} are ideal points.

Proof. For fixed *Y* the set of *Z* such that P_1/P_2 is a circumconic c_1/c_2 of Δ .

These conics share A, B, C and a center of Δ

$$Z = \left(\frac{\xi_0}{\xi_0^2 a^2 - \xi_1 \xi_2 bc} : \dots : \dots\right).$$

A quadratic Cremona transformation q

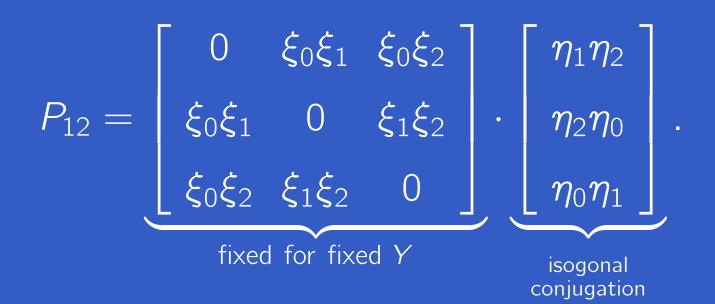


For fixed *Y* the coordinate representation of P_{12} yields a QCT with basepoints *A*, *B*, *C* and exceptional lines [*A*, *B*], [*B*, *C*], [*C*, *A*]. Fundamental conics q_i are pairs of lines:

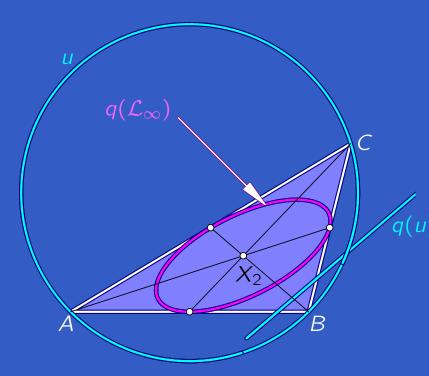
 $q_0 = [B, C] \cup [A, Y'_A]$ with Y'_A as harmonic conjugate of Y_A w.r.t. (B, C). (cyclic)

q is QCT for . . .

it has three base points and it is a composition of the isogonal conjugation and a collineation:



The action of q on . . .



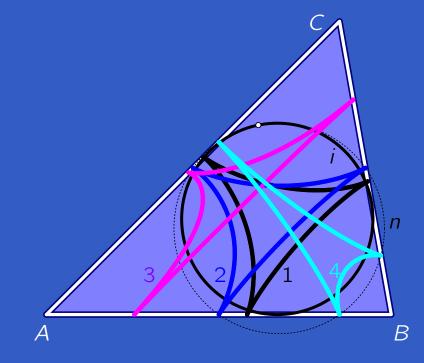
circumcircle $u \stackrel{q}{\mapsto} a$ collinear image of the line at infinity \mathcal{L}_{∞} (also a line)

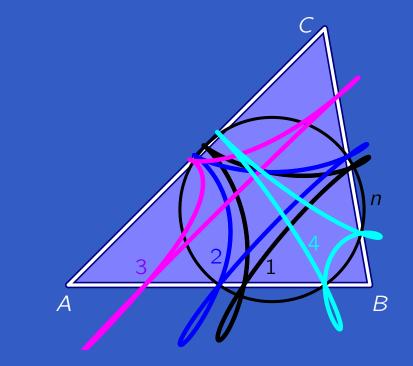
line at infinity $\mathcal{L}_{\infty} \xrightarrow{q}$ Steiner inellipse, if $Y = X_2$

The QCT q maps central lines to central conics, and vice versa.

– p. 13

The action of q with different pivots Y on ...





... the nine-point circle *n*.

... the incircle *i* and

Thank You For Your Attention!