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Outline

motivation — what’s done, what’s left

Gaussian curvature — support function, tangent developables

Mean curvature — relation to circular sections

principal curvatures — not to be confused with principal lines

ratio of principal curvatures — minimal-surface-likeness of a hyperboloid
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Motivation

Curvature analysis is often rendered by CAD systems.

Some times it produces strange results:

positive Gaussian curvature on ruled surfaces, . . .

Curvature functions on surfaces of revolution, helical surfaces, cylinders, cones,

developables are well understood.

The ellipsoid was studied by W. Wunderlich in [Wu 1].

2



Hyperboloid - algebraic variety or ruled surface

hyperboloid as variety, given by an alge-

braic equation (a, b, c ∈ R+)

S : x
2

a2
+
y2

b2
− z
2

c2
= 1

carries two ruled surfaces (reguli)

R1,2 =







a cos u
b sin u
0





+ v ·







−a sin u
b cos u
±c







with u ∈ [0, 2π[ and v ∈ R
assumption: a < b,

excluded: surfaces of revolution
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Gaussian curvature and support function

usual formulas apply to parametrizations: (x, y , z(x, y))T “upper half”

=⇒ K = − 1

a2b2c2
· 1
(

x2

a4
+ y

2

b4
+ z

2

c4

)2 (valid on upper and lower half)

support function d of a surface = oriented distance of tangent planes to the origin

gradS = 2
(

x

a2
,
y

b2
,− z
c2

)T
=⇒ d = 1

√

x2

a4
+ y

2

b4
+ z

2

c4

=⇒ K = − d4

a2b2c2

in case of an ellipsoid or a two-sheeted hyperboloid: K = + d4

a2b2c2
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Gaussian curvature and support function

Theorem 1:

The tangent planes of S along a
curve of constant Gaussian cur-

vature K0 are at fixed distance

d0 =
√
abc 4
√−K0 from the ori-

gin, and thus, they envelope a

concentric sphere with radius d0.

Theorem 2:

The curves of constant Gaussian

curvature K0 < 0 on S are the
contact curves of a developable

ruled surface tangent to S and a
concentric sphere of radius d0.
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Curves of constant Gaussian curvature

Theorem 3:

The curves of constant Gaussian curva-

ture on S are the quartic curves of inter-
section of the hyperboloid with concentric

and coaxial ellipsoids

E : x
2

a4
+
y2

b4
+
z2

c4
=

1

abc
√
−K =

1

d2
.

front view . . . . . . . . . . . . . . . . . . hyperbolae

top/side view . . . . . . . . . . . . . . . . . . ellipses

degenerate curve = pair of ellipses if

K0 = −a2(bc)−2

minimal G. curvature at (0,±b, 0)T

Kmin = −b2(ac)−2
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Curves of constant Gauss curvature and the central curve

choose one ruled surface R1,2 ⊂ S
compute the distribution parameter δ and

use Lamarle’s formula (cf. [Ho,Mu])

K = − δ2

(δ2 + v2)2

where v is the surface point’s distance to

the central point (measured on a ruling)

=⇒ K is minimal ⇐⇒ v = 0
=⇒ K is minimal at the central point.
=⇒ The iso-lines of K touch the rulings
at the central points.
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Curves of constant Mean curvature

With (x, y , z(x, y))T and the support

function d we have

M =
d3

2a2b2c2
L

where

L =
(

b2 − c2
) x2

a2
+
(

a2 − c2
) y 2

b2
−
(

a2 + b2
) z2

c2
.

Theorem 4:

Curves of constant Mean curvature on S
are algebraic curves of degree 12.

The principal views are algebraic curves of

degree 6 (due to the symmetry of S).
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Mean curvature

Theorem 5:

The curve of vanishing Mean curva-

ture on S is the pair of smallest circles
⇐⇒ a = c .
Proof: Compute the top view and

show that the curve with M = 0 is

an ellipse which is the image of a pair

of circles.

Related result (cf. [Kr]):

If one point on a circular section s of

S has vanishing Mean curvature, then
any point on s shows M = 0.

Proof: Search for pairs of orthogonal

rulings (through one point).

z ′′′

x ′′′ y ′′

z ′′

y ′
x ′
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Curves of constant principal curvatures 6= principal curvature lines

principal (curvature) lines (pcl)=

intersection of a quadric with confocal

quadrics (not from the same family)

• pcl form an orthogonal system of
curves,

• pcl are quartic curves,
• tangents to pcl are principal tan-
gents,

• no curvature function is constant
along a pcl
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Curves of constant principal curvature

The principal curvatures κ1,2 are related to the Gauss and Mean curvature via:

2M = κ1 + κ2 and K = κ1κ2.

Alternatively:K = detW and 2M = traceW withW being the coordinate matrix of the Weingarten

map ω (cf. [dC] or [Sp]) ⇐⇒ κ1,2 are eigenvalues of ω.
Solving for either κ (index doesn’t matter) means solving

κ2 + 2Mκ+K = 0⇐⇒ a2b2c2κ2 − d3Lκ− d4 = 0
or (without radicals by squaring once)

(a2b2c2κ2−d4)2−d6κ2L2 = (a2b2c2κ2−d4−d3κL)(a2b2c2κ2−d4+d3κL) = 0.
Theorem 6:

The curves of constant principal curvatures on S are two families of algebraic curves
of degree 16. The principal views are of degree 8 (due to the symmetry of S).
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Curves of constant principal curvatures: algebraic parametrization

Curves of constant principal curvatures

can be parametrized by the support func-

tion d :

x2= a4

βγκd3
(d3 − b2c2κ)(a2κ+ d),

y2=− b4

αγκd3
(d3 − a2c2κ)(b2κ+ d),

z2= c4

αβκd3
(d3 + a2b2κ)(d − c2κ)

with α=b2+c2, β=c2+a2, γ=a2−b2.

x ′′′

z ′′′ z ′′

y ′′
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Ratio of principal curvatures - shape of Dupin’s indicatrix

at some regular surface point P :

κ1 :κ2= 1 =⇒ indicatrix at P is a circle,
surface behaves locally like a sphere −→ cannot happen on S
κ1 :κ2=−1 =⇒ indicatrix at P is a pair of conjugate equilateral hyperbolae,
surface behaves locally like a minimal surface

κ1,2 =
d2

2a2b2c2
(dL∓Q) with Q =

√

d2L2 + 4a2b2c2

=⇒ R = κ1 : κ2 = (dL−Q) : (dL+Q) =⇒ a2b2c2(1 + R)2 + Rd2L2 = 0.
Theorem 7:

The curves of constant ratio of principal curvatures on S are algebraic curves of
degree 12. The principal views of the curves of constant ratio of principal curvatures

on S are algebraic curves of degree 6 (due to the symmetry of S).
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Curves of constant ratio of principal curvatures

x ′′′

z ′′′

y ′′

z ′′

x ′

y ′
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Thank You For Your Attention!
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[Kr] J. Krames: Zur mittleren Krümmung einschaliger Hyperboloide.

Anz. Akad. Wiss. Wien, math.-naturw. Klasse Nr. 1, 1971, 1–3.

[Mu] E. Müller: Vorlesungen über Darstellende Geometrie. Band III: Konstruktive Behandlung der
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