15th International Conference on Geometry and Graphics

August 1 – 5, 2012, Montreal, Canada

Common Normals of Two Tori

Boris Odehnal

Dresden University of Technology

collision detection - shortest distance - common normals

dist²($X_1 - X_2$) $-\lambda_1 F_1(X_1) - \lambda_2 F_2(X_2) \longrightarrow \min / \max$ \Leftrightarrow grad $F_1(X_1)$, grad $F_2(X_2)$ are linearly dependent if ∂O_i is described by an algebraic equation $F_i = 0$

detect closest points of two objects O_1 , O_2

compute common normals

known algorithms

- efficient algorithms for polyhedral objects
- algorithms for rational tensor product surfaces
- replace objects with unconvenient representation by polyhedral approximations
- for ellipsoids: [Sun-Jüttler-Kim-Wang] used line geometric methods

 \implies this method applies to any algebraic surface

family of normals of a torus

Any torus has an axis and a spine curve. Any surface normal of a torus meets the axis and the spine curve and is at least a double normal.

family of normals of a torus

 \implies The common normals of two tori meet both axes and spines curves.

They are the common normals of the two circular spine curves, cf. [Zsombor-Murray-Hayes-Husty].

•

family of normals of a torus

The surface normals along a meridian circle form a pencil of lines with vertex on the spine curve.

family of normals of a torus

The surface normals along a parallel circle form a cone of revolution with its vertex on the axis.

some line goemetry - Plücker coordinates

A point p and a direction (vector) / determine a line L. Replace (p, I) by (I, \overline{I}) with $\overline{I} := p \times I$ momentum vector $\overline{I} \perp [O, L]$.

Plücker coordinates $(I, \overline{I}) = (I_1, I_2, I_3; I_4, I_5, I_6)$ determine *L*, do not depend on *p*, and fulfil $\langle I, \overline{I} \rangle = I_1 I_4 + I_2 I_5 + I_3 I_6 = 0.$

algebraic formulation - number of solutions

The Plücker coordinates of the torus normals in standard position with major radius *R* fulfil $l_6 = 0 \text{ and } l_4^2 + l_5^2 = R^2 l_3^2.$

second torus in general position \implies further linear and quadratic quation for the common normals \implies

Theorem. If two tori have finitely many common normals then they have at most eight common normals.

algebraic formulation - number of solutions

Theorem. If two circles have finitely many common normals then they have at most eight common normals.

dist $(A_1, A_2) = 2d$, $\Rightarrow(A_1, A_2) = 2\phi$, m_i offsets of centers C_i from feet of common perpendicle of A_i Centers C_i of tori equal centers of spine curves.

Lines that meet A_1 , A_2 , and s_1 form a quartic ruled surface Φ_1 . Lines that meet A_1 , A_2 , and s_2 form a quartic ruled surface Φ_2 . $\Phi_1 = \Phi_2 \iff \text{infinitely many common normals}$

– p. 11

Theorem. Two tori with skew axes have infintely many common normals exactly if the axes and spine curves satisfy

 $m_1 = m_2 = 0$, $R_1 = R_2$, $2d = \pm R_i \sin 2\varphi$.

 $\Phi_1 = \Phi_2$ is a quartic ruled surface of Sturm type 7. Axes A_1 and A_2 are part of the double curve. The common perpendicle of the axes is also contained in the ruled surface.

common normals meet both spine curves orthogonally

$$\langle s_1 - s_2, \dot{s}_1 \rangle = \langle s_1 - s_2, \dot{s}_2 \rangle = 0$$

 \iff

Theorem. The spine curve s_1 is contained in a torus with spine curve s_2 , and vice versa.

•

complete list of cases 1

2 <i>d</i>	2φ	R_1, R_2, m_1, m_2	# real solutions	shape		
skew axes						
<i>≠</i> 0	<i>≠</i> 0		up to 8	-		
$\neq 0$	\neq 0	$2d = R_i \sin 2\varphi, m_i = 0$	∞^1	quartic ruled surface		
$\neq 0$	$\pi/2$	$2d = R_i \sin 2\varphi, m_i = 0$	$2\infty^1$	two two-fold pencils		
coplanar axes (not parallel)						
0	<i>≠</i> 0	$R_1^2 + m_1^2 \neq R_2^2 + m_2^2$	4, 6	_ a		
0	\neq 0	$R_1^2 + m_1^2 = R_2^2 + m_2^2$	∞^1	pencil + line ^b		
0	<i>≠</i> 0	$m_1 = m_2 = 0$	5	_c		

•

complete list of cases 2

2 <i>d</i>	2φ	R_1, R_2, m_1, m_2	# real solutions	shape			
parallel axes							
<i>≠</i> 0	0, π	$m \neq 0$, $ R_1 \pm R_2 \neq 2d$	4,6	-			
$\neq 0$	0, π	$m \neq 0, R_1 \pm R_2 = 2d$	5	_d			
$\neq 0$	0, π	$m=0, R_1 \pm R_2 \neq 2d$	1, 3	_e			
<i>≠</i> 0	0, π	$m = 0, R_1 \pm R_2 = 2d$	∞^1	pencil ^f			
identical axes							
0	0	$m \neq 0, R_1 \neq R_2$	$2\infty^1$	two cones of revolution			
0	0	$m \neq 0, R_1 = R_2$	$2\infty^1$	cone + cylinder of revolution			
0	0	$m = 0, R_1 \neq R_2$	$4\infty^1$	four-fold pencil			
0	0	$m = R_1 = R_2 = 0$	∞^2	-			

the tiny details

^aIn case of four common normals there can be one line with multiplicity three.

^bThe pencil contains a line with multiplicity three. The further line is not contained in the pencil.

^cOne line is of multiplicity three.

^{*d*}See footnote c.

^eThere is one common normal of multiplicity four.

^{*f*} See footnotes b, e.

Thank You For Your Attention!